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OPTIMIZATION SOFTWARE FOR
NONSMOOTH & STOCHASTIC
PROBLEMS: A MISCELLANY

The recently published Optimization Software Guide
(SIAM, 1993) of Jorge Moré and Stephen Wright sur-
veys 75 major packages and libraries in areas where the
greatest progress, to date, has been made in developing
optimization software: unconstrained optimization; non-
linear least-squares; nonlinear equations; LP; QP; bound-
constrained; constrained optimization; network optimiza-
tion; integer programming. The topics of nonsmooth op-
timization and optimization under uncertainty (stochas-
tic programming) are relegated to the short concluding
chapter on Miscellaneous Problems, because software in
these areas is only just beginning to reach the same level.

Here are a few quotations (‘verbal’; “printed”) that
characterize the latter two subjects:

‘I regard optimization under uncertainty as the
most fundamental problem of decision science’ -
G.B. Dantzig.

‘It is only a slight exaggeration to say that 90
percent of applications in nonsmooth optimiza-
tion arise via decomposition in one form or an-
other, and the remaining 10 percent via eigen-
value computations’ - C. Lemaréchal

“In fact, the great watershed in optimization
isn’t between linearity and nonlinearity, but con-
vexity and nonconvexity”- R.T. Rockafellar

“In principle, the decentralization of decisions
with observance of the total objective value of
the problem is possible by means of the cor-
rect construction of objectives in submodels.
We point out here the brilliant mathematical
formalism of the idea of decomposition by G.
Dantzig and P. Wolfe. The value of their pa-
per of 1960 is far a greater than the limits of
the algorithm they proposed and its mathemat-
ical foundation. It gave rise to discussions and
alternative treaiments all over the world. - L.
Kantorovich. (italics ours)

In particular, these quotations point to the central role
played by convex analysis and the decomposition prin-
ciple. (Note that it is important to distinguish between
the broad and far-reaching D-W decomposition principle

on the one hand, and the particular D-W algorithm with
its well-known computational drawbacks on the other, as
highlighted in the last quotation). An increased reliance
on decomposition also goes hand-in-hand with increased
opportunities for exploiting parallelism.

The task of developing software is made especially chal-
lenging by the above considerations, the variety of theo-
retical models from which to choose, and the fact that
the two subjects are still very much on the research fron-
tier. Practical nonsmooth and stochastic problems lend
themselves more readily to the development of specially-
tailored models and solution techniques in a high-level,
user-extensible language, for example, Matlab (with ap-
propriate toolboxes). Moreover, the current shortage of
robust, general-purpose nonsmooth &/or stochastic op-
timization software makes practitioners understandably
reluctant to formulate practical models of this type. The
lack of availability of practical models, in turn, results in
there being less incentive to engineer user-oriented, robust
software — a classic Catch-22 situation!

Despite the difficulties, there has been consider-
able progress. Advanced implementations in the area
of nonsmooth optimization include: BTC and BTNC
(H. Schramm and J. Zowe, U. Bayreuth, Germany;
C=convex, NC=nonconvex); M1FC1 (C. Lemaréchal; IN-
RIA, France); NOA 3.0 (K. Kiwiel, Systems Research
Institute, Warsaw). All three packages are based on
the bundle concept. Advanced implementations that are
available or under development for optimization under
uncertainty include: SP/OSL (A. King, IBM, Yorktown
Heights; multistage with scenarios); SQG (A. Gaivoron-
ski, ITALTEL, Milan; general expectation problems with
linear /nonlinear constraints); MSLiP (H. Gassmann, Dal-
housie U., Canada; multistage recourse problems); DE-
CIS (G. Infanger, SOL, Stanford U.; two-stage recourse);
SLP-IOR (P. Kall/J. Mayer; U. Zurich; two-stage re-
course and chance constraints).

Thus, when a future edition of the Optimization Soft-
ware Guide is begun (as anticipated by its authors), it
is likely that the fields of nonsmooth and stochastic opti-
mization will have advanced to a point warranting a much
broader inclusion.
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CHAIRMAN’S COLUMN
by A.R. Conn

Our SIAM activity group is intended to be of interest
to a broad range of optimizers. Most of my remarks below
are made particularly with continuous nonlinear program-
mers in mind, but I would be surprised if the comments
applied only to us. Thus, I apologize for the narrowness
(but in the same breath, withdraw the apology). Most
of us, I assume, agree that the world is not linear and so
one might assume that nonlinear programmers have had
a great deal of success in “selling their (soft)wares in the
marketplace”. My impression is that in fact, especially
if one is knowledgeable about the current state of the
art of nonlinear programming, we have been remarkably
unsuccessful at convincing practitioners to use nonlinear
models and sophisticated software. Thus the point of this
column is to ask why we have failed so miserably in this
regard and what we should do about it. As you can see,
I do not raise the possibility that I am mistaken in my
conviction that we are failing in this respect. If someone
could convince me otherwise I would be delighted, but
meanwhile I will comment on the situation as it presently
appears to me.

Firstly, I think that the major problem is that nonlin-
ear optimization requires sophisticated users. I do not
wish to imply that linear programming cannot benefit
from an intelligent and knowledgeable user, but even a
naive user is likely to be able to solve difficult linear pro-
gramming problems using provided software as a “black
box”. In order to expect to do the same for nonlinear
problems, the user has to be not only naive but myopic
or perhaps even blind. For instance, suppose one has a
rather complicated nonlinear optimization problem that
comes from a genuine problem in manufacturing. A not
unusual scenario is that the problem is deemed sufficiently
conmplicated that the function values are determined via
some simulation package. Thus one can be almost cer-
tain that no derivatives are provided. If the application
is endeavouring to make use of what has filtered down as
the latest optimization technology, it is likely to use some-
thing like sequential quadratic programming, provided by
the writers of the simulation package, for example. First
derivatives will be provided by finite differencing. If the
package is an average one and the problem is significantly
nonlinear and involves more than a dozen variables, what
do you think are the chances of this black box approach
being successful? Very small, in my estimation. Thus the
most likely result is frustration on the part of the user
and a feeling that nonlinear optimization is useless. Ideal
encouragement for them to return to their linear mod-
els, with which they had great success, since the linear
programming codes almost always worked for them.

I mentioned myopic and/or blind above, because there
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is another situation. Look at almost any issue of, for
example, OR/MS Today, and you will find what I call
the ‘blind optimist/opportunist’ advertisement.

Buy SLOPTimize — for less than $1000 we can provide
you with software that does automatic scaling in a unique
and rigorous way, thus enabling it to reliably solve YOUR
mized integer linear and nonlinear optimization problems.
No derivatives required or encouraged. Particularly rec-
ommended for problems in less than one thousand vari-
ables. Others make the claims, we have the results!

Such packages not only do not require sophisticated
users, they don’t want them. They provide answers but
not correct ones. In a typical instance they might be us-
ing, for example, the SIMPLEX approach of Nelder and
Mead or an approach that is very much based upon steep-
est descent. My point here is not to blame the providers
of such packages, but rather to indicate that it is the fail-
ure of us to consistently convince practitioners that we
can do better, that enables such packages to survive.

However, it is not easy to know how to best address the
problem. I consider myself to be a sophisticated nonlin-
ear programmer. I have access to a number of the leading
nonlinear optimization packages but nevertheless, it is of-
ten difficult to solve an application problem. It is not
unusual to have the original problem badly posed, badly
scaled and containing errors. The same, of course, can
be true for linear programming, but it is significantly less
likely. T am of the opinion that, for the foreseeable future,
applied nonlinear programming is likely to require, to be
successful, a degree of sophistication that will be unrea-
sonable to expect from even ten percent of the practition-
ers who can benefit enormously from what nonlinear op-
timization has to offer. Thus I feel that it is essential that
we begin collecting and advertising well-documented suc-
cess stories, to promote the idea that one can and should
solve nonlinear models. One problem is the undoubtedly
proprietary aspects of most applications. If a petroleum
company has great success in finding oil-fields because
1t is using sequential quadratic programming techniques,
it is not likely to tell its rivals to stop using PARTAN.
However, we could make a start by having those of us who
work in nonlinear optimization make a real effort to tackle
useful problems and in so doing, attempt to broadcast the
fact that one can successfully solve such problems. Ide-
ally, one should at the same time make it clear, in the
instances in question, why linear models would have been
inadequate. I realise that this approach is hardly revolu-
tionary but meanwhile the (slightly exaggerated) status
quo in the real world is either a belief that black box non-
linear optimization works (and I do not think it does) or
that all optimization has of necessity to be linear.

As always, I welcome your opinion. My email address
is arconn@watson.ibm.com
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INVITED AUTHOR’S PREVIEW:
CONVEX ANALYSIS AND
MINIMIZATION ALGORITHMS

by Claude Lemaréchal !

It is a cliché to say that convex analysis is a rele-
vant subject for optimization. Convexity has always been
known to be useful, for example, for establishing the
equivalence between critical points and local-global min-
ima, for the existence of a minimum point in infinite-
dimensional spaces, and so on.

The more recent emergence of problems and meth-
ods for nonsmooth optimization increased the importance
of convexity. The latter subject was taken beyond the
framework of optimization theory, and began to play a
role in the development and analysis of optimization al-
gorithms. A new field of “convex numerics” was born,
and its domain of application now includes interior-point
methods (see the recent Interior Point Polynomial Al-
gorithms in Conver Programming by Yu. Nesterov and
A.S. Nemirovski, STAM Studies in Applied Mathematics
13, 1993).

However, it is fair to say that convex analysis is not
a subject generally mastered by the optimization com-
munity (and, incidentally, by many other communities).
Indeed, it is not easy to become knowledgeable on the
matter. At least for the “nonlinear” part of us, we have
grown accustomed to manipulating Taylor developments
and similar tools of ordinary calculus. Convex analysis
demands a fresh brain: most manipulations deal with in-
equalities, subspaces are replaced by cones, differentiation
no longer results in linear mappings . . ..

Another plain truth is that there is only one path
to expertise in convex analysis: the “holy” book of
R.T. Rockafellar (Conver Analysis, Princeton University
Press, 1970). Its unmatchable qualities: exhaustivity,
clarity, mathematical elegance ... have made it the
reference for more than twenty years, and it will cer-
tainly remain so for many more decades. Nevertheless,
it is quite difficult to read, because of its encyclopaedic
character. A key is needed to unlock this castle, which
has sometimes been called “probably the only American
Bourbaki-work”. We believe that this explains why con-
vex analysis is still confined to a private club: it cannot
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easily be taught in an applied mathematics context, on
the basis of the holy book.

The reason for this preamble is the following piece of
self-advertisement. Springer-Verlag has just issued in the
Grundlehren (the ” Yellow Series”, founded by R. Courant
in 1921) a book in two volumes entitled Convezr Analy-
sts and Minimization Algorithms, by J.-B. Hiriart-Urruty
and C. Lemaréchal. The aim of this work is twofold:

e To serve as a textbook on convex analysis, in which
pedagogy would be the keyword. Part I, subtitled
Fundamentals, is mostly devoted to this task.

e To give an account of nonsmooth optimization in
book form, which is the main content of Part II:
Advanced Theory and Bundle Methods (sorry if we
limited ourselves to these methods, which are also
the limits of our competence in the field!).

It is for its pedagogical merit that we have chosen such a
bi-disciplinary approach, in which the applications (mini-
mization algorithms) serve to motivate and illustrate the
theory (convex analysis).

Pedagogy also urged us to call on geometric intuition
(there are 177 figures), possibly at some sacrifice of math-
ematical elegance. This book can be qualified as definitely
un-Bourbaki; note, however, that mathematical rigor is
hopefully still present — after all, we are both French!

Again for pedagogical purposes, our development is
very progressive, sometimes even repetitive; it evokes a
spiral rather than a straight line. In addition to being
redundant, we are often digressive: to explain a delicate
point, to give examples, or to link together remote con-
cepts. All this explains the 763 pages making up the two
parts: the same job could probably be done in about half
the amount, but this would kill the raison d’étre for the
book.

To summarize our mentality when writing this book,
let us say that we will be happy if whoever has read it
can then embark on reading Rockafellar.

A few comments on some of our options will illustrate
the above points.

— The first part has 6 chapters on convex analysis, and
2 on numerical algorithms. In Part II these numbers be-
come 2 and 5 respectively. In other words, theory and
applications are interspersed all the way.

— Chapter I studies convex functions of one real variable
rather deeply (for example, it includes the conjugacy op-
eration). Needless to say, most of its material is repeated
in later chapters, but in a more advanced setting.

— Chapter II is an introduction to optimization algo-
rithms, with a large part of it (1/3) devoted to line-
searches. Thus, the bi-disciplinary aspect is readily set-
tled after the first two chapters.



~ A full chapter (Chap. V) is devoted to sublinear
functions, i.e. convex functions that are positively homo-
geneous. They are isomorphic to closed convex sets via
the supporting operation, and this generalizes the iso-
morphism between vectors and linear forms. This fact, a
foundation stone of convex analysis, is not much devel-
oped elsewhere.

— The subdifferential is the most advanced concept ap-
pearing in the first part. Yet, it is limited to the case
of finite-valued functions, so that geometric intuition can
fully play its role. We give a number of equivalent defini-
tions: starting from directional derivatives, from support-
ing slopes, from normal cones to the epigraph; these are
fairly classical but the last definition, starting from lim-
its of gradients, is not. Its merit is to be very intuitive,
especially in the context of numerical algorithms; further-
more it directly suggests the nonconvex generalizations a
la Clarke (Optimization and Nonsmooth Analysis, STAM
Classics in Applied Mathematics 5, 1990).

— Chapter XI studies the approximate subdifferential,
which serves our purposes from three points of view: it
allows at the same time the study of the ordinary subdif-
ferential in the general case, it is of importance for bundle
methods, and it gives some insight into the conjugacy op-
eration.

— All along our development, we insist on calculus rules.
When functions are combined, classical calculus stud-
ies the corresponding combination of their derivatives.
In convex analysis, there are several fruitful correspon-
dences: between sublinear functions and closed convex
sets, via the supporting operation; between pairs of con-
vex functions, via the conjugacy operation; between con-
vex functions and closed convex sets, via the subdiffer-
ential (possibly approximate). In each case, we give a
systematic review of calculus rules, enabling a whole set
of algebraic manipulations. These reviews are sometimes
tedious, but they are also essential if one wants to become
technically skillful in the matter.

— Our approach to duality in constrained optimization
is totally oriented towards dual algorithms (Lagrangian
relaxation). The corresponding chapter (Chap. XII) is
therefore viewed as a numerical one. Furthermore, we
have given to convexity the least possible role in our de-
velopment. This makes things much clearer, and combi-
natorial problems are thus accepted by the theory. In-
deed Lagrangian relaxation lies at the intersection be-
tween nonlinear and combinatorial optimization; through
it, the two fields have a chance to benefit better from each
other.

— Bundle methods cover a total of four chapters, ex-
tending from Chap. IX to XV. This is a lot, especially
as they are limited to the simplest situation of minimiz-
ing a convex function without constraints. Actually, only
Chap. XV is crucial; the other three could have been
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placed after it, as they rather give additional and less im-
portant material. We chose the present order to struggle
against human laziness: external references from inside
Chap. XV are not totally avoided, so that the reader
is forced to get some knowledge of the other chapters,
possibly less important but just as informative.

A final word: it took us seven years to write this book.
We thought our task deserved them, in the hope that
the result could become useful for the purpose of learnin
and teaching. Convex analysis is rich enough to become
part of the academic curriculum: it is a good educational
tool, and has applications in several scientific domains
such as mathematical economics, mechanics, thermody-
namics, approximation theory, statistics and statistical
mechanics..., and may it bring fresh blood to numerical
optimization as well!
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STOCHASTIC PROGRAMMING
by Alan J. King' and Roger J-B Wets?

1. INTRODUCTION

There are few practical optimization problems where
the modeler is not faced with uncertainty about the value
to assign to some of the parameters. The source of the
uncertainty can be the lack of reliable data, measurement
errors, or uncertainty about future, or unobserved, events;
there may even be uncertainty about the structure of the
problem itself.

In some instances no harm will come from ignoring
these uncertainties. One may rely on “best estimates”
and, if needed, follow up with post-optimality parametric
analysis. But there are quite a number of situations when
proceeding in this manner produces “solutions” whose im-
plementation could lead to disaster! For example, design-
ing a master production plan without taking into account
the inherent uncertainty about future markets leaves the
manufacturer exposed to large losses if the evolution of
the market doesn’t nearly match the predictions. A valid
approach would account for a certain distribution of fu-
ture sales, technological developments, commodity prices,
ete.

There are a number of ways of handling uncertainty.
One that has proved useful in a variety of situations is
to assign to the uncertain parameters a probability dis-
tribution (based on statistical evidence or not), design
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“recourse” functions that model the risk if certain goals
or targets are missed, and optimize the expected value of
the recourse. This would cast the optimization model as
a stochastic programming problem.

Stochastic programming is concerned with practical
procedures for decision-making under uncertainty, by
modeling uncertainties and risks associated with decisions
in a form suitable for optimization, and devising approx-
imation and decomposition methods for computing solu-
tions.

The subject matter of stochastic programming is
shared by other fields. Statistical decision theory is con-
cerned with the processing of sequential observations to
make decisions (for example, whether or not to repair a
certain machine). Stochastic dynamic programming, or
stochastic control, is concerned with the computation of
feedback, or control, laws that specify optimal actions
based on the state of the system (for example, at what
level of inventory should one place an order to restock).
The scope of any of these fields can be generalized to cover
every aspect of decision-making under uncertainty. But
practical aspects of mathematical analysis and compu-
tation in this challenging subject lead to tangible differ-
ences between approaches. Articles illustrating the broad
range of mathematical treatments of decision-making un-
der uncertainty can be found in Dempster [3] and Ziemba
& Vickson [11].

Models of uncertainty and risk that include enough de-
tail to be useful in industrial, business, or government
planning will generate problems that are impossible to
solve because of the exponential explosion of states. For
instance, a stochastic process with only four possible re-
alizations in each of ten time periods generates over one
million sample paths! The approach employed by stochas-
bic programming is to focus the attention on the first stage
decision—the “now”-decision that hedges against future
uncertainty. When aspects of the uncertainty in the prob-
lem become known, “recourse decisions” responding to
the new information may be made.

For example, in an investment problem, the uncertainty
in asset prices might be modeled by diffusion processes.
The investor might select a target performance level and
formulate the risk in the problem as the total expected
shortfall of the portfolio value below the target, net of
taxes and transaction costs, over the next ten quarters.
The first-stage decision is the initial allocation of avail-
able funds to assets, and the recourse decisions are the
proportion of the portfolio bought or sold at each turn of
the quarter.

A simplistic approach to the problem of modeling un-
certainty that should be mentioned here is that of “sce-
nario analysis”. This practice is common in business and
industry. One produces a number of simulations, say, of
asset prices over the next ten quarters, then one views

the impact of a decision policy, like a fixed allocation
between long and short term bonds, by examining the
outcome of the policy under each simulation. Through a
process of exhaustive search one looks for a policy with
a reasonable distribution of outcomes. While this proce-
dure offers a simple way to incorporate uncertainty into
a decision model, it is not operationally sound. It can-
not find, unless through exceptional luck, a decision that
hedges against uncertainty.

2. MATHEMATICAL STRUCTURES

The mathematical investigation of stochastic program-
ming combines the subjects of probability theory, statis-
tics, non-smooth analysis, and linear programming. To
illustrate the mathematical structure, we outline the con-
struction of a multistage stochastic linear program; for
a more complete presentation, including non-linear for-
mulations, see the introduction to Ermoliev & Wets [5].
We first describe the dynamic structure of the problem
as a multistage linear program, and then introduce the
stochastics.

The first stage decision is a linear program (ignoring
subsequent stages):

minimize egz

s.t. Agzx > bg.

In each subsequent stage from time stage 1 until the end-
ing time stage T, we make recourse decisions, also mod-
eled as linear programs, which depend on decisions pre-
viously made. The recourse linear program is:

minimize,, cqy;

st. Apy > b — (Awz+ -+ Aric1yi-1)-

It is important to note that the inequalities in the re-
course linear program include all interperiod dynamical
relationships and intraperiod constraints.

In the general stochastic programming model, the
stochastic process involves every coefficient of the objec-
tive, right-hand side, and matrix, in the recourse linear
programs; although in practice only a few such coeffi-
cients will be random. The distribution of coefficients
in any time stage will in general depend on the history
of the stochastic process up to that point. The subscript
“t” appended to the expectation operator “E” will denote
expectation conditioned on the history of the process up
to (but not including) stage t. Now define, in recursive
fashion, the value, or cost-to-go, functions. The value
function depends on the stochastic process; we signal this
dependence by including the Greek letter “omega” in the
argument list. }
yy1;w)}

fe—1{z,ye-1,. .., y1;w) = miny, ceye+E: {fe(z, ye,. ..

s.t. Awz + Anyi + -+ Aweye > be.



This definition begins at stage T (where the right side
has no value-function term in the objective) and proceeds
until stage 1 (where the left side has no dependence on any
recourse decision). The stochastic programming problem
can now be described in terms of the first stage decision
variables alone:

minimize, coz + E {fo{z;w)}

s.t. AQ:L‘ 2 bg.

(1)

The mathematics of stochastic programming is devoted
to understanding the formulation in (1). Two notewor-
thy aspects distinguish it from other studies in nonlinear
programrming or classical probability and statistics. First,
the objective function is defined by an integral. Second,
the integrand is the value function of an optimization
problem, which would therefore not generally possess a
first derivative in the classical sense nor even be finite-
valued. In general, it is hopeless to try to find a closed-
form representation of the integral as a function of the
first-stage decision (except possibly in very simple cases).
Nevertheless, this formulation is amenable to analysis and
computation. The basic tools are those of probability the-
ory, and variational analysis. This is an area of mathe-
matics whose theoretical challenge is matched only by the
practical importance of the applications themselves.

3. HISTORY, MODELS AND

COMPUTATION

The history of stochastic programming closely follows
that of the development of sophisticated optimization al-
gorithms and ever more powerful computers.

One of the earliest “stochastic programs” was
H.M. Markowitz’s mean/variance formulation of the port-
folio optimization problem: minimize variance of return
subject to a constraint on expected return. This amounts
to selecting a target return and minimizing the expected
value of a (quadratic) recourse function that penalizes
the difference between portfolio return and target. The
resulting objective is quadratic in the decision variables,
and can be solved by a version of the simplex method.
Chance constrained problems, where the probability of a
bad event (e.g. bridge collapse) is constrained, are in wide
use in engineering and power systems design. A. Prekopa
showed that constraints specifying the probability that a
random vector be coordinate-wise less than or equal to
a given problem variable reduce to nonlinear convex con-
straints in the variable when the probability distributions
involved are log-concave; see Ermoliev & Wets [5] for ar-
ticles relating to chance constraints. These two formula-
tions are popular because components of the probability
distribution (e.g. variance) can be incorporated directly
into the optimization model, leading to low-dimensional
problems with some hope of solution.
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The more general subject of stochastic programming
outlined above, or linear programming under uncertainty
as it was called then, was independently introduced by
G.B. Dantzig and E.M.L. Beale in 1955. Here, an explicit
discrete description of the sample space is introduced ei-
ther at the outset, or as part of an algorithmic procedure.
This model is capable of representing a great variety of
practical decision problems through various modeling de-
vices of linear programming. The drawback of the gen-
eral model of linear programming under uncertainty is the
curse of dimensionality. Unless one can be clever, or lucky,
one is faced with solving a problem with millions/billions
of variables and constraints.

The challenge of solving such problems has led to many
interesting computational and theoretical developments.
Chief among these are the L-shaped method of Van Slyke
& Wets [10] and its multistage extension, Birge [1}, which
partitions the stochastic program by decision stage, and
the theory of epi-convergence (whose development was
partially motivated by its applications in stochastic pro-
gramming) that justifies sampling and other methods
of approximating the integration—see King & Wets [6],
for example. Two recent developments point to excit-
ing prospects for the solution of these problems: the ag-
gregation method which decomposes by information field
(Rockafellar & Wets [8]) and importance sampling in the
L-shaped method (Dantzig & Glynn [2]). Decomposition
permits very large problems to be solved on multiple pro-
cessors. Sampling is used to represent the information in
the uncertainty model with just a few data points. These
two ideas, decomposition and approximation, are the keys
to computational progress in stochastic programming.

Until recently, few stochastic programming applica-
tions could be formulated and successfully solved. Some
exceptional recent efforts in two-stage stochastic pro-
gramming are bank asset-liability management (Kusy
& Ziemba (7]) lake pollution management (Somlédy &
Wets [9]), and manufacturing capacity expansion (Eppen,
Martin & Schrage [4]). Today, due to the explosion in
power and capability of computers and optimization algo-
rithms, multistage stochastic programming formulations
are emerging from academia and the leading optimiza-
tion laboratories into operational applications. The ma-
jor application areas include financial asset/liability man-
agement over multi-year horizons, multistage production
planning models with uncertain demand, power systems
management over multiple time periods, forest harvest
management, and long-range energy-economic planning
models.
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STOCHASTIC QUASIGRADIENT
METHODS

by Yury Ermoliev! and Alexei A.Gaivoronski?

1. INTRODUCTION

Stochastic Quasigradient (SQG) methods constitute a
family of iterative stochastic optimization procedures.
Their main distinctive feature is the utilization of random
directions for choosing the next approximation to the op-
timal solution. Because a deterministic process can be
viewed as a special case of a stochastic process, one can
expect SQG techniques to provide additional flexibility
when used to solve well-known problems, as well as new
opportunities for addressing challenging classes of prob-
lems that cannot be solved by conventional deterministic
approaches.

There are at least three main application areas for SQG
methods:
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1. Deterministic problems involving difficulties in the
calculation of deterministic descent directions, like finite-
difference approximations of gradients (large-scale, dis-
tributed, non-stationary optimization).

2. Multiextremal problems where it is important to
by-pass locally optimal solutions (both smooth problems
and problems with discontinuities resulting, in particular,
from the existence of discrete variables).

3. Stochastic optimization problems involving uncer-
tainties in evaluation of objective and constraints func-
tions, including learning, estimation and adaptation.

In this article, we give a brief introduction to SQG
methods. Many important issues have been deliberatly
left aside, for example, software and related topics. Good
sources for further reading are the collection of papers of
co-authors in Numerical Techniques for Stochastic Op-
timization, Yu. M. Ermoliev and R. J-B. Wets eds.,
Springer, 1988 and the Proceedings of triennial confer-
ences on stochastic optimization published in Annals of
Operations Research, where one can also find further ref-
erences.

2. GENERAL IDEA
We consider the problem

in F'° : < =1:
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where the set X has a “simple” structure (for example,
defined by linear constraints). In what follows we will de-
fine F(z) = (F°(z), ..., F™(z)) and refer to F(z) as the
problem function. The main idea is to use statistical (bi-
ased or unbiased) estimates of objective and constraints
functions and/or their gradients instead of exact values
of these functions. In other words, a sequence of approx-
imate solutions z° z!,...,z°, ... is constructed by using
random vectors h;, £° such that

|E{h;|Bs} — F(z*)| — 0 (3)

(4)
where F(z*) is a problem function and B, is a o-field
generated by the history of the process. In many cases
requirements (3)-(4) can be relaxed. Vectors &* satisfying
(3)-(4) are called stochastic quasigradients.

These vectors are used in the following iterative SQG

scheme: o
2t = &(z* — p, U(€°, hy)) (5)

where £ = (€',..,€°), hy = (h1,..,h;) and ¥()
transforms the set of quasigradients obtained up to it-
eration s into the current step direction. For example,
(€, h,) = €°; other alternatives include the moving av-
erage of the previous quasigradients:

| E{¢*[Bs} - Fa(2°) ||— 0

(€, hy) = (1 — a,)2® + a,€°



or stochastic quasi-Newton methods
‘Il(gs ) 71,) = A.s{’

where the matrix A, reflects the second order information
gathered through processing of the sequences £°~1 h,_;

Furthermore, p, is the stepsize which can be scalar or
vector and can reflect information about the process gath-
ered on previous iterations. Operator ®(-) processes con-
straints and assures that the limit points of the sequence
zl,...,z* are feasible. In the simplest case when the fea-
sible set X is defined by linear constraints, this operator
can be a projection on the set X. More complicated con-
straints can be processed by successive linearization tech-
niques or using penalty and/or Lagrangian approaches.
Thus, the simplest stochastic quasigradient method for
the case when m = 0 has the form:

z'*! = Tlx (z* ~ ps*) (6)

where IIx (z) projects the point z on X.

3. CONVERGENCE RESULTS

The convergence, with probability 1, of the sequence
{z*} to the solution set X* has been proved for non-
differentiable (weakly convex, locally Lipshitz and even
semicontinious) functions. The proofs rely on the exis-
tence of Liapunov-type functions which are decreased in
a non-monotonic manner along the trajectory of the ap-
proximate solutions. Weaker notions of convergence have
also been studied.

4. EXAMPLES OF THE STOCHASTIC
QUASIGRADIENT APPROACH

Large-scale optimization: Suppose that F(zy, ..., z,)
is a differentiable function for which the calculation of
finite differences is time-consuming because it needs at
least n + 1 function evaluations, i.e. F(z) may be defined
on solutions of differential equations or n may be very
large. The stochastic vector

M F(z* s N~ F(z®) .
E., — E (1“ + AAha) (:L' )hz, (7)
i=1

where M > 1 and A’ has independent uniformly dis-
tributed on [—1, 1] components, satisfies (4). The calcula-
tion of £° can require as little as two function evaluations
independently of the dimensionality of the problem.

Global optimization: The simplest way to introduce
“inertia” in a gradient-type method in order to bypass
local solutions is to perturb the gradient by a random
vector w?, i.e., instead of F(z*®), consider the vector

& =Fy(z*)+w*, Ew®*=0.
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A special choice of w’ corresponds to simulated anneal-
ing. A different perturbation is useful for nondifferen-
tiable functions:

£ = Fy(3°), 7 =z +u’ (8)

where the random vector w® has a density and, with prob-
ability 1, || w* []— 0 for s — oo.

Nondifferentiable and discontinuous optimization:
In this case the subgradient algorithm that uses finite
difference approximations does not converge. The slight
change to the random vectors

i F(2° + Ase') — F(3%) g
A,

(9)
=1

where Z° is defined in (8), ensures the convergence of

gradient-type procedures even for locally Lipshitz func-

tions.

Minimax problems: Here it is difficult to evaluate ex-

act values of the objective function

F(e) = max f(z,9)

especially when the inner maximization is a nonlinear op-
timization problem of general type. The SQG approach
for minimization of F(z) is to use the random vector

53 e fz(x"yya)) ys . atg maxf(‘vs:y)
yeEY*

where Y*t! = y* U z* and 2° is a random vector dis-
tributed with nonzero density on the set Y,

Stochastic programming and optimization of
stochastic systems: A rather general stochastic op-
timization model has the following objective/constraint
functions

F(:c):/f(a:,w)P(a:,dw) (10)

where the probability measure P(-,dw) may depend on
the decision variables z. If f(z,w) is given explicitly, and
P(z,dw) = g(z,w)dw with g(z,w) also given explicitly
then it is possible to approximate F(z) by the sample
mean and to use conventional deterministic optimization
techniques. Alternatively, one can use the SQG approach
with the stochastic gradient
2% wt

€ = o)+ [ W B
where w® is an observation from P(z®,dw). In the
case of implicitly given P(z,dw), when w is observed
through Monte-Carlo simulation or on-line experiments,
SQG methods provide the opportunity to solve the prob-
lem by the finite difference approach described earlier.
Here is an analogue of the estimate (7) for (10):

M . B
s f(:l)" + Ashz’ws,z) —- f(:c’,w"o) ;
&=y A h

i=1
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when P(z,dw) = P(dw). If w®® w®1 .. w*" are inde-
pendent observations from P(dw), then Var* = O(A[?).
For smooth f(x,w) it is possible to use the common ran-
dom numbers w*? = w*1 = | = LF" with variance that
will not depend on A,. Such a choice corresponds to a
single run estimation of the gradient in combined simula-
tion and optimization procedures.

Exploiting the problem structure. Stochastic de-
composition: The efficiency of SQG methods can be
considerably increased by exploiting the structure of spe-
cific problems. Let us consider, for example, a stochastic
program with recourse for the case of discrete random
parameters, which is equivalent to the following linear
programming problem:

K
min ((c, z) + ;pud(k). y(k))) (11)
A(k)e + W(k)y(k) =b(k), k=1:K
z20, y(k) >0
where p;. is the probability of the k-th random scenario. It
1s quite common to have the number of scenarios K very
large and even infinite. For this case the stochastic quasi-
gradient procedure provides a stochastic decomposition

technique. For given z* observe, at random, scenarios
ki,...,kr,, 75 > 1 and solve the stochastic subproblem

min'y" e, (d(k:), (k1)
=1
W(k;)y(k,) = b(k() - A(k])l", = 1,
y(k) >0, 1=1,..

y Ts
» Ts

Suppose that u(k;) are corresponding dual variables.
Then the vector

E=c— Z' u’(kz)A(lcz)
=1

1s a stochastic quasigradient of the original objective func-
tion (11).

Nonstationary optimization. Learning and adap-
tation: Many applied problems can be formulated as op-
timization of an objective function in varying time under
changing constraints. This refers to the case of on-line
optimization through learning and adaptation, to delib-
erately designed optimization schemes with simultaneous
approximation of “bad” objective and constraints func-
tions by a sequence of “good” functions, and to dual
approaches to the solution of constrained optimization
problems where iterations are performed simultaneously
in the space of primal and dual variables.

In this case an SQG method, on iteration s, performs
one step of the minimization of function F (s, z) using gra-
dient Fy(z,s) or the quasigradients described above. At
the same time F(z, s) can be considered as a quasigradi-
ent of the function F(s+1,z), which defines the problem
being minimized on the next iteration s -+ 1. Often such
problems arise when the objective function (constraints)
depends on unknown parameters, and the optimization
takes place on-line with the estimation of these param-
eters. The unknown parameters may also correspond to
strategies of different external ”players” affecting the de-
cision making process.

Distributed optimization. Game theory: Suppose
that there are N players and

N N
F(z) = Zf’(:cl, e TN

1s the welfare function. Each player i = 1 : N has only in-
formation about the welfare function fi(:cl, oy Ty ey EN)
and may influence only his strategy ;. If at the iteration
(current moment) s = 0,1,..., each player attempts to
improve his welfare in the direction f;'. (21, ..., 2, ..., z)
then the vector

(fo, (&), s FR (=),

under special assumptions, can also be considered as a
quasigradient of the function F(z).

Neural nets: This powerful technique emerged in pat-
tern processing, classification and behavioral sciences. In
fact, the training of a neural net consists of the minimiza-
tion of the error function

F(z)=)_ F(i,z) (12)

i=1

where each function F(i,z) corresponds to one training
example. The most frequently used algorithm for this
purpose is called backpropagation and can be expressed
as follows:

2t = 2® — p, Fp(m(s), z) (13)

where the function m(s) takes values from the set
{1,...,N}. It is possible to show that under quite general
assumptions about m(s) the vector Fy(m(s),z) satisfies
the quasigradient condition (4) or its generalization.
Optimization of Discrete Event Dynamic Systems
(DEDS): This is an important class of problems that
emerged recently in connection with mathematical mod-
eling of modern production systems, telecommunication
networks, and computer communications. Such systems
are characterized by a state 2*, which evolves according
to the state equation

P = 92, 2, wF) (14)
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where w* are independent random variables. The discrete

event property implies that the mapping ©(-, -, ) depends
discontinuously on its arguments. When the DEDS evolu-
tion consists of I steps, the DEDS optimization problem
can be expressed as follows:

K K
min/f(EK,:c,G)K)Hgo(z,zi,wi)Hdwi
i=1 =1

T€EX

where zK = (21, ...,25), @K = (W1, .., wK), o(z, 2}, 0?)
is the distribution function of w’. Here the function
f(-,+,-) depends discontinuously on its arguments due to
equation (14). This makes the problem difficult, because
many gradient estimation schemes depend on the abil-
ity to change the order of differentiation and integration.
Nevertheless, it is possible to develop various techniques
for providing statistical estimates of the gradient that sat-
isfy the quasigradient property (4). The development of
such techniques is the subject of the sensitivity analy-
sis of DEDS. Applied to DEDS, stochastic quasigradient
methods become concurrent simulation and optimization
algorithms.

5. SUMMARY

As we have seen, Stochastic Quasigradient Methods
have applications to various difficult areas of optimization
and operations research where the structure of the prob-
lem does not allow the use of highly developed determin-
istic software. In particular, their application can become
one of the very few viable alternatives in cases of large-
scale, highly nonlinear, multiextremal, nonsmooth, dis-
continuous, dynamic, stochastic optimization problems.
(Such problems are not uncommon, and a challenge in-
deed!) They require comparatively modest computer re-
sources per iteration, and are able to reach the vicinity of
an optimal solution reasonably rapidly, which is sufficient
for many applications.

sokokkokRkokk Rk ok
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MPS-15: IMPORTANT DATES
AND DEADLINES

The 15th International Symposium on Mathematical
Programming will be held from August 15-19, 1994 on
the campus of the University of Michigan, Ann Arbor,
Michigan, USA. Some important dates and deadlines are
as follows:

e 29 April 1994: Early registration deadline

1 May 1994: Last date to send paper copy of abstract

e 1 June 1994: Last date to send abstract by e-mail

15 July 1994: Last date for conference-booked hotel
or Residence Hall reservations

18 July 1994: Deadline to request cancellation refund

22 July 1994: Fee for cancellation of Residence Hall
lodging begins

An e-mail copy of the entire Second Announcement,
which gives extensive details, can be obtained from:
xvismp@um.cc.umich.edu

CONFERENCE ANNOUNCEMENT

MATHEMATICS OF NUMERICAL ANALYSIS
REAL NUMBER ALGORITHMS
A Four-Week Conference starting July 16, 1995
Steve Smale (smale@math.berkeley.edu)

The mathematical theory of real number algorithms
is to be the subject of this conference. Thus numeri-
cal analysis will be central with emphasis on geometrical,
algebraic, analytic and foundational perspectives. Inves-
tigation of efficiency will play a special role. Practical
algorithms will be the subject of theoretical analysis, but
immediate useful results will not be demanded.

It is to be hoped that the conference will give the sub-
ject of numerical analysis a greater coherence through a
focus on the mathematical side. In particular, an aim
to strengthen the unity of mathematics and numerical
analysis, and to narrow the gap between pure and ap-
plied mathematics. That goal is appropriate since many
of the heroes of pure and applied mathematics, Newton,
Euler, Lagrange and Gauss among them, established the
basic real number algorithms. With the revolution of the



No. 4, Spring 1994

computer and the great achievements of scientific com-
putation, it does service to both the pure and applied
communities to support the mathematical development
of numerical analysis.

This is an appropriate time to schedule such a meeting
in view of the rapid development of heuristic work, a
good base of theoretical work, and a widespread desire
for mathematical deepening of the subject.

The starting date is July 16, 1995 and is to last 4 weeks.
The place is to be Park City, Utah. Appropriate reser-
vations have been made by the American Mathematical
Society.

The conference will be international in character with
strong representation from the most mathematically de-
veloped parts of numerical analysis. Besides tutorials and
short courses, seminars in the following areas are contem-
plated :

(a) Linear Algebra

(b) Non-linear systems-path following
(c) Differential equations

(d) Linear programming problems

(e) Algebraic questions

(f) Foundations

(g) Information based complexity

(h) Lower bounds

(i) Approximation theory

Organizing Committee

Steve Smale, Chair, University of California, Berkeley
Gene Allgower, Colorado State University

Lenore Blum, MSRI, Berkeley

Alexandre Chorin, Berkeley

Philippe Ciarlet, Université Pierre et Marie Curie, Paris
Felipe Cucker, Universitat Pompeu Fabra, Barcelona
James Demmel, Berkeley

Ron DeVore, University of South Carolina

Gene Golub, Stanford

Arieh Iserles, University of Cambridge, England

Bert Jongen, RWTH Aachen, Germany

Herb Keller, Cal Tech

Jim Renegar, Cornell

Mike Shub, IBM, Yorktown Heights

Gil Strang, MIT
Henryk Wozniakowski,
Columbia University

University of Warsaw and
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SELECTED UPCOMING ARTICLES
FOR SIAM J. OPTIMIZATION

Convergence Theory of Nonlinear Newton-Krylov Algo-
rithms Peter N. Brown and Youcef Saad

Line Search Procedures for the Logarithmic Barrier Func-
tion Walter Murray and Margaret H. Wright

On the Resolution of Linearly Constrained Convex
Minimization Problems Ana Friedlander, José Mario
Martinez, and Sandra A. Santos

Superlinearly Convergent O(nL)-Iteration Interior Point
Algorithms for Linear Programming and the Monotone
Linear Complementarity Problem Kevin McShane

On Optimization Problems with Variational Inequality
Constraints J. V. Quirata

Triangular Decomposition Methods for Solving Reducible
Nonlinear Systems of Equations J. E. Dennis, Jr., José
Mario Martinez, and Xiaodong Zhang

Extension of Hoffman’s Error Bound to Polynomial Sys-
tems Xiao-Dong Luo and Zhi-Quan Luo

Convergence Properties of a Class of Rank-two Updates
Paul T. Boggs and Jon W. Tolle

Globally Convergent Inexact Newton Methods Stanley C.
Fisenstal and Homer F. Walker

An Interior Point Column Generation Method for Linear
Programming Using Shifted Barriers John E. Mitchell
Predictor-Corrector Methods for a Class of Linear Com-
plementarity Problems Sanjay Mehrotra and Robert A.
Stubbs

Can Parallel Branch and Bound Without Communication
be Effective? Per S. Laursen

The Iterated Kalman Smoother as a Gauss—Newton
Method Bradley M. Bell

Monotonicity of Primal and Dual Objective Values in
Primal-Dual Interior-Point Algorithms Shinji Mizuno,
Michael J. Todd, and Levent Tuncel

On Smoothing Exact Penalty Functions for Convex Con-
strained Optimization Mustafa C. Pinar and Stavres A.
Zenios

The Monotonic Diameter of the Perfect 2-Matching Poly-
tope Fred J. Rispoli

A Complexity Analysis for Interior-Point Algorithms
Based on Karmarkar’s Potential Function Jun Ji and
Yinyu Ye

Problems of Hierarchical Optimization in Finite Dimen-
sions Ruozin Zhang

Stability Results for Stochastic Progrmas and Sensors,
Allowing for Discontinuous Objective Functions Zvi Art-
stein and Roger J.-B. Wels

Local Convergence of a Two-Piece Update of a Projected
Hessian Matrix Chaya Gurwitz

Partial Proximal Minimization Algorithms for Convex
Programming Dimitri P. Bertsckas and Paul Tseng
Exposing Constraints James V. Burke and Jorge J. Moré
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Potential Reduction Polynomial Time Method for Truss
Topology Design Aharon Ben-Tal and Arkadii Ne-
mirovskii

CONTRIBUTIONS TO THE V&N

The next issue (Fall, '94) will include essays by Mike
Todd (Cornell; on complementarity) and Malcolm Pullan
(Cambridge; on continuous LP).

Articles contributed by SIAG/OPT members are al-
ways welcome and can take one of two forms:

a) Views: short, scholarly, N2 (Not Necessarily Noncon-
troversial) essay-type articles, say 2 to 4 pages long, on
any topic in optimization and its interfaces with the sci-
ences, engineering and education.

b) News: brief items for the Bulletin Board Section.

Our first preference is that a contribution take the form
of a LaTeX file sent by email to the editor at the address
given below. (If possible try it out in two-column format.)
However, other forms of input are also acceptable.

The Bulletin-Board deadline for the next issue is
September 15, 1994.

Larry Nazareth, Editor

Department of Pure and Applied Mathematics
Washington State University

Pullman, WA 99164-3113

email: nazareth@wsumath.bitnet
or nazareth@amath.washington.edu
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Applied Mathematics
from SIAM

Optimization
Software Guide
Jorge J. MORE and Stephen J. WRIGHT

Frontiers in Applied Mathematics 14

Here is a reference tool that includes discussions of developments in
optimization theory, and presents data for 75 software packages.

Contents

Preface; Part I Overview of Aigorithms; Chapter 1. Optimization Problems and Software;
Chapter 2. Unconstrained Optimization; Chapter 3. Nonlinear Least Squares; Chapter 4.
Nonlinear Equations; Chapter 5. Linear Programming; Chapter 6. Quadratic Programming;
Chapter 7. Bound-Constrained Optimization; Chapter 8. Constrained Optimization;
Chapter 9. Network Optimization; Chapter 10. Integer Programming; Chapter 11.
Miscellaneous OptimizationProblems; Part II: Software Packages: AMPL; BQPD; BT;
BTN; CNM; CONOPT; CONSOL-OPTCAD; CPLEX; C-WHIZ; DENLP; DOC; DOT; FortLP;
FSQP; GAMS; GAUSS; GENESIS; GENOS; GINO; GRG2; HOMPACK; IMSL Fortran and
C Library; LAMPS; LANCELOT; LBFGS; LINDO; LNOS; LINGO; LPsolver; LSGRG2;
LSNNO; LSSOL; MIQN2 and M1QN3; MATLAB; MINOS; MINPACK-1; MIPIII; MODULOPT;
NAG C library; NAG Fortran Library; NETFLOW; NETSOLVE; NITSOL; NLPE; NLPQL;
NLPQLB; NLSFIT; NLSSOL; NLPSPR; NPSOL; OB1; ODRPACK; OPSYC; OptiA; OPTIMA
Library; OPTPACK; OSL; PC-PROG; PITCON; PORT 3; PROC NLP; QO01SUBS; QAPP;
QPOPT; SQP; SPEAKEASY; TENMIN; TENSOLVE; TNPACK; TN/TNBC; UNCMIN; VE0S8;
VE10; VIG; VIMDA; What's Best!; Bibliography.
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List Price $24.50/ SIAM Member Price $19.60 /Order Code FR14

Interior Point Polynomial
Algorithms in Convex Programming

Yurii NESTEROV and Arkadii NEMIROVSKII
Studies in Applied Matbematics 13
The first unified theory of polynomial-time interior-point methods.

Contents

Chapter 1: Self-Concordant Functions and Newton Method; Chapter 2: Path-Following
Interior- Point Methods; Chapter 3: Potential Reduction Interior-Point Methods; Chapter
4 How lo Construct Self-Concordant Barriers; Chapter 5: Applications in Convex
Optimization; Chapter G: Variational Inequalities with Monotone Operalors; Chapter 7:
Acceleration for Linear and Linearly Constrained Quadratic Problems; Bibliography;
Appendix 1; Appendix 2.

1994/ ix + 405 pages / Hardcover / 0-89871-319-6
List Price $68.50/ SIAM Member Price $54.80/Order Code AM13
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