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PREFACE

Task 3 of the System and Decision Sciences Area, “*Decision Analysis
and Conflict Resolution™, is devoted, in part, to the study of the question:
what criteria and methods can be developed for the equitable division of
resources or other given quantities among competing interests?

This paper treats a specific problem that has wide application in public
sector decision making, namely, the allocation of representation to different
parties, regions, or interest groups according to thcir sizc or to some other
measure. In the context of allocating seats to parties this is known as the
proportional representation problem.

The paper iz dircetly concerned with normative political science, and
as such, has policy relevance to decision makers responsible for determining
methods of representation.

The objective of the paper is to analyze various proposed methods of
allocation 1n the light of common-sense properties, and to make more precise
what is meant by a “fair™ or “equitable” solution. Experience has shown
that if political debate can be raised from a bickering over particular num-
bers to an agreement on principles, a solution is more likely to be forth-
coming.

In an earlier paper by the authors, Criteria for Proportional Represen-
tation, various reasonable properties were introduced lor proportional repre-
sentation methods, and detailed mathematical arguments were used to show
that various of these properties could be used to characterize particular
methods. In this paper the implications of these results are discussed in depth.
Moreover, a new property called uniformity is introduced which is shown to
have important implications for characterizing classes of proportional repre-
sentation methods.

The methods and approaches developed in this paper, and in other
allied papers, should prove to be a methodological step towards treating
problems of fair division and conflict resolution found in more complex
situations than the one considered here. Thus, this work represents a step in
an ongoing program, albeit a step which has immediatc relevance to a
problem encountered in many countries.

This paper directly addresses the political science community rather

than the applied mathematics or systems sciences community. Technical
detail is avoided in order to concentrate on normative political issues.

-ijii-






SUMMARY

The following problem arises in many political contexts. A certain
number of political “parties” are to split a given number of seats in a legisla-
ture according to the numbers of votes they obtained in an election. What
principles should determine how these seats are to be allocated?

A basic principle dictated by both common sense and historical
precedent is “house monotonicity™: if the number of seats to be allocated
goes up, then, all other factors being equal, no party’s allocation should go
down. Another basic prinicple is “uniformity”: if two parties of given sizes
divide a certain number of seats, then they should always divide this number
in the same way. These properties characterize an important class of methods
called the Huntington methods. A further property relevant to proportional
representation is the tendency of some methods to encourage parties to
merge by awarding more seats to the merged party than they would receive
separately. (Similarly, some methods encourage schisms by penalizing larger
parties.) This property singles out one of the Huntington methods--the
so-called Jefferson, or d’Hondt method--as particularly desirable. But a third
property, that of “satisfying quota” is violated by the Jefferson method.
This recommends for consideration a new method, called the Quota method.

The conclusion is that agreement on the desired principles of propor-
tional representation provides a basis for the rational selection of a method
to affect allocations. Thus the axiomatic approach of mathematics provides
a normative basis for the design of political systems.
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Stability, Coalitions, and Schisms in

Proportional Representation Systems

INTRODUCTION

There exist wholesale numbers of possible election proce-
dures. A basic classification of these has been made into

"plurality systems" and "proportional representation (PR) systems".

In a plurality system an elector usually casts one vote
for the candidate or the (party) list of candidates of his or
her choice in some election district, and the candidate or the
list receiving a majority or a plurality is elected. Such
systems are based on a notion of geographical representation.
Mid-nineteenth century Europe saw an increasing dissatisfac-
tion with plurality systems as unfair to minorities, for small
political parties were effectively barred from having any re-
presentation whenever their adherents were distributed through-

out many single-member election districts.

This led to the idea of proportional representation which,
in its pure form, has electors cast one vote for a party or a
party list in a multimember district and then, by some rule,
metes numbers of seats "proportionally" among the parties ac-
cording to their respective vote totals. Of course, variants

of both types of system exist, as do complex mixtures.

This paper focuses on the pure form of the proportional

representation problem: voters cast a single vote for a party

in a multimember district and the question is to determine the
Jjust number of representatives due each party. Exact proportion-
ality cannot, in general, be achieved since representation must
be integral. Some "rounding" must take place. Appearances to
the contrary, an operational definition of exactly how to effect
this rounding is not easily forthcoming and history is rich with

controversies over proposed solutions and methods.



We argue that the only valid approach to the comparison
of methods, and hence to the ultimate choice of a method, is
through careful analysis of their properties. Consider an
arbitrary method of allocation M. Does M have the property
of always assuring a party at least its exact proportional num-
ber of seats rounded down, or at most that number of seats
rounded up? Suppose that, with vote totals unchanged, the num-
ber of seats in a parliament is increased: does the method M
always assure each party at least as much representation as was
allocated to it before? Suppose that, instead of standing
alone, two parties form a ccalition which obtains the same vote
total as the sum of the votes that would have been received by
the parties separately: does the method M give at least as
many seats to the coalition as the sum of the seats M would
have allocated to the parties separately? Postulate an election
in which some subset of parties, each standing alone, is allo-
cated certain numbers of seats by a method M and that they joint-
ly hold h seats: 1if M were used to allocate those h seats among
only these parties with the given vote totals, would M arrive at

the same allocation?

It is perhaps surprising -- but it is a fact -- that no method
enjoys many of the combinations of the properties suggested by
these questions, that some methods are the only ones which enjoy
certain combinations, and that some other combinations define
particular classes of methods. Below, we describe the fundamen-
tal properties of allocation methods in the context of methods
of allocation which have been advanced over the years since the
problem of proportional representation first arose. We point to
some impossible combinations, and characterize two methods which
seem particularly apt for PR systems. In particular, we intro-
duce the notions of methods being stable, encouraging coalitions,
and encouraging schisms. But the choice of appropriate proper-
ties depends upon the particular situation, nation, and heritage.

Thus the moral of the paper is: politicians should not choose



numerical solutions, or even numerical methods. Rather, they
should argue the merits of properties of methods, and let their
conclusions in principle determine the methods and thus the

numbers. Thus, axiomatization finds its political role.

BACKGROUND

Let us consider s parties, and represent the vote total of
each party i by Py 1 <1i<s. h,a nonnegative integer, will
be the total number of seats to be allocated (called the house
size). We consider only those parties which receive votes, so
that p; 2 0. For a given house size h, the problem is to find an
allocation for h: namely, s nonnegative integers ags8y,.00,8g
whose sum is h. A solution to the proportional representation

problem is a function f which gives, for all possible vote

totals p = (pl,pz,...,ps) and house size h, an allocation for
h: a; = £;(p,h) 20, La,=h. A method, M, is the family of

; <
all solutions produced by a specific computational rule. (This

allows for the possibility of ties.)

In fact a similar problem arises under plurality systems,
but in a different guise. For, usually, a country is divided
into states or provinces and each single-member election dis-
trict is wholly contained in one such subdivision. How many
election districts or representatives should one geographical
region be allocated? This problem is known as the apportion-
ment problem. (Of course, geographical apportionment can arise
in proportional representation systems too.) 1In this case the
numbers Py/Pyr--. Py are interpreted as the population (or the
number of voters) in the various states, and a; is the number
of seats allocated to state i. The apportionment problem has a
long and colorful history, particularly in the United States
{1,7,21].

For proportional representation, three principal methods

seem to have been considered: Sainte-Laglie's [20], d'Hondt's



[12,13], and Hamilton's [23], the latter usually known as "la
répartition au plus fort reste" [10]. In the apportionment lit-
erature Sainte-Lagie's and d'Hondt's methods have found their
places under other names (see [14]), in a class of five "modern”
methods [8,13] which, from about 1920 through 1974, were the ones
collectively considered for apportioning the United States House

of Representatives.

The five modern methods were first grouped by E.V.
Huntington [15] in 1921 via an approach to allocation based on
pairwise comparisons of "inequality in representation”. Given
yote totals p = (pl,...,ps) and an allocation a = (al"“’as)
for h, consider the numbers pi/ai and ai/pi. These represent
the number of votes per representative of party i and the number
of representatives per vote of party i, respectively. If

pi/ai > pj/aj, or ai/pi < aj/pj, or aj > a; (pj/pi), Or ...,

(pi/ai)(aj/pj) > 1, then party j is better off than party i.

Given a particular measure of inequality between a pair of

parties such as [pi/ai - pj/aj| or |ai/pi - aj/pj| it is natural

to ask whether the amount of inequality can be reduced by a trans-
fer of one seat from the better-off party to the less-well-off
party. For a given measure an allocation is said to be in equi-
l<brium if no transfer of a representative from a "better off"
party to a "worse off" party reduces the amount of inequality
between them. Of course, certain conceivable measures may not
(and do not) admit equilibrium solutions for all vote-total dis-

tributions, but Huntington showed [14,15] that five measures do.

All of Huntington's methods are examples of the following
type, called divisor methods. Let d(a) be some monotone in-
creasing function of the nonnegative integers a where d(0) > 0.
The divisor method M based on d(a) is defined to be the set of
all solutions obtained in the following manner for successive
house sizes h. For h = 0, the allocation must be zero for every
party. Given that an allocation (al,...,as) has been found for
a house size h, an allocation for house size h+ 1 is found by

giving one more segat to a party k for which pk/d(ak) is a maximum.



If there are several states that are tied for maximum,
then several allocations may result unless some tie-breaking

rule is employed.

The numbers p;/d(a may be thought of as measuring the

)
"priority" of a party with a; seats to receive one more seat. Thus,
if one more seat is to be distributed, then party i will "deserve"
it more than party j if pj/d(a;) > pj/d(aj). In this context,

d(aj) may be thought of as some sort of "weighting" of the number

of seats that party i already has.

One of the most commonly used methods for proportional
representation (e.g., in Argentina, Belgium, Brazil, Finland,
Israel, Liechtenstein, and the Netherlands [16]) is that of
d'Hondt, a nineteenth century Belgian lawyer and proportional
representation advocate. This method, which was actually first
proposed by Thomas Jefferson [11l] in 1972, has therefore been
called the Jefferson method J [7]. 1In fact the same method is
known in the literature variously as the method of "highest
average" or "la répartition a la plus forte moyenne” and is
described differently, though in fact it leads to the same result

(see Section 4 below).

The Jefferson method is one of the five divisor methods
studied by Huntington, and it uses the divisor criterion d(a) =
a + 1. The rationalization for this particular criterion is as
follows. If party i has a; seats then pi/ai—- the number of
votes per seat -- is a measure of how well-represented that party
currently is. If one more seat were available for distribution,
the Jefferson method proceeds by giving the extra seat to a
party that would be the worst-off were every party to get one more
seat, i.e., by giving the extra seat to a party k with the largest
pk/(ak+1).

Another plausible criterion, one might argue, would be to
always give the "additional" seat to the party that is currently

the worst off, i.e., to the party for which pk/ak 1s a maximum.



This method is known in the apportionment literature as the
"method of smallest divisors" (8D), and is also one of Huntington's
five. These five methods, and their corresponding divisor cri-

teria, are shown in Table 1.

Table 1. Huntington's five methods.

(47 Method Divisor Criterion
d(a)
Smallest Divisors (%p) a
Harmonic Mean (Qﬂ) 2a(a+1)/(2a+1)
Equal Proportions (EP) (a(a+1))!5

Webster (W)

or Major Fractions

or Sainte-Laglie Formula (a+})
Jefferson (q)

or Greatest Divisors a+1
or d'Hondt
or plus forte moyenne

That these are actually all different methods is seen from
the example in Table 2, where the five methods allocate 36 seats

among six parties in five different ways.

Table 2.
Exact 1

Party Votes Received Proportionality SD HM EP W J
-\ 27,7u4 9.988 10 10 10 10 11

B 25,178 9.064 9 9 g 9 9

C 19,947 7.181 7 7 7 8 7

D 14,614 5.261 5 5 6 5 5

E 9,225 3.321 3 4 3 3 3

F 3,292 1.185 2 1 1 1 1

L 100,000 36.000 36 36 36 36 36




Another commonly used rule, e.g., in Denmark and Norway
[16], is that known as Sainte-Laglie's method [15] (fourth in
the list of Huntington's methods). This is also known in the
apportionment literature as "the method of major fractions",
but was in fact first suggested in embryonic form by Daniel
Webster [24] in 1832 and has therefore been called the Webster
method W [7]. A particular variant of W is the modified
"method of odd numbers" used in Sweden, It is defined by:
d(0) = 7/10 (instead of d(0) = %), and otherwise the divisors
are identical with those of w, d(a) = a + %. The third of
Huntington's methods, Equal Proportions (EP), was the one
favored by Huntington, and is the method currently used to

apportion the United States House of Representatives.

It is an interesting historical note that Sainte-Laglie [20]
came upon the Webster method quite independently via the idea
of minimizing a total measure of the inequality of an allocation.

He proposed that an allocation should minimize

since in a perfect allocation h/p = a.l/pi for all i. The Webster
method provides solutions which do this. In the same paper
Sainte-Laglie suggests in words (though not in symbols) that one

could be interested in minimizing

p 2
Zaig‘-a_l ’
1 i
but that "one is led to a more complex rule". 1In fact, this

gives precisely the method of Equal Proportions.

There is another method that is often proposed for propor-
tional representation, and which is, seemingly, the most natural

one. Although known by several names, including " lag répartition



au plus fort reste™ and "Vinton's method of 1850", it was ap-
parently first proposed by Alexander Hamilton {[23] in 1792 and
has therefore been called the Hamilton method H [71.

Define the exact quota of party j to be qj = qj(g,h)
pjh/Zipi; it is the exactly proportional number of seats de-
served by party j and the number that one would wish to allocate
to j were it integral. Let quJ denote the largest integer less
than or equal to qj. The Hamilton method is defined in the fol-
lowing way: first, give to each party j quJ seats; then order
j quJ >0

in a priority list dj 2...>2d. . Second, give one additional

the parties by their fractional remainders dj =g

1 s
seat to each of the first h —Zl_qu parties on the list. If

there are ties then there exist distinct arrangements of the

priority list and, hence, possibly several solutions.

The rationale of the Hamilton method is the following.
Every party j certainly deserves a number of seats at least
equal to its lower quota quJ , hence we begin by giving each

party at least this many seats. Any method such that

aj > quJ = ijh/pJ
for all allocations a for h is said to satisfy lower quota.

By the same token, no party j deserves to receive more than
rqjj seats (where rqu is the next integer larger than qy, or
if q; itself is integer, rqjj = qj). rqjj is called the upper
quota of state j, and a method satisfies upper quota if for all

allocations a forh,

a. <l'g.1=Tp.h/p|

j £Vay Py /p
A method M satisfies quota if it satisfies both lower and

upper quota for all parties j and allocations a. 1In particular,

the Hamilton method satisfies quota.



The Hamilton method, or modifications of it, is currently
used for PR in the parliaments of Costa Rica and Italy [16],
and was formerly used in Israel. Under the name of the Vinton
method of 1850 it was also used to apportion the United States

House of Representatives from 1850 to 1900.

In the United States experience with the Hamilton method
a startling discovery was made: in 1881, it would have given
Alabama 8 seats in a house of 299 but only 7 seats in a house
of 300. "This atrocity which [mathematicians] have elected
to call a 'paradox' ... this freak presents a mathematical im-
possibility" (Representative John C. Bell of Colorado, 8 January
1901, [9, pp. 724-725)) is a typical, albeit somewhat hysterical,
politician's reaction to the property. The phenomenon, known as
the Alabama paradox, is not an isolated quirk of the Hamilton
method, but occurs frequently. Consider the vote totals of the
Six parties in Table 3: parties D and £ are given a total of 10
seats when 37 are to be allocated, but only 8 when 38 are to be
allocated. The point is not that one would necessarily be in a
situation where the number of seats to be allocated increases by
l--although history is replete with houses of representatives
which increase their numbers--but rather that any method exhibit-
ing such behavior runs totally contrary to any notion of what a
fair and reasonable method should do. One need only refer to the
universal reaction of shock among politicians when the event
occurred to gauge the politieal unacceptability of the Hamilton
method. Its use in the United States has been definitely aban-
doned. Were a political party to lose a seat only because the
total number of seats to be distributed had been increased, a

similar hue and cry would certainly result.
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Table 3.
Party A B C D E F Totals
Vote Total 27,744 25,178 19,947 14,614 9,225 3,292 | 100,000

Exact quota 35 9.711 8.812 6.982 5.115 3.229  1.152 35
H allocation 35 10 9 7 5 3 1 35

Exact quota 36 9.998 9.064 7.181 5.261 3.321  1.185 36
H allocation 36 10 9 7 5 4 1 36

Exact quota 37 10.265 9.316 7.380 5.407 3.413  1.218 37
H allocation 37 10 9 7 6 4 1 37

Exact quota 38 10.543 9.568 7.580 5.533 3.506 1.251 38
H allocation 38 11 10 8 5 3 1 38

Exact quota 39 10.820 9.819 7.779 5.699 3.598  1.284 39
H allocation 39 11 10 8 6 3 1 39

Thus, an essential property for any fair and reasonable PR
method M is that it be house monotone, that is, for any M-solu-
tion £, no party must receive fewer seats if the number of seats

to be allocated increases:

f(p,h+1) > f(p,h) for all p and h .

It was the search for house monotone methods that motivated
Huntington, beginning in the early part of this century, to for-
mulate the class of five methods exhibited in Table 1. All of

these methods are house monotone, as indeed are all divisor methods.
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STABLE METHODS

Parties in proportional representation systems are dynamic.
They may group together for electoral purposes, but they may also
splinter. The properties of the method used for allocating
representation to parties may well have consequences for this
tendency to coalesce or to splinter -- in short, for their sta-
bility [19]. Specifically, it is pertinent to ask: how does
the number of seats allocated by a method M to the joint vote
total of two parties coalesced into one compare with the seats

allocated by M to the two parties separately?

This property is independent of any coalition or schism
formation which might occur in a parliament after an election.
Rather, it forms an underlying structural incentive for larger
or smaller parties to form before elections. This type of in-
centive is institutional rather than psychological and cannot be
expected to be directly observable or measurable in any one
election. Nevertheless, it constitutes a normative basis for

the design of proportional representation systems.

Consider a method M and a situation with vote totals P in
which some party has p* votes and is allocated a* seats, and
another party has p votes and is allocated a seats. Now suppose
that the two parties merge into one party with a combined vote
total p + p*. The method M is said to be stable if there is an
!—allocation of seats thatwgives the merged party no more than
a* + a + 1 seats and no less than a* + a - 1 seats. The mean-
ing of this condition is that the allocations to parties sepa-
rately should not be too different from what the parties would
receive by merger, for if this is not the case then the method
itself may tend to encourage party mergers or schisms, i.e.,
instability.

The following result may then be shown [3].

(1} Any divisor method with divisor criterion d(a)satisfying
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s stable.

It may be checked that the five methods of Table 1 satisfy

the condition, hence all of them are stable.

To see how stability works, consider the vote totals of
the six parties in Table 2, and suppose that parties D and E
merge to form one party. The Jefferson method then accords the
merged party one more seat than the sum of their separate allo-
cations. On the other hand, consider the seemingly similar
divisor method based on d(a) = a - 1. This does not satisfy
the condition (1), and the example of Table 3 shows it is un-
stable: the method allocates to the merged party a total of 2
seats less than the sum of their separate allocations (see
Table 4).

There are nondivisor methods which are stable; for example

it is proven in the appendix that

(2) The Hamilton method is stable.

Table 4. J compared with an unstable method.

Vote Vote

totals totals

before after J-solution J-solution (a-1l}-sol. (a-1l)-sol.

Party merger merger before after before after
A 27,744 27,744 11 10 9 10
B 25,178 25,178 9 9 8 9
C 19,947 19,947 7 7 7 7
D 14,614 5 6
! 23,839 9 8

E 9,225 3 4
F 3,292 3,292 1 1 2 2

100,000 100,000 36 36 36 36
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METHODS ENCOURAGING COALITIONS AND METHODS ENCOURAGING
SCHISMS

For proportional representation it is important to ask
not only whether a method is stable, but also whether it tends
to encourage parties to merge or to splinter. In other words,
the way in which a method allocates seats may create a subtle
institutional incentive for larger or smaller parties to evolve,
depending on whether the merger of parties tends to result in a
net gain or a net loss of seats. For political stability it
would usually be considered desirable to have methods of allocation
that encourage parties to merge, by assuring that this would
never result in a net loss of seats, and might in fact result

in an increase.

To make these ideas precise, consider any method M and any
situation p in which some party has p votes and is allocated a
seats by @ and some other party has p* votes and is allocated
a* seat by M.  Suppose that the star- and bar-parties merge to
create a party with a total of p* + p votes. We say that M en-
courages coalitiong 1f in any such situation there is an M:
allocation giving at least a* + a seats to the coalesced éarty.
Similarly, if there is an M- allocation giving at most a* + a

seats to the coalesced party then M is said to enccurays sciisme.

Consider, for example, the divisor method with divisor
criterion d(a) = a + 6 applied for 36 seats to the vote totals
given in Table 2, and compare the result with that of the
Jefferson method (see Table 5). If parties B and C merge, then
they receive four more seats under the (a + 6)-method, and one
more under the Jefferson method. Thus under both methods there
is an incentive for parties to merge. However, the (a + 6)-method
is unstable. Moreover, it will be noticed that, while the (a + 6)-
method works even more strongly than J to encourage coalitions

it does so at the cost of seriously penalizing the smaller parties.
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Table 5. Example of encouraging coalitions.

Vote Vote
totals totals Exact Exact (at+6) - (at+6) -
before after quotas quotas J-sol. J-sol. solution solution
Party merger merger before after before after before after
A 27,744 27,744 9.988 9.988 11 10 13 11
B 25,178 9.064 9 11
45,125 16.245 17 22
C 19,947 7.181 7 7
D 14,614 14,614 5.261 5.261 5 5 4 3
E 9,225 9,225 3.321 3.321 3 3 1 0
F 3,292 3,292 1.185 1.185 1 1 0] 0
100,000 100,000 36.000 36.000 36 36 36 36

Thus, none of the three smallest parties gets even its lower
gquota under the (a + 6)-method, whereas all of them do so under
J. Since any party certainly has a very strong claim in equity
to be allocated at least its lower gquota, the Jefferson method
seems to be the superior one of the two. In fact, we have the

following result.

(3) The Jefferson method is the only divisor method that

satisfies lower quota and encourages coalitions.

This is a consequence of more general results proved in
[3,6].

Viewed in this light the Jefferson method presents strong
credentials for being adopted in a proportional representation
system. Sainte-Laglle appears to have realized the tendency of
J to encourage coalitions, but he gave no proofs and his state-
ment has the curiosity of referring to a comparison: "In compar-

ing the two rules, one can show that the d'Hondt rule (J) favors
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the grouping of parties which, by coalescing, may receive more
seats; whereas the method of least squares (W) favors neither
groupings nor schisms" [20, p.378). A unique characterization

of W may, however, be given in terms of its "rounding" properties

(seé [2}).

The method of smallest divisors is, in a certain sense,
"symmetric" with J. Thus we have the following result (which

is also a consequence of theorems in [3,6].).

(4) The method of smallest divisors is the only divisor

method that satisfies upper quota and encourages schisms.

UNIFORM METHODS

A "method" of allocation brings to mind the dictionary
definition: a systematic means or manner of procedure. It con-
veys a sense of regularity. What is a valid mathematical inter-
pretation of this meaning? Here we introduce and explain a notion

which captures this sense.

Consider a two-party problem in which each party has pre-
cisely the same number of votes and there is an even number of
seats to allocate. We say that a method is balanced if it has
an allocation giving the same number of seats to each party.

(An equivalent definition is given in [3].) It is an obvious
truism that every method ever proposed or considered is balanced.
In the sequel we will consider only balanced methods--except to
point to the existence of "unbalanced" ones -- and so will drop

any further (redundant) mention of this property.

Divisor methods (which are of course balanced) are house
monotone. But they also have another property--"uniformity"
--which is a logical transcription of the intuitive notion of
"method". Consider the allocation problem of Table 2, and sup-
pose, for example, that the problem is modified as follows:

parties E and F are disqualified, so the total vote is 87,483
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and there are 32 seats amongst the remaining states. If the
Webster method W were now used to allocate a house of 32

seats to parties A, B, C, and D, then one would naturally
expect that the number of seats would be exactly the same as
those in Table 2, namely, 10, 9, 8, and 5, respectively. That
is, dropping certain parties and the seats allocated to them
should not change the distribution of seats among the parties
that remain. The solution might be said to be "secession-proof".
One actually would expect more of a "method": whenever four
parties having the vote totals of A, B, C, and D are to share
32 seats among them, then these seats should always be shared
in the same way {except allowing for ties). This expectation
of "uniformity" is fulfilled by the Webster method, all divisor

methods and, in fact, by a vastly larger class of methods.

To be mathematically precise, consider an arbitrary method
M and two different problems with vote totals (p,q) and (P,g‘),
each problem containing a set of parties with ide;tical véte
totals p. Suppose that (§'?) is an M-allocation for (E,g), that

(a',g') is an M-allocation for (E,g'), and Z ai = Z ai. Then M

is uniform if (a',b) is also an M-allocation for (p,q), and (a,b’')

also an M-allocation for (p,q').

Not all methods are uniform: the Hamilton method is not.
For, consider the example of Table 3. The Hamilton method
uniguely divides 10 seats among D, E, and F by the allocation
(5,4,1) in one instance (when the total house is 36), whereas
it uniquely allocates them (6,3,1) in another instance (when the
total house is 39). On the other hand, divisor methods are
uniform (see (6) below) since they proceed by comparing the
priorities of parties pair by pair through evaluation of p/d(a),
so the order in assigning seats to a subset of parties need not
change in the presence of other parties. This observation im-

mediately suggests a generalization.

Let r(p,a) be any real-valued function of two real variables
called a rank 7ndexr (possibly including * = for certain values

of pa and a). Given a rank index, a (generalized) /Zuntington



-17-

method [3] of allocation M is the set of all solutions f cobtained

recursively as follows:

=
h

el
(o]

i
(o)
=
A

i<s

(i1) If a, = fi(p,h) is an M-allocation for h, and k is

some one party for which

r(pk,ak) > r(piai) for 1 <1i<s ,
then

k(g,h+ 1) = ak+l , fi(g,h+ 1) = a; for i#k.

Since we consider only balanced methods, we must have r(p,a - 1) >

r{p,a) for all p and a, because otherwise an allocation to the
two-party problem (p,p) of form (a-1,a+1l) would result. Hunting-
ton methods are a direct generalization of divisor methods and
are house monotone and uniform for the same reasons. They ad-

mit a local characterization of allocations.

(5) a is an allocation for the Huntington method M based
on r(p,a) 21f and only if (with r(p,-1) = =)
max r(pi,ai) < mini r(pi,ai—l)

This is immediate by definition. It applies to divisor methods;

thus, for example, a is a Jefferson allocation if and only if
max . Pi/(ai4-l) < ming pi/ai

One application of this result is to show that various

methods that go by different names and descriptions in the lit-

erature are actually the same method. For example, the method

of la répartition & la plus forte moyenne -- usually ascribed to
d'Hondt -- has the following description [17]. First, give to
each state its lower quota Lpih/pJ = a;; the number of seats
remaining to be distributed is then h- ziai' For these remain-

ing seats, proceed as for J, (that is, as for the Huntington

method with r{(p,a) = p/(a+l). But this must give exactly the same
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answer as J, since as we have noted above (3), any J-solution

automatically satisfies lower quota.

D’'Hondt actually made the following proposal: "... to al-
locate discrete entities proportionally among several numbers,
it is necessary to divide these numbers by a common divisor,
producing guotients whose sum is equal to the number of enti-
ties to be allocated" [13, p.22]. Thus, according to d'Hondt,
we are to find a "divisor" X such that the integer parts of the

numbers p,/A sum to h, that is, zi Lp./xJ = h. To see that this

is the same as J, set a; = Lpi/AJ and notice that, by definition

of the integer part,

a; +1>p;/2 2

v
U

Thus
pi/(ai+l) < X< pi/ai for all i ,
that is,
m?x pi/(ai+1) < min pi/ai ’
so by (5) (al,...,as) is a J apportionment for h. The converse

is established similarly.

But exactly the same idea was proposed by Thomas Jefferson
in a letter to George Washington nearly a century earlier (1792):
"for representatives there can be no such common ratio, or di-
visor which ... will divide them exactly without a remainder
or fraction. I answer then ... that representatives [must be
divided] as nearly as the nearest ratio will admit; and the
fractions must be neglected" [ll, p. 463]. For this reason the

divisor method J must be credited to Jefferson.

That Huntington methods constitute a very general class
may be seen from the following result (which follows from (7)

below and the main theorem of [4]).
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(6) A (balanced) M is house monotone and uniform if and
only i1f <t 1s a Huntington method based on a rank index

r(p,a) which is nonincreasing in a.

House monotonicity and uniformity are sufficient to imply the
existence of a rank index r(p,a). This is a strong implication.
It permits a host of pertinent conclusions. It should be noted
that there exist rather dubious non-balanced Huntington

methods characterized by rank indices such as r(p,a) = a/p:

this method gives all seats to the party which receives the

first seat.

The statement (6) permits a strengthening of some of the
previous results. Thus (3) can be stated: there is exactly
one uniform, house monotone method satisfying lower quota and
encouraging coalitions, namely, the Jefferson method. And (4)
can be reformulated: there is exactly one uniform, house mono-
tone method satisfying upper quota and encouraging schisms,

namely, the method of smallest divisors.

There is another way of viewing uniformity. Consider an
arbitrary house monotone method M. The behavior of @ can be
specified simply by saying how one gets an allocation for a
house with h+ 1 seats, gitven the allocation for a house with
h seats; that is, all that is needed to be known is which
state has priority in receiving the next seat. An arbitrary
method @ is consistent if the decision as to which party of any
pair most deserves the extra seat when the house size is in-
creased by 1, depends upon only the vote totals and the seats
already allocated to those parties singly, and not on any other
data (such as the house size, number of other parties, or vote
totals of other parties). The example of Table 3 shows that
the Hamilton method is not consistent. Parties D and E receive
5 and 3 seats, respectively, for h = 35 and h = 38, but uniquely
receive 5 and 4 for h = 36 and unigquely 6 and 3 for h = 39. How-
ever, it is immediately clear that all Huntington methods are
consistent. Indeed, consistency and uniformity are essentially

the same:
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(7) A (balanced) house monotone method M <s uniform 7f and

only if it is consistent.
For the proof of this result see the Appendix.
Unfortunately,

(8) There is no uniform, house monotone method which satisfies

quota.

If a method is house monotone and uniform then it is a Huntington
method (see Appendix). But the Jefferson method is the only
Huntington method that satisfies lower gquota and the method of
smallest divisors is the only method that satisfies upper quota
[6,7]. Since these methods are different, there can be no uni-

form, house monotone method satisfying quota.

QUOTATONE METHODS

Three properties appear to dominate in importance -- house
monotonicity, uniformity, and satisfying gquota -- but they cannot
be satisfied by any one method. This raises the question: is
there some "minimal" weakening of these conditions which admits

the existence of a method?

The need for house monotonicity has already been demon-
strated. Allocations which do not satisfy quota-- that is,
which are not the result of rounding the exact proportional
share of representation due to a party either up and down -- seem
to violate common sense and have proven to be politically sub-
ject to attack (see, for example, [19,24]. A party receiving
40 seats when its proportional share is 37.34 seems unreasonably
well served; if its true share were instead 43.34 its leadership
would justifiably complain. Satisfying quota seems essential.
Note that any method satisfying quota is almost stable in the
sense that if any two parties with a* and a coalesce, then the

coalesced party receives b seats where a*+a-2 < b < a*+a+ 2.
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Given these considerations it is reasonable to attempt to
weaken the uniformity or consistency condition. Specifically,
we say that a method M is quota consistent if it is consistent
subject to the need to satisfy upper quota, that is, consistent
unless this imperative is in conflict with satisfying upper
gquota, in which case it cedes to the latter stronger imperative.
Then, it can be affirmed ([1,7]).

(9) There exists a unique allocation method Q, the quota
method, that is house monotone, quota consistent, and

satisfies quota.

The quota method Q is related to the Jefferson method, and
may be described as the set of allocations computed recursively

as follows:

(i) f,(p,0) =0 , 1<i<s .

(ii) Let a; = fi(p,h) be an allocation for h and let E(h+1)
be the set of parties which can be given an extra seat
without violating upper guota at house size h + 1. If

k € E(h+1) is some one party for which

pk(ak+-1) > pi/(ai+-1) for all ic E(h+1)

then

fk(g,h+1) = ap + 1, fi(g,h+l) = aj for 1 # k .
Statement (9) gives powerful reasons for acceptance of the
quota method Q in problems of proportional representation. 1In
practice one finds that Q has a tendency to produce solutions
that round up the exact quotas of large parties more often than
those of small parties. This seems reasonable for the applica-
tion of Q to proportional representation systems in that it in-
ferentially asks for a "large" vote before according any repre-
sentation at all. Notice, however, that no large party is al-

lowed more seats than its upper quota.
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One can simply drop the uniformity or consistency condition
and ask about the class of all methods that are house monotone
and satisfy quota. These are called quotatone methods. They
are describable and have been characterized in several different
ways [5,22]. There are a multiplicity of allocation methods
which are quotatone and all operate as follows. In a house h=0
all parties have no representation. Given an allocation g(g,h)=
a for h, the characterization specifies a set of parties which
are "eligible" to receive an extra seat, eligible meaning that
this can be done in a manner which will guarantee gquota and
house monotonicity. Some choice mechanism (e.g., a rank index)
can be imposed to determine which party receives the seat at
h + 1 if there is more than one eligible party. The difficulty
is that the set of eligible parties has no rational direct
interpretation other than that just given, and that its compu-
tation is conceptually complex (although easily accomplished by

computer) .

In the class of quotatone methods the quota method Q enjoys
an especially natural position [5]; moreover, its eligibility
set is easily understood and computed since it simply asks that
the upper quota condition not be violated. It is the unique
method which devolves from a minimal weakening of the consisten-

cy condition.

CONCLUSIONS

This paper has addressed the problem of the allocation of
integral representation to parties having vote totals in a pro-
portional representation system. The principal point is that
methods of allocation should not be chosen by bickering over
numbers, nor, indeed, through ad hoc claims of various mechan-
ical procedures, but rather through analysis of the properties of
methods. The issue is to decide upon a method whose qualitative
properties are equitable for the situation at hand. This analysis
commends one of two methods: the quota method Q, or the Jefferson
method J. )
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The Jefferson method claims recognition because it is
house monotone, uniform, guarantees lower quota, and encourages
coalitions. Specifically, encouraging coalitions would seem to
be precisely the type of stability desired for a body politic
operating a proportional representation system. However, a
major defect of J is that it fails the seemingly most common-
sense test of satisfying gquota. The Quota method merits recog-
nition because it does satisfy quota, is consistent subject to
that property, and is house monotone. It is "almost stable"

(see [3]), but does not necessarily encourage coalitions.

The choice between these methods of allocation should be
made in terms of which criteria are viewed as most important for

the situation in question.
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APPENDIX

We first prove that the Hamilton method is stable (see (2)).

Consider any two parties, say i = 1,2, and suppose

that in a particular problem party 1 has an exact quota

i i
their allocations at h. Then for the problem in which parties

q; =n; + r;,n; >0 and integer, and 0 ¢ r, < 1, and let a, be

1 and 2 form a coalition, its exact quota for h is 44 + q, =

ny +n, +r, + ry. Let b be the number of seats given the coali-
tion by the Hamilton method.

We consider several cases. First, if b = ny + n, then
ry + r, < 1, implying that the same total number of parties is
rounded up in both problems. If Ty, Ly 2 0 then it must be

that a; = n; (i = 1,2). For otherwise one of the two parties

would have a remainder ry high enough in the list to warrant an
extra seat while ry + r, > r1 P T, is not high enough, which can-

not be. If ry = 0 then a; = ng and a, = n, Or a;, = n, + 1; in

either case the criterion for stability is satisfied.

If b = n, + n, + 1, then since a, = n; or n; + 1 there is

i

nothing more to show. If b = n; + n, + 2, then ry +r, > 1.
Suppose stability is not satisfied, i.e., that a; =n, (1=1,2)
Then for some party k # 1,2, ry tr, - 1> Ty while ry 2T and
Ty < 1. Thus 2rk - 1> T and r 2 1, a contradiction.

Next, we show that a balanced house monotone method @ is

uniform if and only if it is consistent (see (7)).

First, assume that M is house monotone and consistent.
The main theorem of [4] states that this implies ¥ is a Hunting-
ton method based on some rank index r(p,a). If, in addition,
M is balanced then r(p,a-1) > r(p,a) and a is an @—apportion—
;ent if and only if the min-max inequality of (5) is satisfied.
To prove uniformity suppose that (a,b) is an M-apportionment for
(p,q) and that (a',b') is one for (p,q') where ziai = Eiai, a#a'
Then, by (5),
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r;mj( {r(pi,a-l),r(qj,bj)} < r;m_n {r(pi,a.l—l),r(qj,bj-l)} ,
’ I]
(10) and

] ] vy}
max {r(pi,ai),r(qj,bj)r
i,j

fin

: [ ] [
TT? {r(p,,a} l),r(qj,bj 1)}

It must be shown that (a',b) is an @-apportionment for (E,g)
and (a,b') is an M-apportionment for (p,q'). Since Zai = Zai,
a ¥ a' implies that there exist parties k and £ with a, 2 a£+l

and a, < az-l. Therefore

- 1 v
r(pyra,) £ rip,a -1 < r(p,,ap) < ripy,,apg=-1) < r(py,az)
the first and third inequalities following from (10), the second
and fourth following from r(p,a) being nonincreasing in a, -
Thus every inequality is an equation and the max-min inequali-
ties (10) must both be satisfied as equations having a common

value, say A. Therefore,

T&?;F {r(Pi:ai) ,r(CIj rb])} = A= 1'][-1_'1_{]1 {r(pi,ai—l) ,r(qj ’bj__l)}

and

Ta§ {r(pi,ai),r(qj,bé)} = = gd? {r(pi,ai—l),r(qj,bj—l)}
’ ’

which establishes, by the test (5), the desired result.

Second, assume that M is house monotone and uniform. (Here
it is not necessary to assume that M is balanced.) Consider
two problems, (pl,pz,g) and (pl,pz,g'), and suppose that the

first has an M-apportionment (al,az,?) and the second (al,az,g'),
that the first has at the next house the apportionment

(a;+1l,a,,b) whereas the second has at the next house (al,a2+l,b'),
a seeming "switch" in priorities. Then, by uniformity, the

first also has an apportionment (al,a2+l,?) and the second also

has (al+l,a2,b), thus showing that there is a "tie" in priorities

and that M is consistent.
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