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INTRODUCTION 

It has recently become clear that ideas and methods from 

the theory of cooperative games can be used quite successfully 

to solve cost allocation problems. Among the extensive litera- 

ture (see Loughlin, 1977) dealing with this subject we shall 

concentrate on an article based on work carried out at IIASA 

(Young et al., 1980). The authors of this article used game 

theory principles of rationality to solve the problem of sharing 

the cost of a joint municipal water supply system among the group 

of Swedish municipalities participating in the project. 

In Section 1 we introduce the notion of the generalized 

nucleolus. The nucleolus and all its known mcdifications are 

special cases of our definition. Section 2 describes a method 

for calculating the nucleolus that can be readily implemented 

on a computer, and Section 3 puts forward an analytical criterion 

for testing the results. In Section 4 we describe some applica- 

tions of the method to linear-fractional excess functions and 

convex games, and a number of formulas for three-person games 

are also given. Section 5 contains numerical results for seven 

modifications of the nucleolus for the six-person game discussed 

in Young et al. (1980). 



1. DISCUSSION OF FUNDAMENTAL NOTIONS 

A classical cooperative game concerns a pair (J,v) which 

consists of a set J = {1,2, ..., n) of n players and a character- 

istic function v(S) which maps every subset S of J, called a 

coalition, onto a nonnegative number (for example, the coalition's 

largest guaranteed payoff). The outcome of a cooperative game 

will be a coalition of n players and a payoff vector, i.e., all 

players will share a common payoff. Usually the payoff vector 

(imputation) is assumed to be individually rational, which means 

that no player will accept a value less than his own guaranteed 

payoff. The imputations are therefore elements of the following 

set: 

> v(i) for all i E J  . x = ]XER"I 1 xi = V(J) ,xi - 
iEJ f 

The main problem of cooperative game theory is to formalize 

the way in which the possibilities of each coalition (described 

by v(S)) may be converted to the possibilities of individual 

players (given in terms of imputations from the set X). The aim 

of the investigation is to calculate an imputation or a set of 

imputations that is in some sense optimal. The most popular 

principles of rationality used in cooperative game theory are 

the core, the von Neumann-Morgenstern solution, the Shapley value, 

and the nucleolus and its various modifications. 

In the particular application of cooperative game theory 

considered here, the players are the users of water (regions, 

municipalities and so on) and the char~~cteristic function is 

interpreted as the least cost c(S) of serving coalition S of 

users, that is, the cost of constructing and operating a joint 

facility to supply coalition S. It is assumed that the amount 

c(S) is sufficient to meet the water demand of each member of 

the coalition. The water demand of users is calculated on the 

basis of factors such as population, industrial requirements, 

and so on. 

By analogy to the set X, let the set of cost allocations be 

defined as follows: 



< c(i) for all i E ~ l  . Y = l Y ~ ~ n ~  1 yi = C(J) . y i -  
i€J 

Classical cooperative game theory as a rule operates with 

the game in 0-normalized form. This means that v(i) = 0, i € J; 

0 - < v(S) - < v(J), S C J. If, in addition, v(J) = 1, then the game 

is said to be in (0,l)-normalized form. 

The following mapping is used to reduce the characteristic 

function c(S) to 0-normalized form: 

A cost allocation y corresponding to c(S) is associated with 

an imputation x by the following formula: 

One can easily see that the cost of serving any group of 

users may be less than the sum of the costs of serving them in- 

dividually, especially when the users are neighbors. This case 

is represented as follows: 

The function c(S) is assumed to be superadditive, which in game 

theory means that 

where 

because the possible ways of serving S together with T include 

the possibility of serving S alone and T alone. 

It is shown by Young et al. (1980) that the nucleolus and 

its different modifications (see Schrneidler, 1969, and Shapley 

and Shubik, 1973) are the methods from game theory most applicable 



to cost allocation problems. In the present paper a definition 

of the generalized nucleolus is given (all known modifications 

of the nucleolus are special cases of this form) and a method 

for calculating it is suggested. 

We shall now introduce some definitions from Young et al. 

(1980). It is natural to denote 

Assume 

Following Shapley and Shubik (1973), we define the least core 

as a set of vectors y which are optimal solutions of the follow- 

ing linear programming (1.p.) problem: 

min E 

The core (C) is the set of allocations y which satisfy all 

the constraints of problem (4) with e = 0. 

If problem (4) has multiple solutions the following tie- 

breaking device may be used. For any allocation y and coalition 

S, define the excess of S relative to y to be 

Let el  (y) be the largest excess of any coalition relative to y, 

e2(y) the next largest excess and so on. The nucleolus is a cost 

allocation y for which 

- 
€ 1  (Y) 5 €1  (Y) for all YET 

for all y satisfying (5) 



- 
~ ~ ( y )  5 c3(y) for all y satisfying (5) and ( 6 )  (7) 

and so on. 

We should perhaps comment on some aspects of this definition 

of the nucleolus. 

1. The definition of the nucleolus given above may produce a 

vector which is not, in general, a cost allocation from Y but 

only from because the condition of individual rationality may 

not be observed. If the characteristic function is such that the 

core is not empty or, in other words, if the optimal E in problem 

(4) is not positive, then every allocation Y E Y  which is optimal 

in (4) is a member of Y. This is not necessarily the case when 

the optimal E is positive. 

This fact can be illustrated by the following simple example. 

Let 

where 

= q > o .  s # {2,3), {4,5) and c(J) - ~ ( 1 )  - c(2t3) - c(4f5) - 

Then, for an allocation y to be optimal in problem (41, the fol- 

lowing condition must be true: 

To fulfill the condition of individual rationality we include the 

inequalities 

as constraints in problem (4) . 
2. We reproduce below a table from Menshikova (19741, which 

gives the nucleolus of an arbitrary three-person game in (0,l)- 

normalized form. Here v(1,3) = a, v(1,2) = h, ~ ( 2 ~ 3 )  = d and , 

without loss of generality it is assumed that 



TABLE 1 The nucleolus of an arbitrary three-person 

game in (0,l) -normalized form. 

Conditions Nucleolus 

1-d 2h+d+l-2a 2a+d+l-2h for 2a+d > 1 I - 4 4 

I for 2h+d<l 

for 2a+d<1 '  

It can be seen from Table 1 that the least core consists 

of more than one point when 

2h+d > 1 

More precisely, the least core is the following set: 

1-d d+h 1-h 



The set of parameters defined by condition (9) has full 

dimension and no small variation of the characteristic function 

can reduce the least core to a single point. 

The c-proportional least core is the set of allocations y 

which are optimal solutions of the 1.p. problem: 

min r 

Finally, the weak least core is the set of optimal allocations 

for the following 1.p. problem: 

min 6 

Generalizing the definitions from Young et al. (1980) and 

taking into account point 2 above, we shall define the general- 

ized least core as the following set: 

~[d(S)l = {yly is optimal in (12)) 

where 

min u 

y(S) < ud(S) + c (S) , - S C J  

y(J) = c(J) 

< c(i) , Yi - i e J  . 



We shall now give an equivalent definition of the set 

L[d(S) I : 

L[~(S) I = {y(x) ( x  is optimal in (13) ) 

min u 

ud(S) + x(S) - > v(S) , S C J  

where y (x) is the mapping (2) and v (S) is calculated from (1) . 
It is easy to see that the sets ~ [ l ] ,  L[C(S)I, L[v(S)I, and L [ ~ S ( I  

are the least core, the c-proportional least core, the proportional 

least core from Young et al. (1980), and the weak least core, 
respectively. 

It is natural to define the proportional, c-~ro~ortionalt 

and weak nucleolus by analogy with the nucleolus. These modifica- 
tions all come under the broad-heading of the generalized nucleolus 

(Menshikova, 1976) . 

Definition of the generalized nucleolus 
1 

Fix some set M CzJ and a function d: M + R +  , where M is the 

set of all permissible coalitions and d(S) > 0 is the normalizing 

multiplier for a coalition S EM. For a fixed game ( J,V) and 

vector x let 8(x) be a vector with components 

arranged according to their magnitude, where S E M I  i.e., i < j 

implies Bi(x) > 8. (XI. We say that a vector 8 (x) does not lex- - 7 
icographically exceed 8 (z) (8 (x) < 8 (2) ) if the first nonzero 

component of the vector 8 (2) - 8 (x) is positive. Let the gener- 

alized nucleolus be the set N[M,d] of points corresponding to 

the lexicographical minimum of the function 8(x) over the set X. 

More precisely, 



N[M,dl = {x~xl8(x)d 8(z) for all ZEX) . 
J It is obvious that when M = 2 and d(S) : 1 the set N[M,d] 

consists of one point - the nucleolus. 

2. METHOD OF COMPUTATION 

The computation of the nucleolus is a problem of linear 

lexicographical optimization and has been discussed in a large 

number of studies. For example, Kopelowitz (1967) suggested 

solving the sequence of 1.p. problems generated by the definition 

of the nucleolus. In .addition, Kohlberg (1971) and Owen (1974) 

have shown how to construct a single 1.p. problem with the prop- 

erty that its unique solution is the nucleolus. This problem 

has not less than 4" + 1 constraints and 2 + n variables, and 

the authors themselves underline the fact that a computer reali- 

zation of this method is extremely complicated even for small 

values of n. Here we formulate a sequence of 1.p. problems such 

that the set of solutions of the last problem coincides with the 

generalized nucleolus. We also consider the corresponding sequence 

of dual 1.p. problems. Below we use x(S) to denote the charac- 

teristic vector of a coalition S, i.e., xi(S) = , i E S ,  ~ E J .  
0, i g S  

Problem 1 

min u 

The dual formulation of this problem is 



Problem 1 ' 

max F1 (A) 

Problem 1' has a solution, and from the first duality 

theorem (Udin and Golshtein, 1964) the optimal values of the 

objective functions in problems 1 and 1' must be equal (this 

value is denoted by TI). 

The S-th condition of problem 1' is described as free if 

there exists an optimal vector A such that AS > 0, where SEM. 

Let M1 be the set of all free conditions of problem 1'. Then 

the second duality theorem (Udin and Golshtein, 1964) tells us 

that for any vector x optimal in problem 1 it is necessary that 

The set of all imputations which are optimal in problem 1 coin- 

cides with the generalized least core and can be described as 

the set of solutions to the following linear system: 

It is interesting that the extreme points of the polyhedron 

described by the constraints of problen 1' are vectors A 1 0  - that 

turn vector inequality (14) into an equality. In game theory 

these vectors are known as minimal balanced (m.b.) collections 



(Bondareva, 1963), and their properties for games with a small 

number of players are well known. This allows us to obtain an 

analytical expression for the generalized nucleolus. Table 1, 

for example, was constructed in this way. 

We use the following definition of a minimal balanced col- 

lection. A matrix A with R rows, n columns and elements equal 

to 0 or 1 is called a balanced collection (of degree R xn) if 

there is a positive vector X and a positive number a such that 

A balanced collection can be described as minimal if the 

rows of the matrix are linearly independent. 

If A is a minimal balanced collection and a is a fixed 

number, then vector X is uniquely determined. This vector is 

also sometimes described as a minimal balanced collection. 

For example, the set of all minimal balanced collections 

of degree R x 3, where R - < 3, is listed as follows: 

If the optimal extreme point in problem 1 '  is a minimal 

balanced collection of degree n xn  then the generalized least 

core consists of a single point which is the generalized nucleolus. 

The generalized least core and nucleolus also coincide when 

MI = M. In other cases it is necessary to consider the second 

1.p. problem in order to calculate the generalized nucleolus 

and so on. 

Let us formulate the k-th 1.p. problem of this sequence, 

assuming that the generalized nucleolus coincides with its solution. 



Problem k 

min u 

k- 1 
ud(s) + X(S) ? v ( S )  S E M \  u M 

j = 1  j 

The dual formulation of  this problem is 

Problem k' 

max Fk(A) 

where 

Let Mk be the set of all free conditions of  problem k'. The 

generalized nucleolus is then the set of solutions of the follow- 

ing linear system: 



k 
where either M = U M .  or system (1 5) has a unique solution. 

j=1 3 

The above considerations therefore suggest that the gener- 

alized nucleolus can be calculated in two ways: by solving 

problems 1 -k or problems 1 ' -kt . 
We shall denote by k[M,d(S)] the minimum number of 1.p. 

iterations required to calculate the nucleolus. 

The Stop R u l e .  k[M,d(S)] is equal to the smallest R for which 

the optimal extreme solutions of problems 'R and (R+1) coincide. 

In our opinion, the second method of calculation (solution 

of problems 1'-k') is preferable to the first. We have already 

mentioned that it has an advantage in the construction of tables 

for the generalized nucleolus when n is small. The second ad- 

vantage has to do with the fact that the sets of basic solutions 

in problems 1',2', ..., k' change only slightly: these solutions 

are minimal balanced collections in all problems and only the 

multipliers a are changed from step to step. In addition, the 

set of feasible solutions to problems 1'-k' does not depend on 

v(S) and hence is the same for all problems concerned with the 

same set M of coalitions. Finally, the second method of calcula- 

tion is more suitable for computer realization. 

3. ANALYTICAL CRITERION 

The connection of the problems 1',2', ..., k' with the notion 

of minimal balanced collections makes it possible to formulate a 

sequence of conditions necessary for a vector x to be from the 

generalized nucleolus. If we take these necessary conditions 

togsther we can obtain a sufficient condition for the generalized 

nucleolus to contain x. 

Consider an imputation x for which 

Let M.  (x) be the matrix with rows which are vectors x(S) for S 
3 

such that 



The first necessary condition for x€N[M,d ]  

Matrix Ml(x) is a balanced collection and associated vector 

X is a solution of the equation: 

Proposi t ion I .  Let x be the unique solution of the system 

Then 

If the system 

has multiple solutions and if 

the following necessary condition may be useful. 



The k-th necessarv condition for x ~ N [ . M , d l  

By adding certain rows of the matrices M.(x), 1 5 j 5 k-1 to 
3 

matrix Mk(x) it is possible to obtain a balanced collection A 
for which Fk(A) = Tk(x). 

Proposition 2. Let x be the unique solution of system (1 6) . 
Then N[M,d.] = {XI. 

Thus we have a constructive method for testing whether a 

given imputation x is in the nucleolus. No computer is neces- 

sary when this method is used for problems with small n because 

in this case complicated calculations are not needed. 

4. APPLICATIONS OF THE METHOD 

The above method for calculating the generalized nucleolus 

is not limited to excess of the type eO(s,x) as defined earlier. 

For example, Littlechild and Vaida (1966) propose to use the 

excess function 

Proposition 3. For an arbitrary superadditive game ( J,V) the 

set N [M,G] coincides with N [M, y] , where 

J Proposition 4. For any three-person game, the set N[2 ,y] is 

equal to the vector 

It is easy to generalize Proposition 4 for an n-person game 

with the following set of permissible coalitions: 



Proposition 5. For an arbitrary superadditive game (J,v) the 

set N [h, y] is equal to the vector 

The function y(S,x) has an interesting interpretation for 

convex games, i.e., games for which the inequality 

holds for any pair of coalitions Sf T (Shapley, 1971). 

The core is not empty in a convex game. The difference 

between maximum and minimum values of x(S) when imputation x 

varies in the core is then called the range (R(S)) of a coali- 

tion S. 

Thus 

R(S) = max x(S) - min x(S) . 
x€c XEC 

It is easy to check that the functions U (S) = max x (S) and 

u(S) = min x (S) are related by the formula: xEC 

xEC 

The range R(S) of a coalition S is equal to the maximum 

surplus payoff above the guaranteed level u(S) - > v(S), when 

only imputations from the core are considered. 

Now let us introduce a new excess function y(S,x) defined 

by 



When x belongs to the core the value -7 (s,x) is not greater than 1. 

This value is therefore a measure of how successfully a coalition 

S operates within the framework of the core. 

For these reasons we suggest N [ M , ~ ]  as a rationality prin- 

ciple for games with a non-empty core. 

If a game is convex then u(S) = v(S) (Shapley, 1971), so 

that Y(S,X) = y(S,x). Convex games also have another interesting 

feature: 

Proposition 6. The optimal solution of problem 1 may be found 

in the class of minimal balanced collections A composed of par- 

titions or their complements, i.e., for every pair S , T € A  either 

S n T  = !J or (J\S) n (J\T) = gf. 

This proposition has an important consequence. Of all the 

minimal balanced collections mentioned in Proposition 6, there 

are only two of degree n xn: 

Thus, as a rule, it is necessary to solve more than one 1.p. 

problem to calculate the generalized nucleolus of a convex game. 

Proposition 6 may be proved with the help of Proposition 7: 

Proposition 7. Let A be a balanced collection. If for every pair 

S,TEA one of the following three conditions is true 

1. S C T  or T > S  

2. s n ~  = !J 

3. S U T  = J 

* 
then A E Conv 8, where 8 = (A ( A defined in Proposition 6). 

* 
Conv P denotes the convex hull of set P. 



Using minimal ba lanced  c o l l e c t i o n s  w e  may prove P r o p o s i t i o n  8: 

Proposit ion 8. I f  f o r  any c o a l i t i o n  S  C J  t h e  fo l l owing  c o n d i t i o n  

i s  t r u e ,  t hen  t h e  g e n e r a l i z e d  n u c l e o l u s  i s  g iven  by t h e  formula 

where M i s  a  s u b s e t  o f  2J which c o n t a i n s  a l l  one-person c o a l i t i o n s .  

CoroZZary. I f  v  (S )  s a t i s f i e s  t h e  c o n d i t i o n  

t h e n  t h e  n u c l e o l u s  i s  e q u a l  t o  t h e  v e c t o r  

Table  2  g i v e s  t h e  weak n u c l e o l u s  o f  an a r b i t r a r y  th ree -person  

game ( a , h ,  and d  have t h e  same meaning a s  i n  Table  1 ) .  

TABLE 2  The weak n u c l e o l u s  of  an  a r b i t r a r y  t h r e e -  

pe rson  game. 

Condi t ions  Weak n u c l e o l u s  



We shall now give a table for the c-proportional nucleolus 

assuming that c(S) is superadditive and that some technical condition 

is always true for some ordering of players. 

TABLE 3 The c-proportional nucleolus of an arbitrary 

three-person game. 

Conditions c-Proportional nucleolus 

5. NUMERICAL EXAMPLE 

We shall now consider in detail the game from Young et al. 

(1980), which arose from the problem of sharing water costs among 

a group of Swedish municipalities. A careful study of local con- 

ditions led to the grouping of the 18 municipalities into 6 in- 

dependent units A, H, K, L, M, T, consisting respectively of 

5, 4, 2, 1, 3, 3 municipalities. The characteristic function 

c(S) for this 6-person game is given in Young et al. and the 

corresponding values reproduced in Table 4, together with the 

values of v (S) calculated from equation (1 ) . 
Our definition of the generalized nucleolus permits us to 

limit our attention to some subset M of the set of all coalitions 
J 2 rather than considering the whole set. We shall use this fact 

and the characteristic function v(S) in the calculation that 

follows. 

Assume 

M =  E S C J I  either I S (  = 1 or v(S) >0) . 



TABLE 4 Values of c(S) and v(S) for various coalitions S. 

AHK 

AHL 

AHM 

AHT 

AKL 

AKM 

AKT 

ALM 

ALT 

AMT 

HKL 

- 

HKM 

HKT 

HLM 

HLT 

HMT 

KLM 

KLT 

KMT 

LMT 

AHKL 

AHKM 

AHKT 

AHLM 

AHLT 

AHMT 

AKLM 

AKLT 

AKMT 

ALMT 

HKLM 

HKLT 

HKMT 

HLMT 

KLMT 

AHKLM 

AHKLT 

AHKMT 

AHLMT 

AKLMT 

HKLllT 

AHKLMT 



It is evident that 

so we can reduce the number of coalitions under consideration 

from 62 to 48. 

An algorithm based on the above method was implemented in 

the LP-BESM-6 system and used to compute the generalized nucleolus. 

The numerical results obtained are given in Table 5, together 

with the number k of 1.p. problems solved in each case. 

TABLE 5 The values of y and x for the nucleolus, the weak 

nucleolus., the c-proportional nucleolus, and the 

proportional nucleolus. 

Method A H K L M T k 

Nucleolus 4 

Y 20.35, 12.06, 5.00, 8.61, 18.32, 19.49 

x 1.6, 5.02, 5.91, 7.27, 2.49, 2.49 

Weak 

Nucleolus 

Y 

X 

c-Proportional 

Nucleolus 

Proportional 

Nucleolus 



It is reasonable to consider two more variants of the gen- 

eralized nucleolus. The following variants of the function d(S) 

are based on additional information about the problem. Let Pi 

represent the population and Di the water demand of the i-th 

group of municipalities. Then 

P(S) = 1 pi and D(S) = 1 Di 
i€S ~ E S  

The function d(s) is additive in both of the above cases 

as well as when d(S) = IS[, and so the corresponding nucleoli 

are monotonic ( in  the sense meant by Young et al.). We therefore 

suggest that the first approach should be called the proportional- 

to-population nucleolus rather than the proportional-to-population 

allocation method (as in Young et al.) and, similarly, the second 

approach should be known as the proportional-to-demand nucleolus 

instead of the proportional-to-demand allocation method. In 

general, the function d(S) makes it possible to use more statistics 

without losing attractive game theoretical features. 

To conclude, we shall give a table of all the modifications 

of the nucleolus calculated for two values of v(J). 



TABLE 6 Results obtained for all modifications of the 

nucleolus, calculated for v ( J )  = 2 4 . 7 9  and v ( J )  = 2 0 . 7 9 .  
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