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FOREWORD 

This p a p e r  o f fe rs  a powerful, simple method f o r  understanding many "para- 
doxes" in social  choice and probabi l i ty theory .  The approach is  a geometr ical one; 
t h e  underlying principle emerges from a wide var ie ty  of examples ranging from 
elect ions and agenda manipulation to gambling and conditional probabi l i t ies. 
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THE; SOURCE OF S O m  P A W O E S  FROM 
SOCIAL CHOICE AND PROBABTLITT 

DonaLd G. Saari 

Department of Mathematics, Northwestern University, Evanston, Illinois 

The social choice l i terature and the  probability l i terature are filled with 

descriptions of "paradoxes". A s  w e  show here ,  many of them can be  explained and 

extended by using the same, simple, geometric argument. Our extensions include 

several  new resul ts about the  intransitivities of election results over  subsets of al- 

ternatives, the cycles of agenda manipulation, gambling, and Simpson's paradox 

from conditional probability. Furthermore, we prove that  these paradoxes must 

accompany the  modeling in a robust fashion. Our approach appears  t o  be new, i t  is  

elementary (based on the open mapping principal), and i t  uncovers new examples. 

Indeed, one point that  emerges is the ease with which paradoxes (i.e., apparent  

contradictions in a relationship) can ar ise.  

Our argument extends beyond social choice and probability, but we emphasize 

these two a r e a s  because of the i r  familiarity and the i r  importance as standard 

modeling tools f o r  economics and decision analysis. Examples from probability a r e  

discussed in Sections 2 and 3; examples from social choice a r e  discussed in Section 

3. To simplify the exposition, we use discrete random variables. However, all this 

work easily generalizes t o  more general models. 

The f lavor of our  resul ts is indicated by the following two prototype examples. 

In the following sections, w e  show how they are related and how they can be  ex- 

tended. 



1.1 Conditional Probability and Simpson's Paradox 

Suppose a ce r ta in  drug is tes ted in Chicago (C) a d  in Los Angeles (C'). A test 

group (T) rece ives  t h e  new drug,  and a contro l  g roup (T') rece ived t h e  s tandard  

t reatment.  Some people are re tu rned  t o  heal th (H), while o t h e r s  are not  (H'). 

Suppose tha t  in both communities t h e  new d rug  is  judged t o  b e  successful because 

i t  c u r e s  t h e  sick with a h igher  r a t i o  than t h e  s tandard  t reatment 

Is i t  possible f o r  t h e  aggregated tes t  resu l ts  to have t h e  r e v e r s e  conclusion 

P(H:T) < P(H:T')? I t  is, and th is  is  known as Simpson's paradox.  An explanation 

(which d i f fe rs  from t h a t  given h e r e )  and how i t  r e l a t e s  to t h e  "sure thing" pr inci-  

ple is  given by Blyth (1972a). Examples with r e a l  da ta  are given by Wagner (1982). 

This inconsistency phenomenon tu rns  ou t  to b e  a charac te r i s t i c  of models 

based on conditional probabi l i ty o r  t h e  combination of random var iables.  When ad- 

ditional conditions are introduced, almost any imaginable extension can occur .  For  

instance, suppose tha t  t h e  tests are conducted using faci l i t ies provided by univer- 

s i t ies (U) and p r i va te  labora tor ies  (U'). There exist  examples whereby t h e  new 

drug i s  unsuccessful at each university and at each  labora to ry  a s  w e l l  as in each  

community, but  it is successful in t h e  aggregate ,  and t h e r e  exist examples where 

t h e  conclusions osci l late with t h e  level: t h e  new d rug  is  successful at each of t h e  

faci l i t ies, it i s  unsuccessful in each community, and i t  i s  successful in t h e  aggre-  

gate ,  e tc .  

The appropr ia te  r a t i o  of success t o  fa i lu re  in each  of these  examples can b e  

made t o  exceed any predetermined constant.  This means t h a t  t h e r e  exist  examples 

of da ta  where at each facil i ty t h e  probabi l i ty of regaining heal th by use of t h e  

d rug  is  at leas t  twice t h a t  obtained by t h e  s tandard  t reatment;  in each  community, 

t he  standard t reatment i s  at leas t  t h r e e  times b e t t e r  than the  drug;  and at t h e  tota l  

aggregated level,  t h e  drug is at least fou r  times b e t t e r  than t h e  s tandard  t rea t -  

ment! 

1.2 Voting and Ranking Methods 

The aggregat ion of p re fe rence  i s  a cen t ra l  issue in t h e  social  sc iences.  A sim- 

ple system i s  voting. Here ,  severa l  paradoxes occur  when t h e  vo te rs  rank a s e t  of 

t h r e e  a l te rnat ives  la ,b  ,c 1 by using t h e  stanC t rd  plural i ty voting system. Suppose 

t h e r e  are nine vo te rs  where fou r  of them giv t h e  ranking c > a > b ,  t h r e e  give 



t he  ranking b > a > c ,  and two give t he  ranking a > b > c .  The group 's  ranking i s  

c > b > a with a tally of 4 : 3 : 2. This ranking is inconsistent with t h e  fac t  t ha t  a 

majority of t h e  vo te rs  (five of them) p r e f e r  t h e  bottom ranked al ternat ive a t o  t he  

top ranked a l ternat ives c . 

I t  might b e  suspected tha t  an  elect ion ranking of N al ternat ives must have 

some relat ionship t o  how the  group ranks  at leas t  one of t he  pa i rs  of a l ternat ives.  

This need not b e  t h e  case. For  each of t h e  N(N-1)/2 pa i rs  of a l te rnat ives desig- 

nate ,  in an  a r b i t r a r y  fashion, one of t h e  al ternat ives.  W e  show tha t  t h e r e  exist  

examples of vo ters '  rankings of a l ternat ives s o  tha t  (1) t h e  plural i ty elect ion 

resu l t  i s  al  > a2 > ... > a ~ ,  and (2) f o r  each pa i r  of t he  al ternat ives,  a majori ty of 

t he  same  voters  p r e f e r  t he  designated al ternat ive.  

2. THE GENERAL RESULT 

The simple geometric p roper ty  where open se t s  are mapped t o  open sets is  t he  

unifying explanation f o r  al l  th paradoxes descr ibed in th is paper .  The following 

standard statement (see Warner, 1970) suff ices f o r  what follows. 

Propos i t i on  1 

Let F b e  a smooth mapping from an  m-dimensional manifold M t o  a n  n- 

dimensional manifold N where m > n .  Let c b e  an  in ter io r  point of N. Assume t ha t  

p in F - l ( c )  i s  an in ter io r  point of M .  If t h e  Jacobian of F at p has  maximal rank ,  

then t h e r e  i s  an open neighborhood of p t ha t  i s  mapped onto an  open neighborhood 

of c .  

The proof of t h e  following theorem i l lustrates why t he  above p roper ty  i s  the  

source of t he  paradoxes. 

Theorem 1 

Consider t he  example in Section 1.1 where a drug i s  compared with a s tandard 

t reatment.  Let A b e  t h e  var iable represent ing t h e  seven sets 

C + C',C,C1,CU,CU',C'U, and C'U'. For  each choice of A ,  designate which term 

from t h e  pa i r  (P(H:TA),P(H:TtA)) is  t o  have t h e  l a r g e r  value. Choose a constant  

clA g r e a t e r  than unity and express  each pa i r  as a ra t io  tha t  is  bounded below by 

clL. There  exist  f ini te examples of da ta  tha t  simultaneously satisfy al l  t he  seven 

specif ied inequalities. 



To prove t h e  theorem, i t  suff ices t o  show that ,  f o r  any choice of signs f o r  t he  

seven quanti t ies P(H:TA) - P(H:TrA) ,  t h e r e  exist  sample points t ha t  real ize them. 

View these  quanti t ies as defining t he  seven components of a mapping F into R7. The 

choice of t h e  signs identif ies an  or thant  B of R7. 

The origin 0 of R7  i s  a boundary point f o r  each of t he  or thants .  This "com- 

parison point" i s  used in t h e  following way. Fi rst ,  a point p in F - ~ ( o )  is  found so  

tha t  (i) i t  i s  an in ter io r  point of t h e  domain, and (ii) t he  Jacobian of F at p has  

maximal rank.  According t o  Proposit ion 1, F maps an  open neighborhood of p onto 

an open neighborhood of 0.  This open image set meets each of t h e  or thants ;  in 

par t icu lar  i t  meets or thant  B. Therefore,  t h e r e  are sample points t ha t  sat isfy al l  

seven conditions simultaneously. The technical p a r t  of t he  proof i s  t o  define t h e  

domain so  t ha t  F can be  rep resen ted  by a smooth mapping. 

Proof 

There are eight sets determined by t h e  intersect ions of t h e  sets T,C,U and 

the i r  compliments. They are: 

S 1  = TCU S 2  = TCU' 3.3 = TC'U S 4  = TC'U' 

S5  = T'CU S6 = T'CU' S7 = T'C'U S8  = T'C'U' 

Treat  each of these sets as a disjoint space.  Let Xj designate t h e  charac te r i s t i c  

function of H in S .  Define 5 = X Z j  + X2j-1,  j = 1 ,..., 4, - and 

Zj = Y + Y 2 j - l , j  = 1 3 .  The random var iable 5 ,  which i s  t h e  charac te r i s t i c  21 
function of H over  S z j  + S2 j -1 ,  rep resen ts  t he  resu l ts  at t h e  community level, 

while Zj = YZj  + YZj  rep resen ts  t h e  final aggregated resul ts .  

If z j  denotes t h e  value of P(Xj = I), then z j  is  in t h e  unit in terval  

I, j = 1, ... ,8.  Let 9 designate P ( S j )  in t he  space usk. The 9 var iables descr ibe 

a simplex in R8 which is  denoted by Si  ( 8 )  and defined by 

These 1 6  var iables are in t h e  15-dimensional space M = l8 X Si ( 8 ) .  

By use of t he  standard relat ionship, f o r  any set E, 

i t  follr u s  t ha t  t he  probabi l i t ies yl = P ( 5  = 1 )  and z j  = P(Zj  = 1 )  a r e  t he  rat ional  



functions 

and 

C o m p a r i s o n  map:  Let F:M + R~ be  

where e j  is  t he  unit vector  in R7 with unity in i t s  j t h  component. The components 

of F r ep resen t  P(H: TA ) - P(H: TA ') as A ranges through i t s  seven values. 

Open m a p p i n g :  Clearly, F i s  a smooth mapping. That t h e  Jacobian of F has  maxi- 

mal rank  at some preimage of 0 i s  a d i rec t  computation. Indeed, th is  rank  condi- 

tion holds everywhere except  on a cer ta in  lower-dimensional subset  of M.  These 

points of lower rank are where e i the r  t he  y values o r  t he  z values are uniquely 

determined because the  corresponding pa i rs  of x o r  y are equal. 

The signs chosen f o r  t h e  seven quanti t ies determine an or thant  of R7, denoted 

by B. By construct ion, all t h e  sample points with th is  behavior are in U = F-'(B). 

By the  continuity of F,U i s  an  open set ;  w e  must show tha t  i t  i s  nonempty. The Jaco- 

bian of F has  maximal rank at some in ter io r  point of M in F-'(o), s o  F maps an  open 

se t  from M onto an  open set of 0. This open set meets B .  Consequently F-'(B) is  

nonempty . 
?\Text w e  show tha t  U contains points tha t  can b e  identified with a f ini te data  

set .  Any rat ional  point will suff ice. A multiple of t h e  common denominator of d is 

t he  to ta l  number of subjects. The same multiple of t h e  numerator of d corresponds 

t o  t he  cardinal i ty of S f ,  and i t  se r ves  as a multiple of t h e  denominator of z j .  Be- 

cause t he  rat ional  points are dense, t h e r e  i s  an  infinite set of rat ional  points in 

F - ~ ( B ) .  Each point can be  identified with an  infinite number of d i f ferent  f ini te 

data  sets. 



The se t  F-'(o): It remains that  the inequalities can be  bounded below by the  desig- 

nated constants. Once the values of 4 a r e  specified, the inequalities are of the 

type z j  > dAXj +4 with a similar relationship y and z .  Let q = ( q l ,  . . . ,q , )  be  a point 

in B. The set F-'@ ) is  given by equations of the form z j  - z j  +4 = lqjl with similar 

equations f o r  y and z .  These equations define lower-dimensional hyperplanes in 

the  domain, so  t he re  are points in U satisfying inequalities of the  form 

The assert ion follows if t he re  is a point in U such that  the  right-hand sides of 

these inequalities are bounded below by dA ,  with similar statements f o r  y and z .  

These inequalities are satisfied if the  values of the denominators on the right-hand 

sides can be chosen t o  be arb i t rar i ly  small. This involves a d i rect  computation 

that  is easily done because F-'(o) contains the intersection of 0 X Si ( 8 )  and the 

boundary of U. The points are chosen arbi t rar i ly  close t o  this set. 

Comments: 

( 1 )  The basic idea of th is proof extends t o  al l  t h e  paradoxes discussed here.  

Individual comparisons are one dimensional. When several  comparisons 

are made, they m u s t  be viewed as defining a comparison mapping F with a 

higher-dimensional range space. A higher-dimensional space admits sym- 

metries and cycles, so i t  should be expected that  these cycles are mani- 

fested as paradoxes by the comparisons. To prove that  all the sym- 

metries are admitted, locate a "comparison point" on the  boundary of 

each of the comparison regions. Next, show that  the  image of F includes 

an open set about the  comparison point. The intersection of th is open set 

with each comparison region is a nonempty open set. Because F is  con- 

tinuous, th is means that  t he re  is a nonempty set of points in the domain 

with the  desired propert ies.  To complete the  proof, impose conditions so 

that  in each of these sets in the domain t he re  exist points that  are identi- 

fied with sample points from the model. This simple idea is the  essence of 

our  explanation fo r  all the paradoxes in th is paper.  

(2) The number of possible, paradoxial relationships is determined by the di- 

mension of the domain fo r  a comparison mapping. If th is dimension 

exceeds that  of the range, then the comparison mapping is not "com- 

plete"; t he re  exist additional relationships t ha t  may define more complex 



paradoxes.  A s  a corol lary,  t he  above il lustration and extension of 

Simpson's paradox is  not t h e  "best possible" resul t .  The domain of F is  

15 dimensional while the  range is  only seven dimensional; e ight  more com- 

par isons using these var iables can  b e  added. (They may involve di f ferent  

levels of aggregation, waiting times, etc. )  

(3) Other conclusions a r e  derived from the  p roper t ies  of F-l. 

(i) I t  i s  natural  t o  determine t he  limits of a paradox. (This i s  i l lustrat- 

ed in Theorem 1 with t he  assert ion tha t  dA is  not bounded above.) 

Often, as f o r  th is model, these limits are determined by t he  proper-  

t ies  of t he  points nea r  t h e  intersect ion of F-'(o) and t he  boundary 

of t h e  domain. 

(ii) In o r d e r  f o r  a paradox (described by B) t o  occur ,  we may need a 

cer ta in  number of da ta  points. The minimal size is  given by t h e  smal- 

lest "lowest common denominator"of t he  admissible points in 

F-~(B) = U. 

(iii) The probabi l i ty t ha t  a paradox (described by B) occurs  is given by 

t h e  measure of a probabi l i ty distr ibut ion over  t h e  open set F-~(B). 

(4) Other conclusions are der ived from the  s t r uc tu re  of t h e  image of F. For 

instance, the  image contains a n  open set about t h e  origin, so it meets any 

sector defined by a specified r a t i o  of t he  outcomes; e.g., 

The above shows t ha t  t h e r e  are sample points t ha t  sat isfy these condi- 

tions. 

(5) To avoid the  above behavior, the  Jacobian of F cannot b e  of maximal 

rank.  This singularity constra int  becomes a necessary condition t o  avoid 

a paradox.  Often, as f o r  t h e  above model, these lower-dimensional singu- 

la r i t y  conditions correspond t o  familiar constra ints such as t h e  "in- 

dependence of random variables". 

This approach can  b e  used as long as t h e  components of a comparison mapping 

are smooth functions. These components could b e  functional combinations of pro-  

babil it ies, expected values, t he  var ious moments, waiting times, loss functions, de- 

cision ru les,  corre lat ion indices, scat ter ing indices, covariance, etc. If t he  open 

mapping condition holds a t  a comparison point, then all possible comparisons c re 

realized. In th is  way i t  is easy t o  show tha t  t h e r e  exist  examples i l lustrat ing, 'o r  



instance, that  the  expected value may satisfy E (X) > E (Y), yet E (J' (X)) < E (J' (Y)) 

f o r  some monotonically increasing function j' , and that  certain decision rules may 

be  inconsistent with o ther  measures. (Indeed, a discrete version of this can be 

used t o  explain the Arrow social choice paradox.) Theorem 2 i s  the  formal state- 

ment that  covers all these situations. 

Before stating Theorem 2, w e  formally define the s t ructura l  relationship 

between a comparison point and a comparison region. 

Def in i t i on  

Let a topological space N be partit ioned. A comparison point is a boundary 

point f o r  each part i t ion set. For a given comparison point p ,  a comparison re- 

g i o n  is a part i t ion set such that  t he  closure of i ts inter ior  contains p .  

Def in i t i on  

Let F : M  -, N be a comparison mapping f o r  a given model. A point in M is an 

admissible point if i t  can b e  identified with a sample f o r  the  model. 

Theorem 2 

Let F:M -, N be a smooth comparison mapping where the  dimension of M is  

bounded below by the dimension of N. Assume that  the  admissible points form a 

dense set in M .  Let c be a comparison point in N. If p in F-'(c) is  an inter ior  

point of M such tha t  t he  Jacobian of F at p has maximal rank,  then the  behavior 

characterized by any comparison region of N is admitted. 

Example 

Consider the  following dice game. Each of the players rol ls his own weighted 

die. (Each die is marked in the standard fashion.) On each rol l ,  the  winner is the 

player that  rolled the l a rge r  face value. For each choice of k = 1, ..., 4, t he  losing 

player pays the  winning player the  dif ference between the  face values raised to  

the k t h  power. For each of the four  choices of k ,  arb i t rar i ly  select  a die t o  have 

the  la rger  expected payoff, and then arb i t rar i ly  select a die t o  have the  higher 

probability of winning a rol l .  I t  is  a d i rect  consequence of Theorem 2 tha t  the  dice 

can be weighted in such a fashion that all five selected conditions are satisfied 

simultaneously. This i l lustrates the  possible incompatibili .y among reward func- 

tions and the distributions. 



A s  a specia l  case (K1 = I ) ,  t h e  following demonstrates t ha t  t he  more probable 

of two events may have t h e  longer waiting time. 

Corollary 2.1 

Let each of t he  two u rns  U1 and U2 contain r e d  and black balls. Each u rn  is  

randomly sampled without replacement. For  a positive integer k  , l e t  w j  (k ) be t h e  

probabil ity t ha t  i t  takes at leas t  k  t r i e s  before  a r e d  ball is selected from u rn  U j ,  

j = 1,2.  Let k l  # k 2 .  For  each of t he  two pa i rs  ( w l ( k S ) , w 2 ( k S ) ) , s  = 1 3 ,  choose 

t he  value t ha t  is t o  be  t h e  la rger .  There exist  examples of da ta  s o  t ha t  both condi- 

t ions are satisf jed simultaneously. 

Outline of the proof 

W e  proof t h e  specia l  case where K1 = 1 and K2 = 2. The general  case follows 

in much t he  same manner. 

The domain of t h e  comparison mapping F is  I x I x R +  where R +  is  t h e  half- 

l ine of positive numbers. A point in t he  domain i s  denoted by ( z ,  y , z ) .  Let 

b e  a mapping into R'. A t  t h e  rat ional  points in t h e  domain, F can b e  identif ied with 

t he  mapping (W i ( l )  - w ' ( 1 ) ,w  1(2)  - w ' ( 2 ) ) .  This identif ication follows by assuming 

tha t  t h e r e  are zzn r e d  and zn ( 1  - z) black balls in U1 and y n  r e d  and n (1--y ) 

black balls in U z ,  and by choosing an  appropr ia te  value f o r  t h e  parameter  n . 
The comparison point i s  0 = (0,O). Any domain point p of t he  form ( z , z , l )  is  

in F- l (0 ) .  The gradient  of t h e  f i r s t  component of F is  (1 ,  - 1,O); t h e  gradient  of 

t he  second component evaluated at p i s  

[ l + ( l -Z=)zn,  - + ( 1  -22 )m ; ,  (2 -1)z 
zn -1 z n  -1 (zn -1)' I 

where z = 1.  Clearly, these  two vectors  are l inearly independent. This completes 

t he  proof. 

The conclusion of th is corol lary holds even if one of these pa i rs  is rep laced 

with t h e  p a i r  of expected waiting times. However, t he  conclusion does not  hold if 

t h e  sampling is  with replacement, o r  if t h c  number of balls is  t h e  same f o r  each 

urn. For each of these models, t h e  z terr.1 does not  appea r  in t h e  definition of F. 

A s  a resu l t ,  t he  th i rd  component of t h e  I -adient is zero ,  and t h e  second is t he  



negative of the  f i rs t .  Therefore, the Jacobian of the comparison mapping is singu- 

lar .  This i l lustrates comment (5). 

A more interesting paradox is obtained by combining the  model in Theorem 1 

with the  one given above. Here, several  pa i rs  of urns with r e d  and black balls are 

used. A s  t he  contents of the  urns a r e  combined in a specified way, the urn with the 

higher probability of selecting a red  ball may change with the level of aggregation. 

Furthermore, t h e  waiting time t o  select a red  ball may vary. However, as demon- 

s t ra ted above, t o  obtain these examples, often w e  need the  ex t ra  degrees of free- 

dom offered by varying the  number of balls p e r  urn. Also, the number of indepen- 

dent comparisons is bounded by t he  dmension of the  domain. 

Several  interesting paradoxes from population dynamics involve only a small 

number of comparisons, so i t  is  t o  use Theorem 2 to  explain and extend them (see, 

f o r  example, t he  paper  by Vaupel and Yashin, 1985). However, often these exam- 

ples, as given by Vaupel and Yashin, a r e  based on continuous random variables. To 

use Theorem 2, t he  continuous variables are approximated by discrete valued ran- 

dom variables. Alternatively, Proposition 1 can be  extended, in the obvious 

fashion, t o  permit M t o  be a function space. In this way, the  examples of Vaupal 

and Yashin can be t reated directly. 

Another source of paradoxes subsumed by Theorem 2 is Blyth's paper  (1972 

b). One of his paradoxes with random variables X and Y has P(X > Y) as close t o  

unity as desired, even though P(X < a )  < P(Y  < a )  f o r  all choices of a: This, of 

course, is a n  example of t he  boundary behavior of the  comparison mapping. Both 

Blyth (1972 b) and Vaupel and Yashin (1985) descr ibe the  paradoxes in terms of ex- 

amples. The above treatment explains and unites them, i t  shows that  they can be 

extended in severa l  ways, and i t  proves that  the  paradoxes are "robust" in that  

they are satisfied by open sets of examples. 

Theorem 1 and its generalization to a set of N character ist ic functions are 

corol laries of Theorem 2. The only surprising feature of the generalization is that  

the dimension of the  domain f o r  a comparison mapping can be very large. To see 

this, let the  f i r s t  N-1 character ist ic functions define zN-l sets. The last random 

variable is t reated as a character ist ic function on each set. Thus, the  domain of a 

comparison mapping has the  dimension zN-l + (zN-l - 1)  = zN - 1. According to  

comment (2) this means that  up t o  zN - 1 functional relationships can be defined 

from these random vari3bles with possible concomitant unexpected behavior. 



W e  conclude th is sect ion with a par t ia l  converse f o r  Theorem 2. I t  asserts 

t ha t  if a cer ta in  set of examples can be  found, then examples of al l  types exist.  

Such a resu l t  i s  of value because when t h e  dimension of the  range  space i s  suffi- 

ciently l a rge  i t  may be diff icult t o  veri fy t h e  rank condition. However, t h e  speci- 

f ied set of examples might be identified by a computer search .  For simplicity, w e  

r es t r i c t  at tent ion t o  l inear comparison maps. 

Corollary 2.2 

Suppose t ha t  F is  a l inear comparison mapping from a l inear space  t o  a range  

space  R k .  Assume t ha t  t he  Zk or than ts  of Rk  are comparison regions.  If t h e r e  ex- 

i s t  2(k + 1 examples, each in a di f ferent  comparison region, then  F has  maximal 

rank and a l l  possible comparisons are admitted. 

Proof 

The image of a l inear space under a l inear mapping i s  a l inear  space.  If th is  

image space  has  dimension k ,  then t h e  conclusion follows. By assumption, k image 

points can b e  found tha t  do not  l ie in t h e  same (k -1)-dimensional subspace. This 

completes t h e  proof. 

Extensions are obvious. For instance, t he  proof requ i res  only k examples 

tha t  are not in t h e  same (k -1)-dimensional plane. For  o the r  choices of comparison 

regions, t h e  emphasis i s  placed on t h e  geometry defined by t h e  image points with 

respec t  t o  t h e  p roper t ies  of t h e  image set. 

3 RANKING PARADOXES 

A r i c h e r  assortment of paradoxical  behavior emerges from multivalued ran- 

dom variables. (This is  because t h e  dimension of t he  domain f o r  a comparison map- 

ping increases with t h e  number of values admitted by a random variable.) W e  illus- 

trate th is  with severa l  new resu l ts  about  ranking and voting procedures.  

Our main resu l ts  concern weighted o r  positional voting. This is  defined in t h e  

following way. To rank t h e  N al ternat ives,  a l ,  ..., aN, choose N sca la r  weights 

(zlil, ..., wN) where w j  2 wk if and only if j < k and where w > w~ 2 0. Each vo te r  

l ists his ranking of t he  A! al ternat ives on a ballot. To tally a ballot, wj points are 

assigned t o  t h e  j t h  ranked al ternat ives,  j = 1, ..., N. In t h e  obvious way, t he  

grq.rp's ranking of t h e  al ternat ives is  determined by t he  sum of t he  assigned 

w e  ghts. 



The weights define a voting vector WN = (wl, ..., wN) in RN. For plurality vot- 

ing, the voting vector is (1,0, ..., 0). Another well-known voting system, called the 

Borda count, is defined by the voting vector BN = (N,N - 1, ..., 1). (If a voting vec- 

t o r  is a l inear combination of BN and EN = (1, ..., I ) ,  then we call the system a Borda 

system. This is because the  election resul t  fo r  any Borda system always agrees 

with the resul t  when BN is used to tally the ballots (see Saar i  (1982.)) 

This tallying process can be identified with the expected value of multivalued 

random variables. For N alternatives, t he re  are N! dif ferent ways t o  rank the N 

alternatives. Since the sum assigned to  any alternative is a l inear relationship, 

the  group's ranking is not a l tered should each sum be divided by the total  number 

of voters. This means that  t he  number of voters is replaced with the  fraction of 

the  voters with each ranking. In th is way the domain fo r  this problem can be iden- 

tified with (the rat ional points in) the  simplex Si(N!). The simplex is in the posi- 

t ive orthant of an N!-dimensional space. If Aj is  the random variable assigned to  

alternative a j ,  then P(A, = wk)  denotes t he  fraction of t he  voters who rank the 

j t h  alternative in the K~~ place. Let A be  the  vector  valued random variable 

(A1, ..., AN). A point in Si(N!) can be viewed as being a probability distribution, and 

so  the  tally of the  ballots can be  identified with the  expected value E(A). 

The following definitions are used in what follows. 

Definition 

A voters' prof i le i s  a listing of each voter 's ranking of t he  N alternatives. 

Definition 

The voting vector WN defines a reverse neu t ra l  system if 

WN + (wN ,..., w = CEN = (C ,..., C) fo r  some scalar  C. 

A Borda system is always reverse  neutral.  An easy algebraic argument demon- 

s t ra tes  that  the space of reverse  neutral  systems is  a hyperplane of RN with di- 

mension 1 + [N/2] where [I denotes the "greatest integer function". A basis f o r  

this hyperplane can be  computed directly. For N = 3 only the  Borda systems are 

reverse  neutral.  For N = 4, a basis fo r  the hyperplane is given by E4 ,  and 

(2,1,1,0). For N = 5, a basis is E5,B5 and (2,1,1,1,0); etc. 



Although weighted voting systems a r e  an important class of voting methods, 

the  interpretat ion of election results is problematic. This is i l lustrated by the  fol- 

lowing theorem which includes Example 2 a s  a special case. 

Theorem 3 

Let N 2 3. Let ALk be the  subset [aL ,  ..., ak 1. Let Wk be the  voting vector used 

t o  rank ALk. Assume that wk is  not reverse  neutral,  k = 3, ..., N. For each of 

N(N - ) / 2  pa i rs  of alternatives, arb i t rar i ly  designate one of the  alternatives. A r -  

bitrari ly choose a ranking RKk f o r  the  set ALk,k = 3, ..., N. There exist profiles of 

voters such that  (i) the  election resul t  f o r  ALk is RKk ,k = 3, ... ,N, and (ii) f o r  each 

pair  of alternatives, a majority of these same voters p re fe r  the  designated alter- 

native. 

The proof of this theorem and an extension a r e  given in Section 4. 

A simple consequence of this theorem is that ,  if a Borda system is not used, 

then the re  are profiles of voters where most of the  voters  p re fe r  al  t o  a2,  most 

p re fe r  a2 t o  as,  most p re fe r  al  t o  a3,  yet the election resul t  is  a3  > a2 > a l .  The 

implied ranking obtained by majority vote over the pa i rs  of alternatives is the  re- 

versal  of the  election result! (In the  example in Section 1.2, such a profile is given 

fo r  plurality voting.) A more str iking example is that  f o r  N = 5 t he re  i s  a profile 

of voters such tha t  majority votes determine the  rankings a, > a, +l f o r  j = 1 ,  ..., 4, 

a5 > a l  [ these five alternatives from a cycle1 a4  > aj  f o r  j = 1,2,al > a3, and 

aj  > a5 f o r  j = 2,3, and the  plurality election resul ts of AL j , j  = 3,4,5, a r e  

a l  > a3 > a2,a2 > a3 > a l  > a4,  and a3 > al  > a5 > a 2  > a4 respectively. Other 

examples are limited only by the  imagination of the designer. 

By use of dif ferent techniques, Fishburn (1981) proved Theorem 3 fo r  the spe- 

cial case N = 3. (More accurately, Fishburn gave a proof only f o r  the  f i r s t  exam- 

ple above. However, i t  i s  possible tha t  his approach extends t o  include our  gen- 

eral statement f o r  N = 3.) For N > 3,  the  f i rs t  conclusion without the second is a 

special case of a resul t  given by Saar i  (1984). 

The second p a r t  of the  theorem is of independent interest. Essentially, i t  as- 

serts tha t  if the  pairs of alternatives are ranked by majority voting, then any type 

of cycle, subcycle, etc., can occur. To highlight this resul t ,  we restate i t. 



Definition 

Let N => 3. For 1 S k < j S N, le t  Rkj be  t h e  set lak > a j , a j  > ak j .  Let t he  

space of b inary rankings BR be t he  car tes ian product  of t h e  N(N -1)/2 sets Rk j .  

An element of BR i s  a sequence t ha t  imposes a n  order ing f o r  each of t h e  N(N -1)/2 

pa i rs  of a l ternat ives.  These binary rankings need not be t ransi t ive,  no r  need they 

sat isfy any o the r  consistency requirement. 

Corollary 3.1 

Let q b e  an  element BR. There exist  examples of voters '  prof i les such tha t ,  

f o r  each pa i r  of a l ternat ives,  a majority of t h e  same vo te rs  have t he  ranking 

specified by q . 

The remainder of th is sect ion is  devoted to ext rac t ing some of t h e  consequences of 

Theorems 3 and Corol lary 3.1. We start by obtaining new resu l ts  about  those 

schemes t ha t  depend on majority votes over  pa i rs  of a l ternat ives (see t he  exposi- 

to ry  a r t i c le  by Nierni and Riker (1976).) For example, a n  a l ternat ive  is cal led a 

Condorcet w inne r  i t  i s  rece ives a majority vote when compared against  each of 

t he  o the r  a l ternat ives.  A Condorcet winner does not  always exist  (e.g., t h e  above,  

second example), so o the r  schemes have been proposed to determine t he  winning 

al ternat ive.  The following definition appea rs  to include a l l  methods based on t h e  

ordinal rankings. 

Definition 

A b ina ry  rank ing method is  a nonconstant mapping from a subset  of BR into 

lal, ... ,aN j .  That is, based on t h e  ordinal rankings of pa i rs  of a l ternat ives,  one of 

t he  N al ternat ives is selected. 

Examples 

(1) A Condorcet winner i s  a binary ranking method. The subset  is t h e  set of 

a l l  elements of BR where some one al ternat ive is  p re fe r red  to all o the r  

a l ternat ives.  

(2) An obvious extension of t h e  Condorcet winner is t o  select t h e  a l ternat ive  

t ha t  wins t he  la rgest  number of pairwise comparisons. This extensio-.. ad- 

mits a l a rge r  subset  of elements from BR. 



(3) Suppose N - 1 alternat jves are proposed t o  rep lace  t h e  s ta tus  quo, a l .  

The selected al ternat ive is  al if and only if al  is  a Condorcet winner. If 

not,  then from the  set of those al ternat ives t ha t  bea t  a l ,  se lec t  t h e  one 

t ha t  wins the  most pairwise comparisons. 

(4) A commonly used binary ranking method i s  a n  agenda. 

Definition 

Let N > 3. An agenda is  a n  o rdered  listing of t he  N al ternat ives.  The f i r s t  two 

l isted al ternat ives are voted upon. The al ternat ive receiving t h e  majority vote i s  

then compared with t h e  th i rd  l isted al ternat ive.  This i terat ive,  pairwise comparis- 

on procedure i s  continued t o  t he  end of t he  listing. The remaining a l ternat ive  is  

t he  selected al ternat ive.  

The following statement extends severa l  resu l ts  from "agenda manipulation" 

(see,  for example, McKelvey (1976) and Plot t  and Levine (1978)). I t  implies tha t  

t he  r igh t  t o  set an  agenda f o r  a meeting i s  a potential  source  of power ( the f i r s t  

conclusion) t ha t  may lead t o  an  undesired outcome ( the second conclusion). 

Corollary 3.2 

Let N > 3. There exist  vectors '  prof i les and N agendas such tha t ,  when t h e  

same voters  use t h e  j t h  agenda, t h e  outcome i s  a,. j = 1. ... .N. For  N > 3, t h e r e  

exist  voters '  prof i les and N agenda so t ha t  t h e  above holds even though all the 

voters p r e f e r  a g  lto a4,  a4  t t o ]  as,  ..., land] a ~ - ~  to a ~ .  

An interest ing fea tu re  of th is  corol lary i s  tha t  f o r  a f ixed prof i le  of voters,  

t he  winning al ternat ive var ies  over  a l l  possible outcomes as t he  "seeding", o r  t h e  

choice of t he  agenda, changes. The proof depends on t h e  fact t ha t  majority, pair -  

wise voting can define any des i red cycle and subcycle. Thus, th is  conclusion ex- 

tends t o  t h e  o the r  binary ranking methods t ha t  depend on t he  init ial seeding. This 

includes tournaments, whether single, double, o r  k -fold elimination, ce r ta in  

h ierarch ica l  methods, etc. In par t icu lar ,  because a change in t h e  seeding changes 

t h e  definition of a binary ranking method, Corollary 3.2 i s  a special case of t h e  

following. 



Corollary 3.3 

Let Pl and P2 be different mappings from BR to la l,...,aN1. There exist pro- 

files of voters so  tha t  the outcome of the two binary voting methods dif fer. 

The next resu l t  compares the outcome of a binary ranking method with the  

election resul ts of a weighted voting system. A s  special cases, i t  shows that  a Con- 

dorcet  winner, or the  resu l t  of an  agenda, need not agree  with an election ranking. 

Corollary 3.4 

Let N > 3. Let the se t  Alk  be ranked with the  voting vector Wk ,K = 3, ..., N. 

Let a binary ranking method be  given. Assume that  Wk,k = 3, ..., N, is not reverse  

neutral. Let Rkk ,k = 3, ..., N, by any ranking of Alk, and le t  aj be an  a rb i t ra ry  ele- 

ment in the image of the binary ranking method. There exist voters' profiles such 

that  (i) the election resul t  of Alk,K = 3, ..., N, and (ii) the binary ranking method 

selects aj. 

A s  a consequence of this theorem, there  is a profile of voters so  that  the i r  plurali- 

ty election ranking of Sk is  al > a2 > ... > ak if k is even and the  reverse  of th is if 

k is odd, and the  Condorcet winner is al .  

This chaotic s ta te  of af fa i rs cannot be eliminated if the selection method is 

defined to combine, in some way, the election resul ts over  al l  of subsets 

Alk,K = 2, ..., N. For instance, in a run-off election, the lower ranked alternatives 

are dropped, and the remaining set is reranked in a separate election. The follow- 

ing definition extends this notion. 

Definition 

A dynamica l  selection process consists of (i) a set of voting vectors 

1 WN,. .. , W3, (1,O) 1 ,  (ii) ru les that  eliminate a specified, positive number of alterna- 

tives from a se t  of k alternatives, k = 2, ..., N, and (iii) a selection function. The 

procedure is defined in the following way. The set AIN is ranked by using WN. 

Then, based on the  elimination rule fo r  the N alternatives, N-s alternatives are 

eliminated. The remaining set of s alternatives is ranked by using W,. Iteratively, 

this procedure is continued. Based on these election rankings, the nonconstant 

selection procedure selects one alternz tive. 



Examples 

(1) The s tandard "run-off" election is  a dynamical procedure.  At each s tep,  

t he  bottom ranked al ternat ive is  eliminated. The selected al ternat ive is  

t h e  one remaining at t he  end of t he  process.  

(2) This run-off p rocedure can be  generalized in t he  following way. Choose a 

positjve in teger  k < N. The elimination procedure i s  t h e  same as in (I), 

but t h e  select ion r u l e  selects t h e  top ranked a l ternat ive  from t h e  elec- 

t ion ranking of k alternatives. If k = 2, th is  i s  t h e  above procedure.  If 

k = N,  th is  is  a standard elect ion procedure.  

(3) The run-off p rocedure  can eliminate more than one al ternat ive at each 

stage.  For  instance, a f t e r  t he  N al ternat ives are ranked,  all bu t  t h e  top 

two al ternat ives may b e  dropped. 

(4) Let a l  rep resen t  t h e  s ta tus  qua, and let aj, j = 2, ..., N r ep resen t  t h e  con- 

tending al ternat ives.  Use WN t o  rank  t h e  N al ternat ives.  If al  i s  t h e  top  

ranked al ternat ive,  i t  i s  declared t h e  winner. If i t  i s  not, then eliminate 

a l  and rank  t h e  remaining al ternat ives with WN The top  ranked a l ter -  

nat ive from th is elect ion is  declared t he  winner. 

(5) The elimination r u l e  may depend on t h e  al ternat ives.  For  instance, t h e  

process descr ibed in (4) can  b e  modified t o  eliminate not only a l  but  also 

a l l  a l te rnat ives ranked below al  in t h e  f i r s t  election. 

As a specia l  case,  t h e  following asserts t ha t  t h e  winner of a run-off elect ion need 

not b e  a Condorcet winner. 

Corollary 9.5 

Let N > 3. Assume tha t  a binary ranking method and a dynamical select ion 

process are given. Suppose tha t ,  f o r  each K r 3, t h e  weight vec to r  Wk i s  not re- 

ve rse  neutra l .  Arbi t rar i ly  se lec t  aj f rom t h e  range  of t h e  binary ranking method 

and ak from t h e  range  of t h e  dynamical process. There exist  prof i les of vo te rs  so 

t ha t  t h e  binary ranking outcome i s  aj while t h e  dynamical method outcome i s  at. 

Recently t h e r e  has  been in teres t  in elect ion procedures where a vo te r  can 

choose a voting v e c k r  t o  tal ly h is  ballot. 



Definition 

A mul t ip le  voting system used t o  rank N alternatives is determined by a set 

MN of voting vectors where at least two of these vectors and EN are l inearly in- 

dependent. Each vector ranks the  N alternatives on his ballot, and then h e  selects 

a vector from MN t o  tally his ballot. 

Examples 

(1) Bullet voting: The defining set of voting vectors is 

M = ( 2 . 0 , .  0 ( 1 . .  0 ( 1 1 0  . 0 . This procedure w a s  used during 

the  1970s fo r  some legislative offices in Illinois. 

(2) Cardinal voting: The set MN contains al l  voting vectors where the  com- 

ponents sum t o  unity. Occasionally, cardinal voting is used t o  define 

rankings fo r  methods from decision analysis. 

(3) Approval voting: The defining set of N-1 vectors is 

I (l,O, ... ,O), ( l , l ,O, ... ,O), ... , (1,1, ... ,1,0) j. For th is method, which w a s  intro- 

duced by R. Weber, among others,  and i thas been analyzed by Brams and 

Fishburn (1982), a voter indicates e i ther  approval o r  disapproval of 

each alternative. 

Often the  resul ts of multiple voting systems are compared with t he  Condorcet 

winner. The following shows tha t  the  resul ts can be  incompatible. 

Corollary 3.6 

Let N r 3. Let a binary ranking method be given. Let Mk define a multiple 

voting system f o r  dlk ,k = 3, ..., N. Assume that ,  f o r  each k ,Mk contains at least  one 

vector tha t  is  not reverse neutral.  Let Rkk be a ranking fo r  dlk, and le t  aj be an  

alternative in t he  range of t he  binary ranking method. There exist  voters' pro- 

fi les so  tha t  (i) the multiple election resul t  f o r  Alk  is  Rkk,k = 3, ..., N, and (ii) t he  

binary ranking outcome is aj . 

A consequence of this resul t  is that ,  f o r  any choice of s ,  there  exist  examples 

where the  alternative ranked in sth place in an approval voting election is t he  

Condorcet winner, and there  exist  examples where the results based upon approval 

v3ting are a4 > a3 > a2 > a l  f o r  the  set of four alternatives, a l  > a2  > a f o r  the  

Q. ~ b s e t  of th ree  alternatives, and a2 is  a Condorcet winner. 



I t  follows from this approach that  the pr inc ipa l  cause of the social choice 

paradoxes i s  the dif ference between the dimensions of the domain and  the 

range of a comparison mapping (see Section 2,  comment ( 2 ) ) .  To model a weighted 

election f o r  N alternatives, the  domain S i (N ! )  has dimension N!-1. The image is 

E ( A ) .  Because the  domain is Si ( N ! ) ,  this image is in the  simplex Si ( N )  in R ~ .  (The 

sum of the components of wN define this simplex. Without loss of generality, as- 

sume tha t  th is sum is unity.) Thus, the  range space has dimension N-1. This 

difference of N{(N-I)!-11 is  zero if and only if t he re  are only two alteratives. 

Therefore, if N 2 3, other  relationships with resulting paradoxes can be added. 

This is i l lustrated by Theorem 3. 

This dimensional argument also proves that,  f o r  N 2 4, Theorem 3 is  not the  

"best possible" resul t .  To see this, w e  need t o  descr ibe the  comparison mapping L 

fo r  Theorem 3. The f i rs t  N components of L a r e  given by E ( A ) ,  t he  next N-1 by 

the expected value of the weighted voting method defined by W N - ~ ,  etc.  The last 

N ( N  - I ) /  2 components are given by the  expressions P(Ak)  - P(A,) ,k < j . Thus, 

the range space f o r  L is  

Si ( N )  X Si ( N  -1) x.. . X S ( 3 )  x J ~ ( ~  -I)' 

where J  is  t he  interval [ - l l ]  This range space has the  dimension 

N + ( N  -1)+...+3 + I (N)(N -1) /21 = N~ - N - 1.  For t he  model described in the  

theorem, the  dif ference between the  dimensions of the  domain and the  range is 

N !  - N~ + N. This value is positive if and only if N 2 4. 

Corollary 3.7 

Let N 2 4. In addition t o  the  subsets of alternatives described in Theorem 3, 

N !  - N~ + N additional relationships involving the rankings of t he  N alternatives 

can be  defined in such a way that ,  fo r  certain profiles of voters,  t he  resul ts are 

independent of the  rankings obtained in Theorem 3. 

A simple dimensional argument shows tha t  even if Theorem 3 can be  extended from 

nested sets of t h ree  o r  more alternatives t o  al l  possible subsets of alternatives, 

fo r  N t 4 additional relationships can sti l l  be found. 

To complete our  description of L ,  notice that  t he  comparison value on each 

simplex in the  range is the point of complete indifference N - ~ E ~ .  For each of the 

intervals J ,  the comparison value is 0. Thus, the  comparison point i s  



Therefore Theorem 3 is an  example of Theorem 2 where M and N are manifolds and 

where the  comparison point is not the  origin of a Euclidean space. 

The comparison mapping L is  l inear. Therefore L -'(0) must be a l inear sub- 

space with dimension N! - N~ + N. If N > 3 this space must intersect the  boundary 

of Si(N!). A boundary point of Si(N!) corresponds to a profi le of voters where 

none of t he  voters rank the  alternatives in certain ways. This extreme boundary 

behavior describes the limits of the  voting paradox. A special case is described in 

Corollary 3.2. 

Corollary 3.8 

Let N 2 4. The resul ts in Theorem 3 can be  obtained with profiles of voters  

where no voter  has  certain rankings of the  alternatives. 

W e  have not t r ied to find a general characterization of the  boundary behavior. 

The proof of Theorem 3 involves showing tha t  t he  l inear comparison map has 

maximal rank. The rank condition does not hold if Wk,k = 3, ..., N are Borda vec- 

tors.  I t  turns out that  L has corank (with respect  t o  the  range space) of at least 

IN(N - 1) /2 ]  - 1. This means tha t  although a Borda election ranking admits incon- 

sistencies with respect  t o  a given binary ranking method, not all possible incon- 

sistencies are admitted. In part icular,  Theorem 3 does not  hold if even one of the 

Wk is a Borda vector.  A di rect  verification of this f o r  N = 3 is  given in Section 4. 

With only slight modifications, these resul ts can be  used to descr ibe certain 

ranking procedures coming from probability and stat ist ics. For instance, suppose 

N forms are making the same product, and they are t o  be  ranked based on the  qual- 

ity of the i r  products. In Theorem 3, identify the "ith alternative" with the " i th 

firm" the  " t  th voter"  with the  "jth vector sample" of the  product taken from each 

of the N firms, and the "jth voter 's preference ranking" with the  l inear "quality 

ranking" of the products in the jth sample. The relationship ak > aj means that ,  

based upon the  samples, form k ' s  product appears t o  be  super ior  to firm j ' s .  I t  

follows from Corollary 3.1 that  any possible choice of binary rankings is realized 

by an open set of data points. Binary sampling approaches need not lead t o  a 

l inear ordering of the "quality of the firms". Indeed, in this way, the  well-known 

Steinhaus-Trybula paradox (Steinhaus and 'Trybula, 1959), where the final ranking 

of t h ree  forms is al > a 2 , a 2  > a 3, but a3 > al, becomes a special case of Corol- 



la ry  3.1. 

I t  follows from Theorem 3 that, even if the  firms are ranked by use of weight- 

ed ranking methods, the  resul ts could be difficult t o  interpret .  For instance, the  

weight vectors W, = (LO, ..., 0) correspond t o  the  natural ranking method based on 

P ( q  = maxIXf:j E Ak j). I t  follows from the  above that,  should some one firm be 

deleted, t he  revised ranking could drastical ly change. Other measures experience 

similar problems. A similar effect occurs fo r  the  scoring of athlet ic events where 

a voter's ranking corresponds t o  how the various teams are placed in a part icular 

event, etc. 

A s  a final amusing example, note that  a connoisseur is often described as a 

person whose taste preferences a r e  based upon several  at t r ibutes (e.g., the  color, 

the taste,  and the bouquet of a wine), and whose rankings are based on an  aggrega- 

tion of them. If so, w e  should not expect his binary comparisons t o  define a transi- 

t ive ordering. This is, of course, an N alternative version of the famous folklore 

"pie" example (I p re fe r  "apple" to  "cherry", but if "blueberry" is available, then 

my choice is "cherry"). 

A s  in Section 2, t he re  exist  open sets in the  domain which exhibit each of the  

above behaviors. Consequently, these examples cannot be dismissed as being iso- 

lated; the  behavior is robust. A s  the  number of agents increases ( the denomina- 

t o r s  of the rat ional points become larger) ,  so do the number of t he  possible exam- 

ples, which leads us t o  the  following corol lary. 

Corollary 3.9 

Consider a system of weighted voting methods as described in Theorem 3. Let 

Q denote an outcome over  the  various sets as described in Theorem 3. Let n (Q,m) 

be the probability that  the election resul t  fo r  a group of m voters is Q. Assume 

that  t he  profiles of voters are uniformly distributed. Then, as m -, w,n(Q,m) ap- 

proaches the  ra t io  of the  area of L -'(Q) to the area of the  simplex Si (N!). 

For elementary number theoret ic reasons, the  sequence [n (Q ,m ) may not be 

monotone. The limit is  positive if L -'(Q) contains an  open set; th is is t r ue  whenev- 

e r  Q does not admit ties. For o ther  distributions, the ra t io  is determined in a simi- 

l a r  fashion, but with a different measure. 



4. PROOFS 

The proof of Theorem 2 is obvious. To prove Theorem 3, w e  f i r s t  prove Corol- 

lary 3.1. 

Proof of Corollary 3.1 

List the pa i rs  of alternatives in the following order :  the f i r s t  pa i r  is (a l ,az) ,  

the second set of two pai rs  is given by ( a j  ,a t ) .  j = 1.2, and the  j t h  set of k pairs 

is given by (a, ,ak +1), j = 1 ,... , k ; k = 3 ,... ,N -1. A ranking of the  N alternatives de- 

fines an tN(N -I)/ 2 ]-dimensional vector in the following way. The j t h  component 

is determined by the ranking of the j t h  pai r  of alternatives. This component is 1 if 

the  f i r s t  listed alternative is p re fe r red  t o  t he  second; otherwise, i t  is -1. For ex- 

ample, the vector associated with the  preference ranking al > az > ... > a~ has 

the value 1 in all the  components. 

Because the N alternatives can be ranked in N! different ways, the comparis- 

on map is a l inear mapping from Si (N!) t o  J ~ ( ~ - ~ ) ' ~  where J is the interyal [-1.11 
and the  comparison point is  0. (this map defines a convex combination of t he  

above N! vectors.) We must show tha t  t he re  i s  a point p in the inter ior  of Si (N!) 

such tha t  (i) p is  in the preimage of 0 and (ii) the  Jacobian of t he  comparison map 

at p has full rank. Let p = (~!)- '( l ,  ..., 1). Because p is  the  profile where the re  

are equal numbers of voters f o r  each of the  N! possible ways t o  rank the  alterna- 

tives, p is  mapped t o  0. 

The comparison mapping is l inear, so j t  has a matrix representation. The ma- 

t r i x  is  the Jacobian, and i t  consists of the N! column vectors defined above. I t  

remains to  show tha t  th is set of N! vectors includes N(N-1)/2 l inearly indepen- 

dent vectors. 

Consider the vectors Vj , j = 1, ..., N(N -1)/2, where 5 has the  value 1 f o r  the 

f i rs t  IN(N -1)/Z J - ( j  -1) component and -1 f o r  the remaining components. This 

set of vectors is l inearly independent. This is because they form a square a r r a y  

where the  entr ies on and above the  diagonal from the  lower left-hand corner  t o  the 

upper tight-hand corner  are all equal t o  1. A l l  the o ther  entr ies are -1. 

There a r e  zN vectors with entr ies of e i ther  1 o r  -1. Most of them are not re- 

lated t o  the  described ranking method. So, t o  complete the  proof, i t  remains t o  

show that  each 5 is associated with one of the N! rankings of the  alternatives. The 

choice of the  components and the  vectors 5 makes thi; fair ly simple. The vector 

Vl corresponds t o  the  ranking a > a2 > ... > a,,,. Vectr .- V2 has -1 only in t he  last 



component; this corresponds to  a transposition of aN and aN-, .  These two alterna- 

tives are adjacent in the f i rs t  ranking, so  the ranking fo r  V2 can be  obtained from 

the ranking f o r  Vl by transposing these alternatives. This defines the ranking 

a ,  > a2 > ... > U N - Z  > a~ > a ~ - ~ .  

Indeed, the only difference between Vj and is in one component. This 

component ref lects a change in the ranking of precisely one pa i r  of alternatives. 

By construction, these two alternatives are adjacent in the ranking Rkj that  is as- 

sociated with ?. Therefore, the ranking fo r  V, is obtained by transposing these 

two adjacent alternatives in Rk j .  This completes the proof. 

This proof is based on the fact  that  the -1's in the square a r r a y  correspond to  

the N-1 adjacent transpositions required to  move aN from last place in 

al > a2 > ... > a~ t o  f irst. This defines N -1 rankings where the last one is 

aN > al  > a2 > ... > a ~ - ~ .  Next, move aN-l from what is now last place to  second, 

etc. 

Proof of Theorem 3 

Let the weight vectors Wk,k = 3 ,  ..., N ,  be as specified in the  statement of the 

theorem. With each ranking of the N alternatives, w e  associate a vector with 

[ N  ( N  -1) / 2 J + 3  + . . . + N components. The f i rs t  N ( N  -1) / 2  components a r e  defined 

as above. The next th ree  are given by the  appropr iate permutation of Wa t o  

correspond to  the specified ranking. For instance, the ranking a2 > ag  > al i s  

identified with the  vector ( w 3 , w l l w 2 ) .  In general, the  se t  of k  components is the 

appropr iate permutation of Wk t o  ref lect  the ranking of the  k  alternatives, 

k  = 3 ,  ... , N .  The comparison mapping L which is a mapping from Si ( N ! )  t o  

P (N-1)'2 X Si ( 3 )  X... X Si ( N )  is described in Section 3. The point p described 

above is mapped to  the comparison point ( 0 , O  ,... ,0; (1  / 3)Ea ,... , (1  / N)EN). 

Because L is l inear, i ts matrix representation defines the Jacobian. This ma- 

t r ix has N !  column' vectors with IN (N - I ) /  2  j + 3  + ... + N = N' - 3  components. 

(The dimension of the range space is smaller; i t  has dimension N'-N - 1.  The 

difference results from the  constraints defining the N -2 simplices Si (k  ) in the im- 

age space.) W e  must show that  there  are N' - 3  l inearly independent vectors. 

In the proof of the corol lary, : i set of N (N -1) / 2 vectors that  are independent 

in the f i rs t  N(N-1 ) /2  compo~:~nts w e r e  found. To obtain the remaining 

!N(N+1) /  2 1-3 independent vecto! s, take the vector associated with each of the N !  



rankings and add i t  t o  the  vector associated with t he  reversa l  of this ranking. 

Each of the f i rs t  N(N -I)/ 2 components of t he  vector associated with t he  reversed 

ranking will dif fer in sign from the  original vector. Therefore, the  sum vectors 

will have zeros in each of these f i rs t  N(N-1)/2 components. Consequently, these 

new vectors are orthogonal t o  the range space used in the  proof of Corollary 3.1. 

Al l  w e  need t o  do is t o  show tha t  these new vectors contain a set of 1N(N + I)/ 21-3 

independent vectors. 

For a reverse  neutral vector,  these new vectors are all  multiplies of EN. In 

all o ther  cases, the  j t h  component has the  value wj  + W ~ - j + l .  For instance, fo r  

the  voting vector (4, 3, O), the new vector corresponding t o  the  rankings 

a > b > c and c > b > a is (4, 6, 4). The vector corresponding t o  a > c > b an 

b > c > a is  (4, 4, 6). In general, these new vectors would correspond to a voting 

vector except tha t  they do not satisfy t he  monotonicity condition. However, the  

resul ts given by Saar i  (1984) hold even f o r  vectors tha t  do not satisfy these mono- 

tonicity propert ies.  Therefore, the above reduces t o  a special case of the  one 

given by Saar i  (1984). This completes t he  proof. 

Proof that a Borda weight vector does not work for N = 3 

Assume that  the  alternatives are a , b ,  and c .  assume that  t he  Borda weight 

vector is B3 = (3,2,1). The comparison mapping is l inear and i ts image includes the  

comparison point (0,0,0;6,6,6). (B3 is  not normalized, and so  the  sum of t he  com- 

ponents of Si (3) is  6.) 

The comparison regions in Si (3) are identified with the  l inear rankings of the  

th ree  alternatives. To obtain them, note that  if the axes of R~ are labeled in the  

usual z, y , z  notation, then the region z > y corresponds to a > b  , y > z 

corresponds t o  b  > c , z > z corresponds to c > a ,  etc. In this way, the  simplex 

Si (3) is  divided into six open sets which are defined by t he  intersection of the  sim- 

plex with the  th ree  hyperplanes z = y ,y = z ,  and z = z (see Saar i  (1978, 1982)). 

Suppose that  the dif ferent behaviors described in the  theorem hold for B3. 

This means that  t he  image of t he  comparison mapping meets each of the  six regions 

of Si (3) as well as all  of the  open regions in J ~ .  In all, i t  would meet 48 open re- 

gions. If this happens, then, by the linearity of the  mapping and a comparison of 

the dimensions of the  domain and range, i t  follows tha t  the  mapping is onto a neigh- 

borhood of the  c~mpar ison  point. This forces the  matrix t o  be of rank five. To 

show that  this id not so, w e  l ist all six of the vectors and then ex t rac t  a four- 



dimensional basis. 

The vectors are as follows: 

These six vectors admit a basis consisting of the  f i rs t  th ree  vectors and the vector 

(0,0,0; 1,1,1). Thus, the system has corank 2. Since this last vector is orthogonal 

t o  the image space, the system has corank 2 with respect  t o  the image space. This, 

and the linearity of the mapping, means that the comparison mapping has a nonzero 

intersection with 1 2  of the 48 admissible comparison regions. If the mapping were 

always consistent, then the mapping would meet only 3! = 6 regions. Thus, the map- 

ping stil l admits several  "inconsistent" conclusions. (In a paper  being prepared, 

we character ize the election rankings admitted by a Bol;da count.) 

Extension of Theorem 3 

The last p a r t  of the proof of Theorem 3 is based on the work of Saar i  (1984) 

which admits a wider variety of results. For example, f o r  k alternatives, suppose 

there  a r e  k -1 weight vectors Wk,  which form, with Ek, a linearly independent set. 

Arbitrarily choose k -1 rankings of the k alternatives. The theorem asserts that  

there  exist voters' profiles so  that  when the s a m e  voters rank the set  of k alterna- 

tives, k = 3, ..., N with the i t h  voting vector, then the outcome is the  i t h  specified 

ranking of t he  alternatives. This is t r ue  f o r  al l  choices of i  = 1, ..., k -1 and k. 

A similar extension holds fo r  Theorem 3. For each k = 3, ..., N, choose 

k - 1 - k / 2  voting vectors with the  following property: (i) the  voting vector is 

not reverse  neutral, and (ii) the set  of k -k / 2  vectors, defined by Ek and the  vec- 

to rs  formed by adding each of the k - 1 - k / 2 voting vectors t o  i ts reversal ,  is a 

linearly independent set.  For each voting vector, arbi t rar i ly choose a ranking of 

the k alternatives. For each pai r  of alternatives, designate one of them. There 

exist voters' profiles so that  when the i t h  voting vector is used to  rank the  k al- 

ternatives the  outcome is the assigned ranking i  = l ,  ... ,k - l[/ 21, k = 3, ... ,N. For 

each pair ,  a majority of the same voters p re fe r  the designated alternative. The 

proof of this statement is a straightforward modification of the proof of Theorem 

3. 



Proof of Corollary 3.2 

From Corol lary 3.1, i t  follows tha t  t h e r e  is an  open set of voters '  prof i les 

where the  outcome in pairwise elect ions is  t he  cycle 

Consider t he  reversed  cycle al  < aN < a ~ - ~  < ... < a2 < a l .  The following defines 

an agenda where aj will be  t h e  winner. Let the  agenda b e  t he  N terms in t h e  re- 

versed cycle t ha t  start with the  al ternat ive immediately following aj  and ends with 

aj . For example, a3 wins with t h e  agenda [a2,al,aN,a, -l ,... ,a4,a3] .  

The second p a r t  of th is corol lary is  a consequence of t he  boundary p roper t ies  

of L -l(0). The second p a r t  of th is corol lary is  a consequence of t h e  boundary 

p roper t ies  of L-l(0). The prof i le, where an  equal number of vo te rs  have each of 

t he  t h r e e  rankings a l  > a2 > ... > a ~ , a ~  > a3 > ... > a~ > al l  and 

a3 > aq > ... > aN > al  > a2 has  t he  desired propert ies.  Note t h a t  in each pair -  

2 wise comparison t he  winning a l ternat ive  rece ives e i t he r  - of t h e  vote, o r  al l  of it! 
3 

This is  t r u e  f o r  whichever agenda is  used and whichever a l te rnat ive  wins. 

The dice example 

This is  a stra ight forward computation. However, t he  domain point used in t he  

image of t he  comparison point should correspond t o  two identical weighted, but  not 

fa i r ,  dice. The probabi l i ty tha t  a par t icu lar  face will sur face is le f t  t o  t h e  end of 

t he  computation. In o t h e r  words, t h e r e  are some complications in t h e  computation 

with two f a i r  dice. 
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