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A Few Methodological Remarks
on Optimization Random Cost Functions

Yuri A. Rozanov

Let f£(a,x) be a functional of a variable xeX, where a
is some "unobservable" random parameter with a probability
distribution P. Suppose we have to choose some point xoex,
and we like to optimize this procedure in some sense of

minimization of f(a,x), xeX, with unknown parameter a.

For example, f(a,x) may be a cost function of some eco-

nomic model concerning future time, say

n

fla,x) = { ayxy X = (Xy4...0%)eX

' (1)

where X is a given convex set in n-dimensional vector space

formed with inequalities

n
J aix. > b, , i=1,...,m (2)

(including xj >0; j=1,...,n), and o = (al,;..,an) is a

vector of "cost coefficients," which are expected to take

values with some probability distribution P(+|§) under con-

ditions of some given data §.

Sometimes one uses a criterion based on minimization of

mean value Ef(a,x), xeX, and considers x° as the optimal
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point if

Ef (¢,x°) = min Ef (a,x) . (3)
xex

This criterion looks quite reasonable if one is going to deal

with a big number N of similar models, and the total cost

function can be approximately described (according to central
limit theorem) as

N

I fla,x) = [Ef(a,x)]N + OVF ,

k=1
where @ is a random (normal) variable with mean zero and
variance cz(x) = Df (a,x). But if you have to put in a big
investment only once, then mean value criterion may not work
well; moreover, the minimum point xo of mean value function
Ef (a,x), x€X, can be the maximum point of the cost function
f(a,x), xeX, with a great probability.

In order to make this obvious remark clearer, let us
mention a model of a non-symmetric coin game with two outcomes:
o= 00y which takes place with corresponding probabilites
Py +Py = 1 - Py and cost function is f (a,x) with x = XyrXye
One has to pay fij = f(ai,xj) under the outcome ay if he
chooses in advance the strategy xj (i,3 = 1,2). Suppose
fij = C (i#3), where C is the all gambler capital (so he will
lose this capital C under the strategy xj if it be the out-
come aj, i#j), and fii = -MC (he will increase the initial

capital C in Mi times). The mean value function is



C(—Mlpl + py) 1f x = x

Ef (o,x) =
C(pl—szz) if x = X,

Suppose the outcome o, takes place with a great probability

1
Py (say p; = 0.999) and M2 is so big that

P1~Myp, < “Mipy * Py

Using mean value criterion, we obtain x° = x, as the optimal
point, but obviously this is a very foolish strategy, except
in the case when one should very much like to lose his capi-
tal (because 1t will be with the great probability 0.999).

Another similar example: suppose the cost function is
x with probability Py

%0 + ay1X with probability p, = 1l - Py

(say p; = 0.999, P, = 0.001) where 0 < x < 1 and the cost co-

efficients a are such that a > 0; a + < O.

11'%21 11 11F1 21P2
Using mean value criterion, we have to choose x° = 1,
though with the great probability Py (pl = 0.999) it will be
the maximum point (see Fig. 1) of the actual cost function
fla,x), 0 < x < 1.
Concerning the mean value type criterion, we wish to
say some other things. It is very easy to realize that one

may prefer a random variable n, = f(a,xl) in comparison to
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another random variable n, f(a,xz) if for some cructal

point y

Fily) = Plny sy} 2 {n, sy} =Fyly)

Of course, there may be a few, in some sense, crucial points
Y = Yyree-s¥g- Suppose it is possible to estimate "an
importance"” of these points with the corresponding values

uly), vy = yl,...,yn in such a way that one prefers nl (as

compared to nz) if

I Filyy) uly,) 2 1 Fyly) uly,) .
k "k

The preference relation can be rewritten in the form

J F,(y) 4U (y) 2 I F,(y) au (y)

where

Uly) = § uly,) - <y <®
Yy <Y

Because for any distribution function F(y) (F(-») = 0, F(«x) = 1)

we have
J Fly) dU (y) = - J U(y) dF(y) + U(=) ,
the preference criterion can be represented in the form
EU (§) < EU(E,) (4)

where E(*) is the corresponding mean value.




One can consider (4) for arbitrary distribution type

function U(y), - < y < «» as the general mean value criterion.

Obviously, if the corresponding density u(y), - < y < o is
positive, then U(y), - < y < » is a monotone increasing

function. Besides, if for any Yy < Y, on some interval we
consider y, as "more important" in comparison with ¥y, more

precisely if
u(yl) 2 U(Yz) ’ Yl ﬁ YZ v

i.e. the density u(y), xeI is a monotone decreasing function
on the interval I, then the preference function U(y), yeI,
is convex (see Fig. 2).

We are going to suggest below a few other types of
criteria of optimization for random cost functions.

1. Let f(a,x), xeX be a cost function which depends
on a random parameter a. Suppose for some acceptable cost
value C we can neglect a probability that the actual cost

will exceed C. Suppose that minimal (random) cost

C(a) = min f(a,x)

xeX

has a probability distribution with a rather small range and

corresponding minimum point £eX:

f(a,£) = min f (a,x)
xeX

has a discrete distribution (maybe with a very big dispersion).
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It seems quite reasonable to take a risk to choose such
point x%eX for which

P{f(a,x°) = C(a)} = max P{f(a,x) = C(a)} . (5)
xeX

Note that if the probability in the relation (5) equals to

1, in other words, there is a point xPeX for which

f(a,x°) = min f (a,x) with probability 1
XxeX

1

then our criterion gives the usual minimum of cost function.

Let us consider the linear cost function

n
fa,x a.X
(a,x) § 5%
of x = (xl,...,xn)sX, where a = (al,...,an) is the random

vector with a given probability distribution P, and X is a

simplex in n-dimensional vector space of the type (2):

n
% aijxj > bi H i=1,...,m
Denote xl,...,xN extreme points of simplex X. As well

known, a minimum point £c¢X (£ depends on a) can be chosen

among xl,...,xN, so x° = xl,...,xN is the optimal point in

the sense of the criterion (5) if

pP{g = xo} = max P{§ = xk}

. (6)
1<k<N




Thus, the problem is to f£ind all probabilities*

Pk=P{E=x} ; k=1,...,N

and to choose the optimal x° as the point among xk; k=1,...,N,

with the greatest probability Pk; k=1,...,N.

]

We have P P(Yk) where Yk is the set of all vectors

k
y = (yl,...,yn) for which the corresponding linear function

n

fly,x) = J y.x. , xeX
£ ¥5%3

has xk as the minimum point:

£(y,x%) = min £(y,x) .
xeX

In order to make our elementary consideration more clear, let
k

us shift x~ to the origin point x = 0. Obviously, the extreme
point xk = 0 gives a minimum of £(y,x), xeX, iff

n

I y.x, > 0 for all xex ,

133_
(in other words, iff the vector y = (yl,...,yn) belongs to so-

called polar cone).
Let us take all hyperplains

1
o
-
[
™
-

n
augny =m0, g

* Note the events {f{ = xk}
N

disjoined and § P, not necessary equals to 1.
1

; k=1,...,N generally are not
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--see (2)--containing the extréme point xk. (In the case

xk = O we have bi = 0, 1sIk.) Let us introduce a cone

X n
Xt =N {x: a;.x, > 0}
isIk 1 1]

The corresponding polar cone is exactly the set Yg of all
n

vectors y = (yl,...,yn) such that Z ijj > 0, xeXk (see Fig. 3).
1

This polar cone Yg is formed by all linear combinations

y = igI Ajay s Ay 20 (8)
k
of the vectors a; = (ail,...,ain), ieIk because a dual
polar cone for the set of all vectors (8) coincides with Xk:
obviously,
T oy.x. = A, LLXL) >
L ysx; igI (0 2425 20
Tk
for all Ai > 0, iff xexk. (See, for example, duality theorem
in [l]_) Thus, Yk = xk + Yk is the set of all vectors
y=x+ J ia A, >0 (9)
. iti ! i- !
ieT
k
_ .k
where a; = (ail""’ain) are all vectors such that for x = x

at the relations (2) we have strict equalities, and the

optimal point can be found among xk, k=1,...,N as a point

with maximum probability
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FIGURE 3
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P (Y,) =P {aeyk} ; k=1,...,N . (10)

2. Suppose, as above, there is the acceptable cost,
which can be exceeded only with a corresponding small
probability, but the situation is different in the sense that
the range of the minimum cost distribution is considerably

1

big. (For example, the minimum point § = x ,x2 can be distri-

buted with almost equal probabilities P, > Py but correspond-

1
ing cost values are such that f(a,xl) >> f(a,xz), so there is
no reason to choose the point xl with the greatest probability

P, as optimum.)

1
Suppose that one is going to risk in order to make the
cost value less than some level C, . (Probability P {C(a) < CO}
has to be considerably big.) Then one can choose optimal

point x%eX in the sense that

P {f(a,x)) < C )= max P {f(a,x) < C_} . (11)
xeX

This criterion is of mean value type (4) concerning a new cost

function EU(f (a,x)), xeX where
1 if y < CO
Uly) = )
o] if y > CO B
namely,
EU(f (0,x°)) = min EU(f(a,X)) . (12)
xeX

(Note it is impossilbe to restrict "y" in order to deal with

the convex function U(y), yeI.)
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3. Suppose, now, there is a good deal @f risk to pay a

big amount if we use "extreme strategy"” x°

of types (5) or
(11) , because with considerably big probability, cost value
f(a,x°) may be too much. Suppose one should like to prevent
a danger of dealing with the "almost worst" outcome ¢, and
the problem is to find optimal strategy against "very clever

random enemy ." In this situation, the following criterion

seems gquite reasonable (similar to the minimax principal of

game theory).
Namely, suppose one agrees (roughly speaking) to risk
only with a small probability e > 0. Let C{x) be the "e~quantil"”

for the random variable f(a,x):

C(x) = min ¢| P{f(a,x) < C} < 1-¢ . (13)




-14-

One can choose the point xoeX, which is optimal in the sense

that

) = min C(x) . (14)
xeX

C(x

In the case of e = 0, our criterion of optimality coincides

with well known minimax principal of the game theory, which

was mentioned above, because if € = 0O, then

C(x) = sup f (a,x)
a
(We mean so-called essential sup f(a,x) concerning the proba-
bility distribution P of the random variable a.)

For the linear cost function (1) with the coefficients

o = (al,...,an) which are weaﬁly dependent, one can expect
the random variable f (a,x) = % ajxj is normally distributed
(due to the central limit theorem) with a mean value
n
(c,x) = % 4%y

and variance

(c. = Eai; g.. = E(a, ~cj)(aj —cj); i,y =1,...,n).

If it holds true, then



=15~

where y denotes t-quantil for the standard normal distribution:

L= 2/
/2T J Y 72 dy = & .
Ye
This function
= %
C(x) = (c,x) +y, | o x|| ., xex

(where o!5 means the square root of the positive matrix

{oij}) for y. > O is concave because

%Xl+

X
2 1
(- 7(” of x|l + |l o xzn)

Il o

o

and the minimum point x~ can be found with well known concave

programming methods. (See, for example, [l].)
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