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The Use of Collateral Data in Credibility Theory: 

A Hierarchical Model 

* 
William 6 .  Jewel1 

Abstract 

In classical credibility theory, a linearized 
Bayesian forecast of the fair premium for an individual 
risk contract is made using prior estimates of the col- 
lective fair premium and individual experience data. 
However, collateral data from other contracts in the 
same portfolio is not used, in spite of intuitive feel- 
ings that this data would contain additional evidence 
about the quality of the risk collective from which the 
portfolio was drawn. By using a hierarchical model, 
one makes the individual risk parameters exchangeable, 
in the sense of de Finetti, and a modified credibility 
formula is obtained which uses the collateral data in 
an intuitively satisfying manner. The homogeneous for- 
mula of ~uhlmann and Straub is obtained as a limiting 
case when the hyperprior distribution becomes "diffuse". 

0.  ~ntroduction 

In the usual collective model of risk theory [I], the 

random variables generated by individual risks are assumed to 

be independent, once the individual risk parameters are known. 

However, a priori, only collective (portfolio) statistics are 

available, taken from a distribution which is mixed over a 

prior distribution of the parameter. We assume that unlimited 

statistics are available for the collective as a whole, and a 

limited amount of experience (sample) data for individual 

risks drawn at random from the collective. 

* University of California, Berkeley, and International 
Institute for Applied Systems Analysis, Laxenburg, Austria 



In classical credibility theory, we make a linearized 

Bayesian forecast of the next observation of a particular 

individual risk, using his experience data and the statis- 

tics from the collective; the resulting formula, which has 

been known in various forms for over fifty years, requires 

only the individual sample mean, and the first and second mo- 

ments from the collective. 

If one attempts to use collateral data from other risks 

in a credibility forecast of a certain individual risk, it 

turns out that this cohort data has zero weight, and is dis- 

carded in favor of the assumed-known collective statistics. 

This is essentially because the various individual risk pa- 

rameters are assumed to be independent and representative 

samples from the prior distribution. 

This result is disturbing to many analysts, who feel 

that data from other risks in the portfolio contains valuable 

collateral information about the collective. In several of 

their models, ~iihlmann and Straub [ 3 , 4 ]  argue that, since the 

(mixed) moments of the collective must be estimated anyway, a 

credibility forecast should be only in terms of cohort data. 

They achieve a partial result of this kind by using a propor- 

tional function of all experience data; this forces the use 

of cohort data into an estimate of the collective mean, but 

the second moment components are still required. In [12], the 

author describes a model in which the individual risk parame- 

ters were correlated through an "externalities" model; the re- 

sulting formula uses both cohort sample data and the first 



and second collective moments. In [18], Taylor describes a 

model in which the "manual premium" (collective mean) is it- 

self a random variable, and also obtains a formula in which 

collateral data is used. Finally, we should mention that 

similar arguments are advanced about the use of cohort 

data in the otherwise unrelated "empirical Bayes" models [14, 

161. 

In this paper, we attempt a reconciliation of these ap- 

proaches, based upon the ideas of hierarchical models [13,14, 

151 and model identification [17,19]. Although we obtain re- 

sults similar to those already described in [12], the justi- 

fication is completely different, and, we believe, provides a 

more natural explication of the situations in which collateral 

data should be used. 

1. The Basic Model 

In the basic model of the collective, we imagine that - in- 

dividual risk contracts are characterized by a risk parameter, 

8, which is drawn from a known prior density, p(8). A cohort, 

or portfolio, of such contracts consists of a finite popula- 

tion [el, e2,. . . , er1 , whose members are drawn independently from 

the same density. 

Then, given 8 we suppose that we have likelihood densi- i ' 
1 

ties, pi(xitlei), which govern the generation of ni independent 

'we adopt the usual convention that all densities are in- 
dicated by p(.), the arguments indicating the appropriate ran- 
dom variable(s). The random variables, themselves, are indi- 
cated where necessary by a tilde. Finally, to avoid complicated 

(continued) 



and identical realizations of the risk random variable, 

2 (t = 1,2, ..., ni). In other words, from the total portfo- it 

lio, we have r individual experience data records, x. = 
-1 

[xil,xi2, ..., x I ,  which, together, we refer to as the total in i 
experience, X. Note that each process is stationary over 

time, but that we (temporarily) permit the individual risks 

to have different distributions. In particular, we need to 

define the first two conditional moments: 

Prior to the data, p(8) is the same prior density for 

any arbitrary risk drawn from the collective; thus, a priori, 

we have the following average moments for risks of the i th 

th and j types: 

subscripts, we define the multiple conditional 
expectation: 

&&&{f(2,6,E,) 161a 

as being the expectation of f(a,b,c) using measure p(alb,c), 
followed by the expectation using measure p(b(c), followed by 
the expectation using p(c). Any of these arguments may be 
multiple, and other operators, such as variance, Y, and co- 
variance,%?, may be used. 



Note in particular that there are no covariances between 

risks i and j # i for two reasons: 

(i) assumed independence between zit and Gju, given 

Bi  and 9 
j ' 

(ii) assumed independence between A i  and 6 
1. 

The total prior-to-data covariance between individual risks 

is then: 

The basic problem of credibility theory is to forecast 

-2 

the next observation, x s f  ns+l , of a selected risk, s, given 

the total data from all risks, x = [x. ( (i = 1,2, ..., r)], and 
1 

using the linear function: 

n r i 
f (X) = a. + L L ait x s it ' i=l t=l 

in which the coefficients (ao;a ) are chosen so as to approx- 
it 

imate the conditional mean B{tsfn 1x1 in the least-squares 
S 

sense, over all prior possible data records, p(X). 

The appropriate least-squares formulae have been presen- 

ted elsewhere (see, e.g.,[7,12]). ~t turns out, for the basic 

model described above, that: 

(1) sit = ai (i = 1.2,. . . ,r) (t = 1,2,. . . ,ni) because 

of the stationarity assumption; 

(ii) ai = 0 (i # 0,s) because D = 0 (j # s), that 
s j 

is, a . and is are independent. 
3 



Defining the ith credibility factor, Zit and time constant, 

Nit as: 

- 
and the ith experience sample mean, xi, as: 

we obtain the final credibility forecast as: 

Various interesting interpretations of this classical result 

are possible [7,8,12], and it is known that (1.9) is, in 

fact, the exact Bayesian conditional mean for a large and 

important class of prior and likelihood densities [9,10]. 

2. Objections and Previous Results 

Two practical objections to the result (1.9) seem to be 

raised in the literature. The first is that three prior- 

to-data moments, m 
S t  ESS1 

and DSSl must be estimated from the 

collective for each risk which is forecast. Even in the more 

usual, identical-risk case, where mi = m, Eii = E, and Dii = D l  

for all samples i = 1,2, ..., r, (1.9) provides no assistance 

in estimating the common moments. This concern is related to 

the second objection, namely, that there ought to be some use 

for the cohort data, 
tXi+s , t 1 ,  since it is precisely from this 

data that one would attempt to form estimates of the first and 

second moments in actual practice. This collateral data ought, 



then, to be used either to form initial estimates of m, E, 

and D, or, in the case in which one had vague prior estimates 

of them, to somehow revise them as more portfolio-wide data 

becomes available. Notice that we are not talking about any 

problems of non-stationarity, such as inflation, or shifts in 

the risk environment, but just the vague notion that our col- 

lective might, in some way, be different from the initially- 

assumed statistics. 

~Ghlmann and Straub [ 3 ]  were the first to point out that 

one can force all the data in X to be used by setting a. in 

(1.6) equal to zero, and constraining the remaining coeffi- 

cients to give a forecast which is unbiased, asin (1.9). For 

the simple model of the last section, in which the zit are 

not identically distributed, we obtain: 

The term in braces, which used all the sample data, even that 

of risk s, is a substitute for ms in 1.9) ; however, there is 

no simplification as far as collective moments to be estimated 

are concerned, since all the mi, Eii, and Dii are used. 

But in the important case where all risks are assumed to 

be identically distributed, for the same value of 0 ,  

(2.1) simplifies to: 



and now the forecast depends upon Zi = ni/(ni + N), with 

N = E/D as a ratio between variance components which must be 

estimated from the collective. Of course, the forecast (2.2) 

must give a higher value to the mean-square error which was 

used to find (1.9). 

If all data records are of the same length, n = n and i 

Zi = Z = n/(n + N) , (i = 1,2,. . . ,r) , the surrogate for ms in 

the braces in (2.2) becomes simply: 

the grand sample mean of all cohort data! 

In some work on "related risk" models [12], the author 

assumed a situation in which the risk parameters = - - [Al , A 2  , . . . , 9 I are statistically dependent, with known joint r 

prior. The only effect of this assumption is to introduce 

non-zero terms into the last line of (l.4), viz.: 

for all i,j. If the underlying risk likelihoods are different, 

then a multidimensional credibility model [7,111 must be used 

with an r x r system of equations solved to find a matrix of 

credibility factors. However, in the important special case 



where the risks are identically distributed, given - 8, 

p(8) - consists of exchangeable random variables, and there are 

only four collective moments, m, E, and, say, Dll and D12 for 

the cases in which i = j and i + j, respectively, in (2.4). 

One may easily show that, with this correlation between risk 

parameters added, (1.9) becomes: 

r 

where the credibility factors now require a modified correla- 

tion time constant, N12: 

As in (2.2), the expression in braces in (2.5) is an estimate 

for the mean m , which can be seen to be different from m, 
S 

because of the non-representative way in which the cohort of r 

risks may have been selected. As the correlation between the 

parameters vanishes, D12 + 0, Dll + D, and (2.5) reduces to 

the usual formula (1.91, with all the collateral data being 

thrown away. 

Although this model is satisfactory from the mathematical 

point of view of explaining when cohort data would be used 

in a linear forecast, it does not show why there could 

be correlation in the collective, why the risk parameters should 

be exchangeable random variables, and under what conditions this 

correlation would be weak or strong. For this purpose, we need 

to extend the traditional model of the collective into a hier- 

archical model. 



3. A Hierarchical Model 

In our expanded model, the concepts of individual risk 

random variables, risk parameters, and a cohort of risks chosen 

from a collective are retained, but we imagine that - our collec- 

tive, the one under study, is not necessarily representative of 

other possible collectives which are drawn from some larger 

universe of collectives. 

Formally, this means that there is a collective selection 

hyperparameter, F, which describes how possible collectives may 

vary from one another, when chosen from some hyperprior density 

p(cp) ,  Once V is chosen and the collective characteristics are 

defined, then the risk parameters [ @ . I  are chosen for each 
1 

of the r members of our cohort, independently, and identically 

distributed from a prior density ~ ( 0  1 ~ ) .  Finally, the ni 

experience samples for each individual risk i are drawn inde- 

pendently from a likelihood, pi(xitlBi,~). Notice that the 

risk parameters and the individual risks are now independent 

only if V is given; from the prior-to-selection-of-collective 

point of view, there is apparent correlation between cohort 

results because of the mixing on V. 

This somewhat abstract model has a very practical inter- 

pretation. Imagine an insurance company in which the individ- 

ual risk is an individual insurance contract, and the collec- 

tive is just a portfolio of similar coverages within our com- 

pany. It is well recognized that portfolios vary from company 

to company, depending upon sales strategy, available customers, 

local risk conditions, etc.; our portfolio may be better or 



worse, than ,  say ,  t h e  nat ionwide average.  The un iverse  of 

c o l l e c t i v e s ,  then,  cor responds t o  t h e  union of a l l  p o s s i b l e  

r i s k  c o n t r a c t s  of t h 2 s  type  i n  t h e  na t i on ,  f o r  which we may 

assume adequate s t a t i s t i c s  a r e  a v a i l a b l e .  Thus, i n  a  h i e r -  

a r c h i c a l  model, we hope t o  use nat ionwide s t a t i s t i c s ,  t oge the r  

w i th  a l l  t h e  d a t a  from our  p o r t f o l i o ,  no t  on ly  t o  p r e d i c t  nex t  

y e a r ' s  f a i r  premium f o r  i n d i v i d u a l  r i s k s ,  b u t  a l s o  t o  draw 

i n f e r e n c e s  about  what kind of a  p o r t f o l i o  we have. 

For t h e  development of a  l eas t - squa res  f o r e c a s t ,  we s t a r t  

w i t h  t h e  i n d i v i d u a l  r i s k  moments of p ( x  l ~ ~ , v ) :  it 

and, from t h e  usua l  c o n d i t i o n a l  arguments, form t h e  un i ve rsa l -  

t h  average mean of t h e  i type:  

The u n i v e r s a l  covar iances ,  us ing t h e  c o n d i t i o n a l  independence 

p r o p e r t i e s  desc r i bed  above, a r e :  

where 



and 

Seve ra l  remarks a r e  i n  o r d e r .  From one p o i n t  of view, 

what w e  have done i s  t o  i n t r oduce  c o r r e l a t i o n  between r i s k  

parameters  of members of t h e  same c o l l e c t i v e ,  f o r  on comparing 

t h e  above w i t h  C1.5) a s  modi f ied by ( 2 . 4 ) ,  w e  g e t  t h e  formal  

equ iva lences :  

However, t h e  i n t e r p r e t a t i o n  i s  comple te ly  d i f f e r e n t ,  a s  w e  

have seen.  

The second obse rva t i on  i s  t h a t  i s  might seem worth wh i l e  

t o  decouple  t h e  xit from a ,  and make t h e  l i k e l i h o o d  on l y  depen- 

d e n t  upon B i ;  t h i s  might s imp l i f y  some of  t h e  computat ions 

above, b u t  does n o t  d im in ish  t h e  number of i n d i v i d u a l  p r i o r -  

to-selection-of-collective moments needed. 

However, i n  t h e  impor tan t  s p e c i a l  c a s e  where t h e  i nd i v i d -  

u a l  r i s k  c o n t r a c t s  a r e  s i m i l a r ,  g i v i n g  i d e n t i c a l  l i k e l i h o o d s ,  

g iven  B i  and V ,  it can  b e  seen  t h a t  on l y  f o u r  moments 

remain: M ,  F,  G ,  and H.  These may be i n t e r p r e t e d  i n  t e r m s  

of  ou r  s imp le r  model by n o t i c i n g  t h a t  it i s  a s  i f  t h e  moments 

of Sec t i on  1 had a  h idden dependence upon an  unknown parameter  

V. C a l l i n g  t h o s e  moments, t hen ,  m ( c p ) ,  E ( ( P ) ,  and D ( ( P ) ,  w e  see 

t h a t  t h e  u n i v e r s a l  moments are e q u i v a l e n t  t o :  



In other words, M, F, and G are universe-averaged versions of 

our previous m, E l  and D. H, however, is new, and represents 

the variance of the fair premium over all possible collectives. 

4. Universal Forecasts 

Continuing with the important special case of identical 

risk distributions, it follows easily from least-squares theory 

and the above definitions that the optimal credibility forecast 

for the hierarchical model is: 

where now a new universal time constant, ' appears in the 

credibility factors: 

Alternatively, we can get (4.1) from (2.5) and (3.7). 

Following an idea of Taylor for his model [18], we note 

that (4.1) can be split into two parts: 

The second formula may be regarded as a revision of the "prior 

expected manual premium", M I  using the experience data of all 



members of t h e  c o h o r t  t o  o b t a i n  an  "ad jus ted  manual premium", 

& ( x ) .  Th is  r e v i s e d  manual premium i s  then  used i n  an  o r d i n a r y  

c r e d i b i l i t y  formula w i t h  t h e  a p p r o p r i a t e  i n d i v i d u a l  c r e d i b i l i t y  

f a c t o r ,  Z s ,  f o r  t h e  f o r e c a s t  r i s k  s. 

The c r e d i b i l i t y  r e v i s i o n  of t h e  u n i v e r s a l  mean ( 4 . 4 )  de- 

pends i n  a  compl ica ted manner upon t h e  amount of d a t a  from 

each r i s k .  However, i f  a l l  d a t a  r e c o r d s  a r e  of t h e  same l e n g t h  

n ,  t h e n  Z i  = Z = n / (n  + NU) f o r  a l l  i t  and ( 4 . 4 )  can  be  re- 

w r i t t e n :  

where t h e  c o l l e c t i v e  c r e d i b i l i t y  f a c t o r ,  Z C ,  is: 

I f  r H  i s  l a r g e  compared t o  G ,  t h i s  f u n c t i o n  i n c r e a s e s  a t  f i r s t  

more r a p i d l y  t h a n  t h e  common i n d i v i d u a l  c r e d i b i l i t y  f a c t o r  Z ,  

a s  n  i n c r e a s e s ;  however, ZC h a s  an asympto t i c  l i m i t  less t h a n  

u n i t y ,  s o  t h a t  (4 .5)  i s  n o t  a  c r e d i b i l i t y  fo rmula  i n  t h e  u s u a l  

s e n s e ;  t h a t  is ,  t h e  grand sample mean i s  n o t  u l t i m a t e l y  " f u l l y  

c r e d i b l e "  f o r  m (P I .  

Th is  puzz l i ng  r e s u l t  can be exp la ined  by remembering t h a t  

t h e  r i s k  parameters  of t h e  coho r t  i = l t 2 , . . . , r I t  once 

p icked ,  remain t h e  same f o r  a l l  n.  There fo re ,  i f  one e s t i m a t e s  

a  f a i r  premium f o r  an a r b i t r a r y  new member of t h e  p o r t f o l i o ,  

say ,  w i t h  r i s k  parameter  t h e n  t h e r e  remains t h e  p o s s i b i l -  

i t y  t h a t  t h e  c o h o r t  sample i s  b iased .  Thus ZC does  n o t  approach 



unity with increasing n, unless rH 2 2  G I  which means that a 

large enough portfolio contains a representative sample of 

risk parameters. This effect is not important in our estimate 

's,n+l because of the factor (1 - Z ) in (4.1). 
S 

If, on the other hand, we did wish to estimate the fair 

premium averaged over the current portfolio: 

then one can show that (4.5) is still correct if a different 

credibility factor, 

is used; this does approach unity with increasing n. 

5. Limiting Cases 

The time constant N = F/G is just the universe-average u 
version of the classical Buhlmann time constant N = E/D, so 

that (4.3) is in a certain sense similar to (1.9). However, 

the factor H = r m ( B )  is completely new, and it is interesting 

to examine limiting cases. 

If H -+ 0, then we may say that all collectives are repre- 

sentative samples from the rather narrow universe of collectives 

in which there is little variance in fair premium. Thus, M + m, 

G -+ D, -+ NI and ZC + 0. No updating of the fair premium is 

necessary from the collateral data, and (4.3)-(4.4) reduce to 

the classical model (1.9). 



On the other hand, if H -+ this means that collectives 

are drastically different from one another, or in Bayesian 

language, we have a 'tdlffuse prior'' on m(?). Then from (4.4) 

or (4.6) , we see that, whenever there is cohort data, it is 

"fully credible" for m(?l, and (4.1) reduces to the Biihlmann- 

Straub proportional forecast (2.2) ! 

The same effect occurs in (4.6) as r -+ a, but for a dif- 

ferent reason: the grand sample mean of X is almost surely 

the correct mean, m(V) , for our collective, and thus P4 is 

eliminated. 

6. Approximation Error 

The value of any forecast must be judged in terms of the 

mean-square error: 

A certain portion of this error is due to individual fluctua- 

tion, and cannot be removed; the remainder is essentially an 

approximation error between the chosen forecast and the optimal 
- 

Bayesian forecast, tl{xsfn +1 1x1. (See, e.g. ,[12] . )  We now 
S 

examine the mean-square error for several of the forecasts 

suggested previously. 

The first and simplest possibility is to take the univer- 

sal mean, fs (X) = M, as an estimator. Then: 

that is, no component of variance is removed. 



The second p o s s i b i l i t y ,  suggested by t h e  s u r r o g a t e  f o r  

t h e  c o l l e c t i v e  mean i n  (2.21,  i s  t o  t a k e  t h e  c r e d i b i l i t y -  

weighted mean of  a l l  c o h o r t  d a t a ,  f  ( X )  = C Z . x . / C Z  g i v i ng :  s 1 1 j f  

which removes t h e  f l u c t u a t i o n  component H ,  b u t  may i n c r e a s e  

1 t h e  second t e r m  f o r  Z s  < 2. 

A t h i r d  c o l l e c t i v e - w i d e  p o s s i b i l i t y  which h a s  a l r e a d y  

been j u s t i f i e d  i s  t h e  " a d j u s t e d  manual premium", f i ( ~ ) ,  i n  ( 4 . 4 1 ,  

f o r  which: 

Turning now t o  f o r e c a s t s  which u s e  t h e  d a t a  from t h e  i n -  

d i v i d u a l  r i s k  i n  a s p e c i a l  way, w e  cou ld  u s e  t h e  ~uh lmann-S t raub  

homogenous formula  (2.21,  g i v i ng :  

A lso  of  i n t e r e s t  would be  an  i n d i v i d u a l  f o r e c a s t  i n  which 

t h e  c o h o r t  d a t a  i s  i gno red ,  ( 1 . 9 ) :  

F i n a l l y ,  w e  have t h e  v a r i a n c e  when t h e  op t ima l  u n i v e r s a l  

f o r e c a s t  ( 4 . 1 )  i s  used:  



Notice that none of the forecasts removes F; this is the 

irreducible variance component. Comparison of different fore- 

casts depends in general upon the values of G, H, and the 

credibility factors; for example, one cannot say that I2 is 

uniformly better than I1. 

The following relationships do hold, however, for all 

values of the coefficients: 

This effectively removes I and I2 from the second-rank con- 1 

tenders, after the optimal forecast I 
6 ' 

The ~iihlmann-Straub formula, 14, would seem to have 

special appeal because of the fact that H is removed completely. 

However, I6 < I4 always; and when H - I6 approaches a finite 

limit as well. Conversely, the classical individual credibility 

mean-square error, 15, continues to increase as the universal 

prior becomes more diffuse, and this is the basic justification 

for including the cohort data. 

7. Normal Hierarchical Family 

A special case of interest is when all densities discussed 

in Section 3 are normal. If N(a,b) refers to the normal density 

with mean a and variance b, then by setting: 



we find that the universal forecast (4.1) is exactly the 

Bayesian conditional mean 81; s'n -+ 1x1. 
s 1 

Further, the adjusted manual premium, A ( x )  (4.4) , is 

w XI. The joint distribution p (0 1 X) , as well as p ( @  X) , are - 
both normal, and their precision matrices may be found by 

elementary calculations. 

8. Related Work 

A linear Bayesian model which is hierarchical in form 

has been given by Lindley and Smith [13,14,15]. In this model, 
- 
5 ,  $, and - a are random vectors for which - - -  1 i) , a }  = A,C, and 

&t i ) /  - - ?I = A ? ,  A1 and A2 being matrices of appropriate dimension. 2-. 

The underlying distributions are all assumed to be multinormal, 

with 8{?} - and the covariances assumed to be known constants. 

When specialized to our model, results similar to Section 7 

are obtained. 

In [18], Taylor develops a credibility model in which the 

"manual premium", m, is revised according to "the average 1 

actual claim amount per unit risk in the entire collective in I 1 

the year of experience". His assumptions are different from 

ours, in that m "has a prior distribution at the beginning of 

the year of experience", but "for fixed m, each m (ei) is fixed" 

(in our notation). I interpret this as saying, in effect, that 

there is a hidden parameter, V, which is still left in m = m(v), 

after averaging over the 0 i ' However, I have been unable to 

further relate the two models, and his formulae have the dis- 

advantage that, as ''the prior distribution on m" becomes 



degenerate, his forecast does not reduce to the usual credi- 

bility formula. 

9. Conclusion 

In conclusion, we mention that our hierarchical model 

implies that the joint distribution of the risk parameters at 

the level of the insurance company is: 

which is equivalent to assuming that the risk parameters are 

exchangeable random variables. This powerful concept, due to 

de Finetti [5,6], is a natural modelling assumption for prob- 

lems in which a random sample generates a finite population 

whose members are distinguishable only by their indices, as 

in our selection of a portfolio from an abstract collective. 

[14], Section 6, and [15] contain further discussions of the 

applicability of exchangeability. In a certain sense, what 

our model does is to use exchangeability to introduce correla- 

tion among the cohort B i t  in the same way that a Bayesian prior 

introduces correlation among successive individual samples. In 

both cases, this prior correlation vanishes as the actual 

values of P and - 0 become identified. 

G. Ferrara once asked how credibility experience rating 

could be used in a company where there are no prior statistics. 

By referring the prior estimation problem to a higher level of 

data collection, and by using all the experience data generated 



by the company's contracts as one learns about the actual 

portfolio quality, we believe that the model developed here 

goes a long way towards answering this question. 
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