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A Few Methodological Remarks 

on Optimization Random Cost Functions 

Yuri A. Rozanov 

Let f(a,x) be a functional of a variable XEX, where a 

is some "unobservable" random parameter with a probability 

distribution P. Suppose we have to choose some point XOEX, 

and we like to optimize this procedure in some sense of 

minimization of f(a,x), XEX, with unknown parameter a. 

For example, f (a,x) may be a cost function of some eco- 

nomic model concerning future time, say 

where X is a given convex set in n-dimensional vector space 

formed with inequalities 

(including x > 0; j = 1,. . . ,n) , and a = (a1 , ... ,a ) is a 
j - n 

vector of "cost coefficients," which are expected to take 

values with some probability distribution P(* 16) under con- 

ditions of some given data 6. 

Sometimes one uses a criterion based on minimization of 

mean value Ef (a,x), XEX, and considers x0 as the optimal 



po in t  i f  

Th is  c r i t e r i o n  looks q u i t e  reasonable i f  one i s  going t o  d e a l  

wi th  a b ig  number N of s im i l a r  models, and t h e  t o t a l  c o s t  

f unc t i on  can be approximately descr ibed (according t o  c e n t r a l  

l i m i t  theorem) a s  

where Q i s  a random (normal) v a r i a b l e  with mean zero  and 

2 var iance a (x) = Df ( a , x ) .  But i f  you have t o  pu t  i n  a b ig  

investment only  once, then mean value c r i t e r i o n  may not  work 

we l l ;  moreover, t h e  minimum po in t  x0 of mean value func t ion  

E f ( a , x ) ,  xsX, can be t h e  maximum po in t  of t h e  c o s t  func t ion  

f ( a , x ) ,  xeX, with a g r e a t  p robab i l i t y .  

I n  o rder  t o  make t h i s  obvious remark c l e a r e r ,  l e t  u s  

mention a model of a non-symmetric co in game with two outcomes: 

a = a  l ,a2 ,  which takes  p lace  with corresponding p r o b a b i l i t e s  

p1,p2 = 1 - pl, and c o s t  func t ion  i s  f ( a , x )  with x = x1,x2. 

One has t o  pay f i j  = f ( u i , x  ) under t h e  outcome ai  i f  he 
j 

chooses i n  advance t h e  s t r a t e g y  x .  ( i , j  = 1 , 2 ) .  Suppose 
I 

f i j  = C ( i f j ) ,  where C i s  t h e  a l l  gambler c a p i t a l  ( so  he w i l l  

l o s e  t h i s  c a p i t a l  C under t h e  s t r a t e g y  x .  i f  it be t h e  out-  
I 

come a., i j j ) ,  and f i i  = -MiC (he w i l l  i nc rease t h e  i n i t i a l  
1 

c a p i t a l  C i n  Mi t i m e s ) .  The mean va lue  func t ion  i s  



Suppose the outcome al takes place with a great probability 

p1 (say p1 = 0.999) and M2 is so big that 

Using mean value criterion, we obtain x0 = x2 as the optimal 

point, but obviously this is a very foolish strategy, except 

in the case when one should very much like to lose his capi- 

tal (because it will be with the great probability 0.999). 

Another similar example: suppose the cost function is 

(say pl = 0.999, p2 = 0.001) where 0 5 x 5 1 and the cost co- 

efficients all,a21 are such that all > 0; a 11% + a21p2 < O. 

Using mean value criterion, we have to choose x0 = 1, 

though with the great probability pl (pl = 0.999) it will be 

the maximum point (see Fig. 1) of the actual cost function 

f(a,x), 0 5 x < 1. 

Concerning the mean value type criterion, we wish to 

say some other things. It is very easy to realize that one 

may prefer a random variable n1 = f(a,x ) in comparison to 1 

f (a,x) = 
a10 + allx with probability p1 

( "20 + "21X with probability p2 = 1 - pl 
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another random variable n2 = f Carx2) if for some cructal 

point y 

Of course, there may be a few, in some sense, crucial points 

y = Y~ , . . . ~Y~ .  Suppose it is possible to estimate "an 

importance" of these points with the corresponding values 

u(y), y = yl,...,yn in such a way that one prefers ql (as 

compared to n2) if 

The preference relation can be rewritten in the form 

where 

Because for any distribution function F (y) (F ( -w)  = 0, F (m) = 1) 

we have 

I ~ F ( Y )  dU (Y) = -  U(Y) dF(y) +U(-) 

the preference criterion can be represented in the form 

EU(S1) < EU(S2) , ( 4 )  

where E(*) is the corresponding mean value. 



One can c o n s i d e r  ( 4 )  f o r  a r b i t r a r y  d i s t r i b u t i o n  t y p e  

f u n c t i o n  U ( y ) ,  < y  < a s  t h e  g e n e r a l  mean v a l u e  c r i t e r i o n .  

Obviously,  i f  t h e  cor responding d e n s i t y  u ( y ) ,  -- < y  < - is 

p o s i t i v e ,  then  U ( y ) ,  < y  < - i s  a  monotone i n c r e a s i n g  

f u n c t i o n .  Bes ides ,  i f  f o r  any yl 5 y2 on some i n t e r v a l  we 

c o n s i d e r  y  a s  "more impor tan t "  i n  comparison w i th  y2,  more 

p r e c i s e l y  i f  

i . e .  t h e  d e n s i t y  u ( y ) ,  XEI is  a  monotone d e c r e a s i n g  f u n c t i o n  

on t h e  i n t e r v a l  I ,  t hen  t h e  p r e f e r e n c e  f u n c t i o n  U ( y )  , ~ E I ,  

is  convex (see  F ig .  2 )  . 
We a r e  go ing t o  sugges t  below a  few o t h e r  t y p e s  of  

c r i t e r i a  of  o p t i m i z a t i o n  f o r  random c o s t  f u n c t i o n s .  

1. L e t  f  ( a , x ) ,  X E X  be a  c o s t  f u n c t i o n  which depends 

on a  random parameter a .  Suppose f o r  some a c c e p t a b l e  c o s t  

v a l u e  C we can n e g l e c t  a  p r o b a b i l i t y  t h a t  t h e  a c t u a l  c o s t  

w i l l  exceed C .  Suppose t h a t  minimal (random) c o s t  

C (a) = min f  ( a , x )  

xeX 

has  a  p r o b a b i l i t y  d i s t r i b u t i o n  w i th  a  r a t h e r  s m a l l  range and 

co r respond ing  minimum p o i n t  S E X :  

f  (a , [ )  = min f  ( a , x )  
XE X 

h a s  a  d i s c r e t e  d i s t r i b u t i o n  (maybe w i t h  a  v e r y  b i g  d i s p e r s i o n ) .  
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I t  seems q u i t e  reasonab le  t o  t a k e  a  r i s k  t o  choose such 

p o i n t  XOEX f o r  which 

P I£  (a,x") = ~ ( a )  1 = max p ( f ( a , x )  = C ( a )  1 . ( 5 )  
XEX 

Note t h a t  i f  t h e  p r o b a b i l i t y  i n  t h e  r e l a t i o n  ( 5 )  e q u a l s  t o  

1, i n  o t h e r  words, t h e r e  is a  p o i n t  XOEX f o r  which 

f (a ,xo)  = min f  ( a , x )  w i t h  p r o b a b i l i t y  1 , 
X E X  

t h e n  o u r  c r i t e r i p n  g i v e s  t h e  u s u a l  minimum of c o s t  f u n c t i o n .  

Le t  u s  c o n s i d e r  t h e  l i n e a r  c o s t  f u n c t i o n  

of  x = ( x l 1 . . . , x n ) ~ X ,  where a  = ( a l , . . . , a n )  i s  t h e  random 

v e c t o r  w i t h  a  g i ven  p r o b a b i l i t y  d i s t r i b u t i o n  P, and X i s  a 

s implex i n  n-dimensional  v e c t o r  space of t h e  t y p e  ( 2 ) :  

Denote x l , . .  . ,xN extreme p o i n t s  of  sLmplex X. As we l l  

known, a  minimum p o i n t  S E X  (5 depends on a )  can be  chosen 

1 N 1 among x  , . . . , x  , s o  x0 = x  , . . . ,xN is t h e  op t ima l  p o i n t  i n  

t h e  s e n s e  of  t h e  c r i t e r i o n  ( 5 )  i f  

k  P I C  = xO1 = max PIS  = x  1 . 
l<k'N 



Thus, the problem is to find all probabilities* 

and to choose the optimal x0 as the point among xk; k = 1,. . . ,N, 
with the greatest probability Pk; k = 1,. ..,N. 

k We have Pk = P(Y ) where yk is the set of all vectors 

y = (y lI...,yn) for which the corresponding linear function 

has xk as the minimum point: 

k f(y,x ) = min f(y,x) . 
XEX 

In order to make our elementary consideration more clear, let 

us shift xk to the origin point x = 0. Obviously, the extreme 

point xk = 0 gives a minimum of f (y,x), XEX, iff 

n 
1 yjxj 2 0 for all xsX , 
1 

(in other words, iff the vector y = (yl,...,yn) belongs to so- 

called polar cone) . 
Let us take all hyperplains 

k * Note the events {C = x 1; k = l,...,N generally are not 
N 

disjoined and 1 pk not necessary equals to 1. 
1 



k --see (2)--containing the extreme point x . (In the case 

xk = 0 we have bi = 0, kIk.) Let us introduce a cone 

The corresponding polar cone is exactly the set yk of all 
n 0 

vectors y = (yl,.. . ,yn) such that 1 y .x 2 0, xexk (see Fig. 3 ) .  
1 1  

This polar cone yk is formed by all linear combinations 
0 

of the vectors ai = (a il,...,a ) ,  ieIk because a dual in 

polar cone for the set of all vectors (8) coincides with xk: 

obviously, 

k for all h i  2 0, iff xex . (See, for example, duality theorem 

in [l] . ) Thus, is the set of all vectors 

where ai = (ail,...,ain) are all vectors such that for x = x 
k 

at the relations (2) we have strict equalities, and the 

k optimal point can be found among x , k = 1, ..., N as a point 

with maximum probability 



- 
( I ,  = 1 , 2  
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2. Suppose, as above, there is the acceptable cost, 

which can be exceeded only with a corresponding small 

probability, but the situation is different in the sense that 

the range of the minimum cost distribution is considerably 

big. (For example, the minimum point 6 = x1,x2 can be distri- 

buted with almost equal probabilities P1 > P2, but correspond- 

1 2 ing cost values are such that f (a,x ) > >  f (a,x ) , so there is 

no reason to choose the point x1 with the greatest probability 

P1 as optimum.) 

Suppose that one is going to risk in order to make the 

cost value less than some level Co. (Probability P {C(a) 5 Co} 

has to be considerably big.) Then one can choose optimal 

point XOEX in the sense that 

0 P Cf (u,xn) 5 Co 1 = max P If (a,x) 5 Co} . (11) 
xcx 

This criterion is of mean value type ( 4 )  concerning a new cost 

function EU(f (a,x)), XEX where 

namely, 

~u(f(u,xO)) = min EU(f(u,X)) . 
XEX 

(Note it is impossilbe to restrict "y" in order to deal with 

the convex function U(y), ~ € 1 . )  



c 0 
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3. Suppose, now, t he re  is a good d e a l  ~f r i s k  t o  pay a 

b ig amount i f  we use "extreme s t r a t e g y n  x0 of types (5 )  o r  

( l l ) ,  because with considerably  b ig  p robab i l i t y ,  c o s t  va lue 

f  (a ,  xo) may be too much. Suppose one should l i k e  t o  prevent 

a danger of dea l ing  wi th  t h e  "almost worst"  outcome a ,  and 

t h e  problem is t o  f i nd  opt imal s t r a t e g y  aga ins t  "very c leve r  

random enemy." I n  t h i s  s i t u a t i o n ,  t h e  fol lowing c r i t e r i o n  
I 

seems q u i t e  reasonable ( s im i l a r  t o  t h e  minimax p r i nc ipa l  of 

game theory ) .  

Namely, suppose one agrees  (roughly speaking) t o  r i s k  

only  wi th  a smal l  p robab i l i t y  E > 0. Let C(x) be t h e  "E-quant i ln  

f o r  t h e  random v a r i a b l e  f ( a , x ) :  

C(x) = min C I  P{ f (a ,x )  5 C }  5 1- E . 



One can  choose t h e  p o i n t  X O E X ,  which is op t ima l  i n  t h e  s e n s e  

t h a t  

0 C(x ) = min C ( x )  . 
X E  X 

I n  t h e  c a s e  of E = 0 ,  ou r  c r i t e r i o n  of  o p t i m a l i t y  c o i n c i d e s  

w i t h  w e l l  known minimax p r i n c i p a l  of t h e  game t h e o r y ,  which 

was mentioned above, because i f  E = 0 ,  t h e n  

C ( x )  = sup f  (a ,x ) '  . 
a  

(We mean so -ca l l ed  e s s e n t i a l  sup  f  ( a  , x )  concern ing t h e  proba- 

b i l i t y  d i s t r i b u t i o n  P of t h e  random v a r i a b l e  a . )  

For t h e  l i n e a r  c o s t  f u n c t i o n  (1) wi th  t h e  c o e f f i c i e n t s  

a  = ( a l ,  ..., a  ) which a r e  weakly dependent ,  one can expec t  n  n  
t h e  random v a r i a b l e  f ( a , x )  = I a  x  is normal ly  d i s t r i b u t e d  , j j  

(due t o  t h e  c e n t r a l  l i m i t  theorem) w i t h  a  mean v a l u e  

and v a r i a n c e  

(c i  = Eai; a .  . = E ( a .  -c . )  ( a  -c j )  ; i ,  j  = 1,. . . , n )  . 
13 1 3 1  

I f  it h o l d s  t r u e ,  t h e n  



where yE denotes E-quantil f or  the standard normal d i s t r ibut ion:  

This function 

(where af means the  square .root  of  the  p o s i t i v e  matrix 

{a. . 1 )  for  yE > 0 is  concave because 
1 3  

and the minimum point x0 can be found with we l l  known concave 

programming methods. (See,  for  example, [l] . ) 
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