’ g International Institute for
- Applied Systems Analysis

[TASA wwwiiasa.ac.at

An Interactive Computer
Program for Assessing and
Analyzing Preferences
Concerning Multiple Objectives

Keeney, R.L. and Sicherman, A.

IIASA Research Memorandum
April 1975

Keeney, R.L. and Sicherman, A. (1975) An Interactive Computer Program for Assessing and Analyzing
Preferences Concerning Multiple Objectives. IIASA Research Memorandum. IIASA, Laxenburg, Austria, RM-75-
012 Copyright © April 1975 by the author(s). http://pure.iiasa.ac.at/504/ All rights reserved. Permission to
make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this
notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute
to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

RM-75-12

AN INTERACTIVE COMPUTER PROGRAM FOR ASSESSING AND ANALYZING
PREFERENCES CONCERNING MULTIPLE OBJECTIVES

Ralph L. Keeney

Alan Sicherman

April 1975

Research Memoranda are informal publications
relating to ongoing or projected areas of re-
search at ITASA. The views expressed are
those of the authors, and do not necessarily
reflect those of IIASA.

An Interactive Computer Program for Assessing and Analyzing

*
Preferences Concerning Multiple Objectives

Ralph L. Keeney+ and Alan Sichermaﬁ*

Abstract

An interactive computer program designed to facilitate the
quantification of a decision maker's preferences for multiple
objectives in terms of a multiattribute utility function is de-
scribed. It is meant to alleviate many of the operational diffi-
culties with current procedures for assessing and using multi-
attribute utility functions. The package includes commands for
structuring the utility function, assessing single-—attribute com-
ponent utility functions of the overall multiattribute utility
function, identifying the preference trade-offs between attributes,
evaluating alternatives, and performing sensitivity analysis.
Suggestions for using the program are included.

Preface

The program described in this paper is currently available for the

use of ITASA at IBM in Vienna. If interested, please contact Ralph L.
Keeney.

*
Most of the work reported here was conducted while both authors
were at the MIT Operations Research Center, Cambridge, Massachusetts, USA.

+Internationa1 Institute for Applied Systems Analysis, Laxenburg,
Austria,

#bperations Research Center, MIT, Cambridge, Massachusetts, USA.

1. Introduction

Many complex decision problems have the characteristic of being
multiple objective in nature. Inevitably, these multiple objectives are
conflicting objectives in the sense that, once dominated alternatives
have been eliminated, further achievement in terms of one objective
can occur at the expense of some achievement of another objective.

Thus, in evaluating potential alternatives, the decision maker must
consider his preference trade-offs between various degrees of achievement
of one objective and degrees of achievement of others. The real problems
are even more complicated because uncertainty is usually present. That
is, one cannot predict with certainty what the consequences of each of
the alternatives under consideration will be.

In evaluating alternatives, it is very difficult to logically and
consistently consider the above complexities informally in the mind.
Hence there is a need for formal analysis. Decision analysis is an
approach which does explicitly address the multiple objective and
uncertainty issues. The theoretical basis for this is well established.
However, an important practical problem concerns quantifying the decision
maker's preference structure for multiple objectives., Without this
mathematical representation--called a utility function-—of the decision
maker's preferences one cannot formally evaluate the alternatives.

This paper describes an interactive computer package designed to
facilitate the assessment and-use'of a decision maker's utility function
for multiple objectives. At present, some of the subroutines in the
package are rather crude. However, the package is currently operational

and does overcome many of the major difficulties previously experienced in

assessing and using utility functions in complex problems.

1.1 Decision Analysis

By briefly outlining the decision analysis approach, we hope to
motivate the work described here and place it properly in a broader
context, Raiffa [10] discusses the philosophy and techniques of
decision analysis in detail. For our purposes, let us categorize it
with four steps:

1) structuring the problem,

2) quantifying the uncertainties involved,

3) quantifying the decision maker's preferences,

4) evaluating the alternatives.

Structuring includes problem specification and identification of
the decision maker. The decision maker must articulate his objectives
and attributes (i.e. measure of effectiveness) for each objective. An
attribute is a measurement scale used to indicate the degree to which
the corresponding objective is achieved. The alternatives must also
be specified. Let us designate our set of attributes as XI’XZ""’Xn
and use X to indicate a specific amount of attribute Xi' For instance,
X, may designate ﬁrofit in 1975 measured in thousands of dollars and

1

X, may be 188. With this convention, the consequence of any alternative
is x = (xl’XZ""’xn)'

Quantifying uncertainties involves describing the uncertainty about

the possible consequences of each alternative. For each alternative Aj’
a probability distribution pj(z) indicating which consequences might
occur and their likelihood is required. The pj may be specified using
any combination of analytical models, simulation models, subjective

assessments, and data that is available and appropriate.

Quantifying preferences means assessing the decision maker's utility

function u(x) = u(xl, Koy ennsy xn), which is called a multiattribute

23
utility function since the argument of the utility function is a vector
indicating levels of the several attributes. The multiattribute utility
function, which will be referred to by the mnemonic MUF, has two
properties which make it useful in addressing the issues of uincertainty
and trade-offs between ijectives. These properties are:
1) u(x') > u(x") if and only if x' is preferred to x", and
2) 1in situations with uncertainty, the expected value of u is
the appropriate guide to make decisions; i.e., the alter-
native with the highest expected value is the most preferred.
This second property follows directly from the axioms of utility theory

postulated first in von Neumann and Morgenstern [)5].

Evaluating alternatives involves calculating the expected utility

of each of the alternatives and conducting sensitivity analysis. Given pj
for each Aj and u from the previous steps, the expected utilities for

the alternatives can be evaluated. To gain additional confidence and

insight into which alternative should be chosen and why, various parameters
in both the probability distributions and the utility function can be varied

to see how these affect the expected utility of the alternatives.

1.2 Statement of the Problem

The weakest link of the four above steps in rendering decision
analysis operational for multiple objective problems is quantifying the
decision maker's preferences. Defining the problem is common to all
attempts to systematize the decision making process. Quantifying uncer-
tainties has also been widely addressed in modeling efforts. The outputs

of many simulation models include probability distributions over the

relevant attributes for each of the alternatives under consideration.
However, the decision maker is usually required to review these outputs—-—
informally combining them with his preferences~=to select an alternative.
Because multiattribute utility theory was only recently developed
[1,2,5,6,8,11] and because the operational procedures to put it into

practice are not well developed, the third and fourth steps are informally
carried out simultaneously. The critical step is actually the quantification
of preferences because, as indicated above, evaluation of alternatives

is fairly straightforward once probabilities and preferences are

quantified.

Much of multiattribute utility theory is developed as follows.
Assumptions about the decision maker's preferences are postulated, and
the restrictions these assumptions place on the functional form of the
utility function are derived. Then, for any specific problem, the
appropriateness of the assumptions for a particular MUF should be
verified with the decision maker and parameters for the utility function
assessed and checked for internal consistency. Ideally, the functional
form of the MUF would have the following properties:

1 be general enough to allow application to many real problems,

2) require a minimal number of assessment questions to be asked

of the decision maker,

3) require assessments which are reasonable for a decision maker

to consider,

4) be easy to use in evaluating alternatives and conducting

sensitivity analyses.

Even with a convenient functional form for the MUF, the natufe and
magnitude of a problem can make the bookkeeping and use of quantitative
assessments a formidable task. The computer package described in this

paper is designed to handle this task for a variety of problem contexts.

1.3 Organization of the Paper

Section 2 summarizes the theoretical development of the functiomal
forms of the MUF's upon which the computer package is based. Section 3
discusses existing methods and their difficulties for assessing and using
these MUF's., A description of the computer package and the manner
in which it alleviates such difficulties is in Section 4. Sectiom 5
describes an application of the package to an important "typical' multiple
objective problem, followed by suggestions for using and improving the

package. The Appendix briefly describes the program commands.

2. ' The Additive and Multiplicative Utility Functions

Conditions which imply that a MUF is either additive or multiplicative
are very similar. None of the conditions require the decision maker to
consider preference trade-offs among more than two attributes simultaneously
or to consider lotteries (specifying various levels of x and the probabilities
of receiving them) with the level of more than one attribute being varied.
Furthermore, the assessments needed to specify an n-attribute utility

function are n one-attribute utility functions and n scaling constants.

2.1 The Basic Assumptions

The two basic assumptions which we use for both additive and
multiplicative utility functions are referred to as preferential
independence and utility independence. These are defined as follows:

Preferential Independence: The pair of attributes {X

1 Xz} is

preferentially independent of the other attributes {X .,Xn} if

300-
preferences among {Xl, X2} pairs given that {X3""’Xn} are held fixed,
do not depend on the level where {XB""’Xn} are fixed.

Preferential independence implies that the trade-offs between

attributes X; and X, do not depend on XB""’Xn'

Utility Independence: The attribute Xl is utility independent of

the other attributes {Xz,...,Xn} if preferences among lotteries over

X, (i.e. lotteries with uncertainty about the level of Xl only) given

1’
Xz,...,Xn are fixed, do not depend on the level where those attributes
are fixed.

The main result can now be stated.

Theorem 1. For n > 3, if for some Xi, {Xi’ Xj} is preferentially

independent of the other attributes for all j # i and X, is utility

independent of all the other attributes, then either

u(x) kiui(xi) . (1)

I
I|. ™M 3

1=1

1l
=R

1[1 + kkiui(xi)] . (2)

1+ ku(i)
i

where
u and u; are utility functions scaled from zero to one,
the ki's are scaling constants with O < k. < 1, and

k > -1 is a non-zero scaling constant satisfying the equation

=
+
=
]
== =1

(1 + kki) . (3)
1

i
The proof of this result is fqund in Keeney E4]. Alternative sets of
assumptions leading to either form (1) or (2) are found in Fishburn Eﬂ ,
Pollak Bﬂj and Meyer Bﬂ. The functional form (1) is referred to as
the additive utility function and (2) is the multiplicative utility

function. For the case of two attributes, the following is proved in

Keeney [5]:

Theorem 2. For n = 2, if X. is utility independent of X, and

1 2

X2 is utility independent of X., then the utility function

1’

u(xl,xz) is either additive or multiplicative.

33
Using either (1) or (2), if) k, =1, the utility function is additive,

n i=1 n

and if 2 k. # 1, it is multiplicative. When Z k. > 1, then -1 < k < O,
. i . i
i=l n i=1

and when Z ki <1, then 0 < k < ®, To use either the additive or

i=1
multiplicative form, we need to obtain exactly the same information. We

have to assess the n single—attribute utility functions ui(xi) and the
n scaling constants ki‘ How this information is obtained and used is

the subject of Sections 3 and 4.

2,2 Nesting Utility Functions

The results above are valid regardless of whether the Xi's are
scalar attributes or vector attributes. This means that the xi's can
be either scalars or vectors. In the former case, the component utility
functions u. are single-attribute utility functions, whereas in the latter
case, u, is itself a multiattribute utility function. If Xi is a vector
attribute, it is possible, subject to satisfying the requisite assumptions,
to use Theorems 1 and 2. 1In such a case, we will say u. 1s a nested
MUF. That is, us is a MUF nested within the MUF u. Our interest in
nesting utility functions is that it provides more general utility

functions which are still tractable enough to assess and use.

2.3 Applicability of the Functional Forms

In terms of the required assessments and general robustness, the
additive and multiplicative utility functions appear to be the practical

ones for say n > 4. Even when the requisite assumptions do not precisely

hold over the domains of all the attributes, it may be a good approxi-
mation to assume they do, or it may be reasonable to integrate different
additive and multiplicative utility functions over separate regions of
these attributes. Furthermore, by nesting one MUF inside another,
additional flexibility in the preference structure can be achieved.

The effect of nesting multiplicative forms is to create an extra degree

of freedom in the problem by having an extra independent scaling constant.

Without nesting, the number of independent scaling constants is equal
to the number of single attributes. However, suppose v is a MUF
nested within u and that u has three single attributes. Then one
would need n scaling constants for the "outer MUF" and three for the
"inner MUF" for a total of n + 3, even though there are only n + 2
single attributes, Xl""’xn—l and the three single attributes in u .
The degree of freedom afforded by the extra parameter permits trade-—
offs between two attributes to be dependent on a third. This allows
for some violation of the preferential independence conditions. By
various nesting schemes, enough extra constants could be provided to
model situations in which trade-offs between many pairs of attributes

depend on the level of other attributes.

In the case of utility independence violations, the particular
problem may be far more sensitive to the scaling constants or trade-offs
among the attributes than to the conditional single-attribute utility
function variations. Thus even in these cases, the additive or
multiplicative form may provide an adequate model for the problem.

In summary, the additive and multiplicative utility functions are
simple enough to be tractable and yet, especially with nesting, robust
enough to adequately quantify preferences for many problems. In practice,

however, assessing and using such MUF's is "easier said than done."

3. Difficulties with Existing Methods for Assessment and Use

Aspects of the state—of-the-art for assessing and using MUF's are
discussed in this section. Some of the important shortcomings of
existing procedure are identified. These include:

1) the necessity to ask "extreme value" questions to keep
the computational requirements for specifying a utility
function to a manageable level,

2) the tedium of calculating the component utility functions
and scaling constants even in this case,

3) the lack of immediate feedback to the decision maker of the
implications of his preferences,

4) the absence of an efficient procedure to "update" the

decision maker's preferences and conduct sensitivity analysis.

In the discussion that follows, we will assume that the assumptions

for the MUF to be either additive or multiplicative have been verified.

3.1 Specifying the Utility Functions over the Single Attributes
Techniques for assessing single—attribute utility functions have
become fairly standard (Raiffa Dlﬂ, Schlaifer [12]), and sophisticated
computer programs have been developed for fitting single-attribute
utility functions (Meyer and Pratt [7], Schlaifer [li]). Such programs
provide quick feedback to allow the decision maker to check if his
assessments and their implication§ appear reasonable, There is a diffi-
dulty in using these programs interactively in assessing multiattribute
utility functions, since at present they do not exist in conjunction
with a multiattribute utility assessment package. This minor shortcoming

can be easily remedied.

-10-

3.2 Assessing the Trade-offs Among Attributes

The issue of trade-offs among the attributes is addressed by
assessing the ki's in the utility functions (1) and (2). In theory the
manner of doing this is very simple. If there are n attributes, we
want to assess the n unknown ki's by creating n independent equations
with the n unknowns and solving. An equation is created by i) having the
decision maker indicate two options, where an option is either a
consequence or a lottery, between which he is indifferent, and 11)
equating the expected utilities of these options using either (1) or (2).
For instance, if the decision maker finds x' and x" indifferent, then
u(x') = u(x") provides one equation with at most n unknowns.

Manually solving n equations, which are not necessarily linear,

~with n unknowns is, to say the least, tedious. Current practice in
assessing the ki's usually requires sets of equations which are simple
to evaluate. This basically limits the questions to two types. To

(o)

indicate these, let us define x* = (x{,x*,...,xg) and 5? = (x?,xz,...,xz)

2

as the most desirable and least desirable consequences. Then, because

of the scaling conventions given in Theorems 1 and 2,

u(x) =1 , u@ExD =0, (4)
and
* 0 .
ui(xi) =1 , ui(xi) =0 , i=1,2,...,0 . (5)
One type of practical question can be illustrated as follows:
Question I. For what probability p are you indifferent between

i) the lottery giving a p chance at x* and a 1 - p chance at

0
X , and
% o

ii) the consequence (x° 0 X.,x x%)
11 q "EXTERE YERTE IER SUUTRREFL N0 &

-11-

I1f we define the decision maker's answer as P;» then using (4), the
exﬁected utility of the lottery is P;» and using either (1) or (2),
the utility of the consequence is ki' Equating the expected utilities,

we find

k. = p. . (6)

One could then clearly generate the values of each of the ki's in this
fashion.

The second type of question is illustrated by:

Question II. Select a level of Xi, call it xi, and a level of X.,
call it xé, such that, for any fixed levels of all the other attributes,

you are indifferent between

[e]

i) a consequence yielding xi and x. together, and

o u

ii) a consequence yielding x& and x, together.

7]

Using (5) and either the multiplicative or additive utility function,

the utilities of these two indifferent consequences can be equated to yield

kiui(xi) = kjuj(xj) . (7

Once the single attribute utility functions u, and uj are assessed, both
ui(x;) and uj(xg) are easily found, so (7) is a simple linear equation.
Suppose in addition, for example, that xi = x{. Then by (5), the relation-
ship between ki and kj given by (7) is even simpler.

A major shortcoming of questions of both types I and II is the use
of the extreme levels of the attributes, that is the x? and xg. Since
the range from xz to x: must cover the range for x., the implications
of, and hence preferences for, the extreme levels are usually very

difficult for a decision maker to assess. A further difficulty with

Question I is the fact that the effect due to varying all n attributes

~-12-

simultaneously must be considered. Hence for computational ease we
must force the decision maker to respond to questions much more difficult
to evaluate than would be theoretically necessary.

A common practice in assessing the ki's would be to use a question I
to evaluate the largest ki’ and then use type II questions to evaluate
the magnitude of the other kj's relative to the largest ki' Once we
have the ki's, the additive form must hold if they sum to one. Otherwise,
the ki's are substituted into (3) to evaluate k for the multiplicative

form. This task in itself can be time consuming using only a calculator.

3.3 Evaluating Alternatives and Sensitivity Analysis

Manual calculations are clearly impractical for evaluating alterna-
tives. With uncertainty, we need to evaluate the expected value of u
using the probability distribution describing the possible consequences.
Even with probabilistic independence amdng the Xi's, the computational
task is large. It is also clear that sophisticated sensitivity analyses
are out of the question without major computational help.

On the other hand, it is a large requirement to develop a special
computer program fo accommodate a particular problem. Such programming
is often inflexible because of the special nature of the situation for
which it was done. For instance, it would usually be very difficult to
add additonal attributes, to try different 'mesting" schemes, or to
explore the preference structure for "hints" of creative new alternatives

to generate.

4. The Computer Package

This section describes the major features of a computer package
designed to alleviate some of the shortcomings with existing methods for

the assessment and use of multiattribute utility functions. The package

-13~

is referred to by the mnemonic MUFCAP standing for "multiattribute
utility function calculation and assessment package." Steps customarily
followed in obtaining and using a MUF are presented with a description

of the MUFCAP commands appropriate in performing the particular step.

For illustration, the multiplicative form will be used for both the
overall utility function u and any nested MUF's. Howe?er, MUFCAP employs
the additive utility function, rather than the multiplicative form, in
problems where it is appropriate. A complete summary of the package and
listing of the program are found in Sicherman [ﬁ&]. A list of the package

commands is given in the Appendix.

4.1 Commands to Structure the Utility Function

Structuring a utility function consists of specifying a functional
form, its attributes, and the ranges for each of the attributes. MUFCAP
has several commands for structuring a preference function. The INPUT
command requests a name for the utility function and asks for the number
of attributes which are arguments of this function. The package then
requests a name and a range for scalar attributes. This consists of two
numbers which bound the amounts to be considered for each attribute. To
specify a vector attribute, ome inputs a range with one bound equal to
the other bound such as 0,0. MUFCAP recognizes this as a signal for
a vector attribute and notes that the u, associated with that attribute
is a nested MUF. The package then requests the number of attributes which
are arguments of this nested MUF. For each of these, a name and range
will be solicited. Further levels of nesting could be specified if
desired and the information requested would be analogous to the material
above. After a nested MUF is completely specified, the program returns
to ask for the names and ranges for whatever attributes have not yet been |
covered in the outer MUF. When all the attributes have been input, the

structure is complete and MUFCAP requests a new command from the user. |

—14~-

The INPUT command provides for all the bookkeeping which will be
necessary for information to follow. Each ki and u., including those
in a nested MUF, can be accessed using the name of the attribute with
which it is associated. The INPUT command is quite flexible in having
no limit to the degree of nesting allowed.

In addition to INPUT, the package has commands for adding or deleting
attributes to or from the utility function. It also has a command for
switching the order of the attributes in a utility function. In this way,
attributes may be conveniently '"regrouped" to alter the model for the

problem in terms of different nesting schemes.

4.2 Commands to Specify the Single Attribute Utility Functions

The next step in assessing a MUF involves specifying the ui's for the
single attributes. As noted in Section 3, sophisticated computer programs
do exist for assessing single (scalar) attribute utility functions. One
could incorporate these into MUFCAP. 1Initially, however, simpler routines
for assessing unidimensional utility functions, referred to as UNIF's,
were developed.

MUFCAP has available commands to specify conveniently three UNIF
types: linear, exponential, and piecewise linear. Pratt [p] considers
the implications of these forms. The linear utility function implies
risk neutrality. This form requires no more information than the range
of the attribute. The exponential form implies constant risk aversion
or constant risk proneness. It requires the specification of a certainty
equivalent for a single lottery. Given this, the exponential form is
fitted and scaled automatically by the program. The piecewise linear
utility function is specified by providing the abscissa and ordinate

values for n points (3 < n < 15) of the utility function. This form

-15-

can be used for non-monotonic or S-shaped utility functions. These three
types provide the user with the means of specifying a UNIF appropriate
for many situations. More forms can easily be added to the package in
the future.

MUFCAP also has commands which enable a user to quickly display
the assessed UNIF for purposes of checking its appropriateness. The command
UNICAL calculates the utility for one or a series of attribute levels.
INVERSE calculates the attribute level corresponding to a given utility.
LOTTERY evaluates the certainty equivalent for any lottery with n conse-
quences and their associated probabilities over that attribute, where
2 < n < 15. When there are two consequences, LOTTERY can also calculate
the probability which will make the lottery indifferent to a given
certainty equivalent.

To summarize, MUFCAP has convenient commands to assess ui's
which are UNIF's and to examine their implication as a check on their

reasonableness.

4.3 Commands to Specify the Scaling Constants

Using the attribute names as identifiers, MUFCAP allows the user to
set the scaling constants in the MUF corresponding to each attribute,
If Xi is a vector attribute, the us associated with it is a MUF with its
own internal scaling constants. By referring to the name of this vector
attribute, the user can specify the internal scaling constants for the
associated nested MUF. When all the ki's for a particular MUF have been
set, the program automatically calculates the corresponding k using (3).

Once ui's have been evaluated, the package has several commands

useful for assessing the ki's in any particular MUF, The command INDIF2

-16~

takes as input two indifference paitrs, each consisting of two indifference con-
sequences. These consequences can vary only in terms of the two attributes,
say Xj and Xm’ whose ki's are the object of assessment. Using (2), the program
equates utilities of the indifferent consequences and computes the rela-
tive value of kj and km implied by the indifference pairs. With INDIF2,
the user is not limited to choosing consequences which have one attribute
at a least desirable level in order to determine the relative ki's.

Given the information from INDIF2, indifference curves over
Xj and Xm can be calculated with the command IMAP, IMAP permits a user
to get immediate feedback on the implications of the relative ki's which
he has specified. He can quickly see if the points 'claimed" to be in-
different really appear so to him. If not, the relative ki's can be
changed until they represent the user's preferences for trade-offs between
those attributes.

Once we know the relative ki's, the command INDIF1l takes as input
a single pair of indifference consequences and computes the k and the
absolute magnitude of the ki's implied by that pair and the relative ki's.
For consistency checks, a new indifference pair of consequences can be
input into INDIF1l, which then computes the factor by which the current
ki's need to be multiplied to be consistent with the indifference point
just given. MUFCAP provides a routine which allows the user to multiply
the currently assigned ki'S for any MUF by any factor. 1In this way, INDIF1
enables the calculation of the magnitude of the ki's using an indifference

relation instead of a lottery over all the attributes at once.

4.4 Commands for Evaluating Alternatives and Sensitivity Anmalysis

Once the ui's and ki's have been set, the utility function 1is

completely specified and can be used. To help explore the implications

-17-

of the utility function and to perform "rough" analysis, MUFCAP has
commands for specifying two kinds of alternatives: certain and ‘uncertain.
For certain alternatives, which are simply consequences, uniattribute
amounts are solicited. until the alternative is completely described.

For uncertain alternatives, at present, MUFCAP assumes probabilistic
independence and requests a probability distribution function for ‘each
single attribute; The probability distribBution function currently used
is a piecewise linear approximation to: the cumulative probability
distribution for Xi' The user supplies n-abséissa—ordinate;ﬁairs, where
2 < n<9 to specify the cumulative distribution. Then MUFCAP calculates the
expected utilities for probabilistic alternatives. The cumulative
distribution was chosen rather .than the probability density function
because the fractile method of assessing probabilities (see Schlaifer
[12]) yields points of the cumulative distribution. Other forms of
probability distributions such as the Gaussian as well'as probabilistic
dependencies could be”added to the package in the future.

The spepifieq alternatives are given}games by‘éhe user. With th;se
names, the user may add, changg or delete alternativesf He may also
.choose the ones which are to be evaluated by list;ng thei;‘names‘with
the appropriate comménds about to be described.

The ééﬁmand EVAL is used to evaluate ki.e. compute the expected
utili#y fo:) any alternative or gfqpp of alternatives, By'specifying a
groué of alternativgs differing slightly ig some fe;;ure, one can
Eonductba sensitivity analysis of thekprobabilistic inputs, Also, EVAL
will compute the expected utilities fér any multiattribute utility

function specified in the command. Thus, using EVAL, one can conduct

a sensitivity analysis of the preference structure by varying parameters,

-18~-

such as the scaling constants, in the multiattribute utility function.
In this same way, different utility functions of members of a decision
making grbup can be used to evaluate and rank the alternatives. This
might help clarify differences of opinion and suggest certain creative
compromises if needed.

The command GRAD evaluates the gradient of a utility functionm at

any number of specified consequences. The gradient is defined as the

9 9 9 e s . .
vector ('axl’ -a—xu—, cees -af-) and indicates the direction of steepest
1 2 n

increase in the utility function at a specified point. The gradient

components tells us which attribute level changes would yield large
increases in utility. This could be useful in geherating worthwhile
alternatives, Of course, one must keep in mind the scales of the
attributes in interpreting the gradient.

In addition to the gradient, GRAD also computes the vector

(EEL g%L, ceey g%L) . Each component represents the rate of change

Bul’ 2

of u with respect to a change in the utility u. These components

reveal the a;tributés for which an increase in its utility will yield the
largest increase in u. The advantage of calculating these quantities in
addition to the gradient components are a) components can be calculated
for MUF's as well as UNIF's, and b) the unit of measurement for a
uniattribute does not distort the magnitude of the component. Thus in

some cases, g%&-might better indicate possible improved alternatives than
i

du. , MUFCAP makes both available.

P —

9X,
i

-19-

Summarizing, EVAL permits the evaluation of alternatives, and along
with routines which alter parameters, provides for sensitivity analysis.
GRAD makes use of the analytical formulation of the problem to calculate
quantities useful in suggesting alternatives which might be better than

the ones currently specified.

4.5 General Command Format and Commands for Facilitating Use of the

Package

MUFCAP commands are designed to be concise and are for the most part
no longer than three words. These words may initiate a dialogue when
more information is necessary. The input format is free, i.e. words
need not begin in a particular position on the page. For many commands,
the user will be prompted if he has left out a necessary word.

Mistyping causing invalid numbers on input is handled automatically
by the program and a correct number is requested. Provision is made for
the user to terminate a lengthy dialogue by specifying the word QUIT for
the next number to be input. A new command can then be entered. 1In
the future, a help command could be easily implemented which would explain
the syntax of any other command, give definitions of terms used in the
program and make suggestions concernéng what kinds of steps to perform in
assessing and using the MUF. |

In addition to these features, MUFCAP has the facility for saving the current
state of the multiattribute utility étruc;ure and the current alternatives in
a file of the user's choosing to be read in at a later time. This gives MUFCAP
the capability for filing away several different MUF models as well as a large
number of alternatives for the same problem. It also allows the user to build
up his model over many different sessions at the terminal and restore any

status he has saved away with which he wishes to calculate at any particular time.

=-20-

Another feature of MUFCAP is the supplying of default settings when
the INPUT command is used to structure the MUF for the problem. After
INPUT, the default for all MUF's is the additive form, with all the ki's
equal to each other, and for all UNIF's, it is the linear utility functionm.
With these defaults, the user is set to calculate immediately after

input. Thus feedback can begin right away without requiring the user to

completely specify everything first. Scaling constants and utility
functions can then be alterred after observing some feedback to refine
the model for the problem.

Finally, MUFCAP provides commands to print out the current étatus
of the assessments. There are routines to display the ki's and k for
any MUF, the range and type for any single attribute utility function,
the probability distribution of any attribute for any alternative,‘
multiattribute utility function structure (i.e. nesting) and the
currently defined alternatives. Commands are also provided for easily
changing parameters such as individual ki's or the components of any

alternative.

5. _A Simulated Application of MUFCAP: The Mexico City Airport

This section briefly illustrates how MUFCAP could be used in
practice. An application chosen is that of the Mexico City Airport
described in Keeney Eﬂ. This problem was approached using the
existing methods for MUF assessment and calculation and utilized special
computer programming to aid in the calculations. This section presents

what might have been done if MUFCAP had been available then.

5.1 Attributes for the Problem

The Mexico City Airport problem was defined in terms of the

following attributes:

X1 = total cost in millions of pesos,

>
m

2 the capacity in terms of the number of aircraft operations

per hour,

>3
i

3 = access time to and from the airport in minutes,

tad
111

4 number of people seriously injured or killed per aircraft

accident,

>~
i

5 number of people displaced by airport development,
X_ = number of people subject to a high noise level (i.e. 90 CNR

or more).

To incorporate time effects of building the airport, the appropriate
attributes were defined using present values or averages where appropriate.
The capacity attribute X2 had to be made a function of capacity for 1975,
capacity for 1985, and capacity for 1995, and thus it was a vector

attribute.

5.2 Summary of the Method Used in the Problem

After verifying assumptions concerning preferential and utility
independence and ascertaining the appropriateness of the multiplicative
model, assessments were begun, First, the fractile method was used to
obtain probability distributions for all of the alternatives under
consideration. Probabilistic independence was assumed to simplify
calculations. Then uniattribute utility functions were assessed for all
eight scalar attributes., The ki's were assessed using the lottery over
all the attributes illustrated by Question I in Section 3,1 for both the
overall MUF and nested capacity MUF. Consistency checks on the relative
ki's involving trade-offs of two attributes at a time (see Question II,

Section 3.1) were also employed. Special computer programs and graphic

-292-

displays were developed for evaluating alternatives and sensitivity analysis.
For sensitivity analysis, the program allowed changes in i) the endpoints
for the fractile cumulative probability distributions and ii) the scaling
factors ki' The shapgs of the utility functions or the cumulative

probability distributions could not be changed without programming adjustments.

5.3 A MUFCAP Approach to the Mexico City Problem

The MUFCAP approach would follow the existing methods scheme in
making and verifying the preferential independence and utility independence
assumptions. The INPUT command would structure the multiplicative
function giving names such as "cost" and "access" to the various attri-
butes along with ranges for the attribute amounts. Capacity would be
put in as a nested MUF.

Alternatives would be specified by inputing the nine-point assessed
fractile distribution for each uniattribute of an alternative. Utility
functions for single attributes would be specified using any of the three
forms available in MUFCAP,

Assessment of the ki's could be accomplished without supplying the
indifference probability for a lottery over all the attributes as was done.
Pairs of indifference points for two attributes would be fed into MUFCAP
to immediately produce indifference curves for examination and verifi-~
cation by the decision maker. In this way, the relative ki's would be
established with the aid of feedback. The magnitude of the ki's would
be established using INDIF1 (see Section 4.3), so a lottery over all the
attributes could be avoided for this purpose. A good consistency check
would be provided by comparing the magnitude of the ki's implied by
each method. Using MUFCAP, all of the initial assessments could be

made and stored for later use. The assessments would have been made with

2 3

the aid of immediate feedback and with no need for very difficult
lottery questions in which all the attributes were varied.

After the initial assessments, alternative evaluations and sensitivity

analysis could be performed immediately wi;h no need for special program—
ming. Fractile distributions and utility function shapes could also be
altered without programming adjustments. The different assessments of
various individuals and groups could have been filed away for later
reference using MUFCAP's filing capability.

In addition, other possibilities could have been explored with a
minimum of extra effort. New attributes such as air pollution and
political effects could have been added into the analysis with no special
programming. The gradient calculation capability may have been used to
suggest other alternatives for exploration and development., If the
preferential independence of some attributes were questioned, different
nesting schemes could have been tried to see if the ranking of the
alternatives would be affected. Thus MUFCAP could have provided the
assessment that was performed with no special programming and could have
been used to explore variations of more parameters, other multiattribute

nesting schemes, and additions of new attributes.

6. Summary and Suggestions

The current version of MUFCAP provides the basic features necessary
to assess and use multiattribute utility functions in complex decision
problems. In particular, it permits one to use realistic and simple
questions in assessing the decision maker's preferences, rather than
the "difficult to think about" types of questions previously used for
computational reasons. MUFCAP provides for i) a variety of immediate
feedback of implications of the decision maker's responses, ii) evaluation

of alternatives and sensitivity analysis, and i11i) analyzing differences |

24

of preferences and judgments among various individuals in a decision
making group.

The present MUFCAP should be considered a first edition, a basis
on which to improve. In this regard, many possible improvemenﬁs of
existing routines have been suggested in the text such as a more
sophisticated single—attribute utility function assessment technique
and potential for evaluating alternatives where probabilistic indepen-

dence need not be assumed. The program could then be easily coupled

with simulation models producing probabiiity distributions. Other im-
portant improvements would include‘the addition of new routines i) to
help in vérifying preferential and utility independence assumptions,
ii) to facilitate sensitivity analysis and feedback, perhaps with the
aid of graphical displays, and iii) to conduct conflict analyses in

problems involving more than one decision maker.

-25-

APPENDIX

List of MUFCAP Commands with Brief Descriptions

Notation:

CE - Certainty equivalent
MUF - Multiattribute Utility Function
UNIF ~ Uniattribute (scalar attribute) utility

function
[yl,yz,...,yR] Brackets indicate the options which may
be chosen. No option needs to be selected.

(yl,yz,...,yR) Parentheses indicate that a choice must

be made among the options given;

INPUT name = - Inputs the structure of the multiattribute
utility functiom to be referred to by '"name.” The
diélogue requests names for the attributes and their
ranges. -Ranges for attributes over which preferences
are monotonic should be input with the least desirable
end of the range first. A vector attribute (and hence
a nested MUF) is signalled by specifying a range whose
lower and upper limits are the same. After INPUT, the
default for all MUF's is the additive form with ki = kj

for all i, j. The default for all UNIF's is the linear

utility function. The user is set to calculate immedi-

ately after INPUT.

-26~

SAVE filename - Saves the current preference and

alternative specifications in file named "filename."

READ filename - Restores the information which was

saved in "filename."

DEBUG . - Lists all the attributes in the
utility function structure including their names,
scaling factors, ranges, and UNIF types (0, 1, and 2
indicate respectively linear, constant risk aversion,
and piecewise linear). A vector attribute has its
name and scaling factor 1isted and is followed by its

component attributes.

ADDALT altname [factor] - Initiates dialogue to specify
an alternative to be referred to by "altname." Either
a probabilistid or certainty alternative may be speci-
fied. If the former is the case, a piecewise linear
cumulative probability distribution is requested for
each scalar attribute. (abscissa values for the
cumulative are input in ascending order.) The option
"factor" is a number which sets all of the scalar
attribg;es at the factor level of their ranges, e.g.
if factor is set equal to .1, all the scalar attributes

are set at one-tenth of the way from the first range

value to the second range value.

-27-

DROPALT altname - Removes the alternative "altname"

from the status.

EVAL uname [A,B,...] ~Evaluates the alternatives A,B,...,

using the utility function associated with "uname."
If no alternatives are specified, all alternatives in

the status are evaluated and the results listed.

UNISET uname (LIN,CR,PL) - Sets the scalar attribute

utility function associated with "uname" to linear,
constant risk averse, or piecewise linear form. For

the piecewise linear form, the abscissa values are in-

put in ascending order.

KSET mname [factor,ADD,OVERIDE] - Sets the scaling factors

for the MUF associated with "mname.”" The number "factor"
causes the current scaling factors to be multiplied by
that number. The program automatically calculates the

k associated with the new scaling factors. If ADD is
specified, the current factors are normalized to add to
1. The user may input k directly in response to the

final prompt by the computer if OVERIDE has been specified.

GRAD uname [A,B,...] - Calculates the gradient components

of the utility function associated with "uname" for

all or some of the alternatives A,B,....

e

INDIF]l unamel uname2 =~ In the unamel-uname2 attribute
plane, given relative ki's, (i.e., scaling factors

with the appropriate ratio relationship to each other

but not necessarily the appropriate absolute value)

the k is specified by a single pair of indifference
conéequences. INDifl requests a pair of indifference
consequence§ and uses the curfent ki's as the given
relative-ki's. On output, the k is given along with
the factor by which the current ki's must be multiplied

to yield the k (see KSET command with "factor" option).

INbIFZ unamel uname2 - In the unamel~uname2 attribute
plane, with scaling factors denoted.by k1 and k2,
inputting two pairs of two indifference consequences
each specifies the ratio k1/k2 and k = constant/kl.
After INDIF2, the KSET command may be used to fix kl’
and then k, and k in terms of kl' The command IMAP can
then be used to generate indifference curves in the

unamel uname2 plane. (For these indifference curves,

the values of ki’ i # 1,2, are irrelevant.)

UNICAL uname [n] - Prints a list of utilities using the
UNIF associated with "uname." Once the number n is
specified, :the user supplies 'n attribute amounts and

the program returns the niassociated utilities.

=29~

INVERSE uname [n] - Prints a list of attribute amounts

"uname.” Once

associated with utilities using the UNIF
the number n is specified, the user supplies n utility
amounts of "uname" and the program returns the n

associated attribute levels. If n is not specified, the

program has a default printout.

CHANGEALT uname altname - Routine to change the "uname"

attribute component of the alternative "altname' without

changing the other components.

CHANGE uname (NAME,K,RANGE) param - Routine to change

the name or scaling factor or range of the attribute
"uname" to param. When the range is changed, param is
not required. The program requests respecification of

the UNIF type when the range is changed. When the name

is changed, param must not be left blank.

ALTLIST - Lists the current alternatives.
The probabilistic alternatives are listed with their CE

equivalent components.

DISPLAY uname - Displays the characteristics of the

utility function associated with "

uname." The scaling
factors for the attribute arguments and their sum is

listed for a MUF while the range and type is listed for

a UNIF.

30

FRACTILE uname altname - Displays the cumulatiye distri-

bution for "uname" in the alternative "altname.’

LOTTERY uname n | - Calculates the CE for a lottery

' The number n

involving the scalar attribute "uname.'
specifies the number of possible lottery consequences.

These are solicited with their corresponding probabi-

lities and the CE is calculated.

IMAP unamel uname2 - Initiates a dialogue to generate
an indifference "curve" in the unamel-uﬁameZ plane.
A point through which the curve will pass is solicited.
Then values of unamel are input and the uname2 values

required to maintain indifference are output.

STOP ' - Thanks the user for using MUFCAP

and exits from the program.

ADDU unamel uname2 - Initiates a dialogue which adds
an attribute "unamel" to the argument list of the MUF

associated with "uname2.,"

DELU uname ~ Deletes the attribute uname

from the structure.

SWITCH uname uname2 - Adds current attribute "uname"
to the argument list. of the MUF associated with "uname2"
and deletes wuname as an argument of the MUF to which

it originally belonged.

[1]

(2]

[3]

[4]

(5]

[6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

31

References

Fishburn, P.C. '"Independence in Utility Theory with Whole Product
Sets." Operations Research, 13 (1965), 28-45.

Fishburn, P.C. Utility Theory for Decision Making. New York,
Wiley, 1970.

Keeney, R.L. "A Decision Analysis with Multiple Objectives:
The Mexico City Airport." Bell Journal of Economics and
Management Science, 4 (1973), 101-117.

Keeney, R.L. "Multiplicativé Utility Functions." Operations
Research, 22 (1974), 22-34.

Keeney, R:L. '"Utility Functions for Multiattributed Consequences."
Management Science, 18 (1972), 276-87.

Meyer, R.F. "On the Relationship Among the Utility of Assets,
the Utility of Consumption, and Investment Strategy in an
Uncertain, but Time Invariant World." Proceedings of the
Fourth IFORS Conference, Venice, Italy, 1969.

Meyer, R.F. and Pratt, J.W. '"The Consistent Assessment and Fairing

of Preference Functions.'" IEEE Transactions on Systems Sc¢ience

and Cyberneties, SSC-4 (1968), 270-278.

Pollak, R.A. "Additive von Neumann-Morgenstern Utility Functions."
Econometrica, 35 (1967), 485-595.

Pratt, J.W. '"Risk Aversion in the Small and in the Large,"
Econometrica, 32 (1964), 122-136.

Raiffa, H. Decision Analysis. Reading, Massachusetts, Addison-
Wesley, 1968.

Raiffa, H. '"Preferences for Multi-Attributed Alternatives.”
RM-5868~DOT/RC, RAND Corporation, April 1969.

Schlaifer, R.0. Analysis of Decisions Under Uncertainty. New York,
McGraw-Hill, 1969.

Schlaifer, R.0. Computer Programs for Elementary Decision Analysis.
Division of Research, Boston, Massachusetts, Harvard Business
School, 1971.

Sicherman, A. "An Interactive Computer Program for Quantifying and
Analyzing Preferences concerning Multiple Objectives.” M.S.
Thesis, MIT, 1975.

von Neumann, J. and Morgenstern, 0. Theory of Games and Economic

Behavior. Second edition. Princeton, New Jersey, Princeton
University Press, 1947,

