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Abstract

Two methods are frequently used for modeling the choice among uncertain outcomes:
stochastic dominance and mean–risk approaches. The former is based on an axiomatic
model of risk-averse preferences but does not provide a convenient computational recipe.
The latter quantifies the problem in a lucid form of two criteria with possible trade-
off analysis, but cannot model all risk-averse preferences. In particular, if variance is
used as a measure of risk, the resulting mean–variance (Markowitz) model is, in general,
not consistent with stochastic dominance rules. This paper shows that the standard
semideviation (square root of the semivariance) as the risk measure makes the mean–risk
model consistent with the second degree stochastic dominance, provided that the trade-off
coefficient is bounded by a certain constant. Similar results are obtained for the absolute
semideviation, and for the absolute and standard deviations in the case of symmetric or
bounded distributions. In the analysis we use a new tool, the Outcome–Risk diagram,
which appears to be particularly useful for comparing uncertain outcomes.

Key Words: Decisions under Risk, Portfolio Optimization, Stochastic Dom-
inance, Mean–Risk Models.
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From Stochastic Dominance

to Mean–Risk Models:

Semideviations as Risk Measures

W lodzimierz Ogryczak∗

Andrzej Ruszczyński

1 Introduction

Comparing uncertain outcomes is one of fundamental interests of decision theory. Our
objective is to analyze relations between the existing approaches and to provide some
tools to facilitate the analysis.
We consider decisions with real-valued outcomes, such as return, net profit or number

of lives saved. A leading example, originating from finance, is the problem of choice
among mutually exclusive investment opportunities or portfolios having uncertain returns.
Although we discuss the consequences of our analysis in the portfolio selection context,
we do not assume any specificity related to this or another application. We consider
the general problem of comparing real-valued random variables (distributions), assuming
that larger outcomes are preferred. We describe a random variable x̃ by the probability
measure Px induced by it on the real line R. It is a general framework: the random
variables considered may be discrete, continuous, or mixed (Pratt et al., 1995). Owing
to that, our analysis covers a variety of problems of choosing among uncertain prospects
that occur in economics and management.
Two methods are frequently used for modeling choice among uncertain prospects:

stochastic dominance (Whitmore and Findlay, 1978; Levy, 1992), and mean–risk analysis
(Markowitz, 1987). The former is based on an axiomatic model of risk-averse preferences:
it leads to conclusions which are consistent with the axioms. Unfortunately, the stochastic
dominance approach does not provide us with a simple computational recipe—it is, in fact,
a multiple criteria model with a continuum of criteria. The mean–risk approach quantifies
the problem in a lucid form of only two criteria: the mean, representing the expected
outcome, and the risk: a scalar measure of the variability of outcomes. The mean–risk
model is appealing to decision makers and allows a simple trade-off analysis, analytical or
geometrical. On the other hand, mean–risk approaches are not capable of modeling the
entire richness of various risk-averse preferences. Moreover, for typical dispersion statistics
used as risk measures, the mean–risk approach may lead to inferior conclusions.
The seminal Markowitz (1952) portfolio optimization model uses the variance as the

risk measure in the mean–risk analysis. Since then many authors have pointed out that the
mean–variance model is, in general, not consistent with stochastic dominance rules. The

∗Warsaw University, Department of Mathematics & Computer Science, 02–097 Warsaw, Poland
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use of the semivariance rather than variance as the risk measure was already suggested
by Markowitz (1959) himself. Porter (1974) showed that the mean–risk model using the
fixed-target semivariance as the risk measure is consistent with stochastic dominance. This
approach was extended by Fishburn (1977) to more general risk measures associated with
outcomes below some fixed target. There are many arguments for the use of fixed targets.
On the other hand, when one of performance measures is the expected return, the risk
measure should take into account all possible outcomes below the mean. Therefore, we
focus our analysis on central semimoments which measure the expected value of deviations
below the mean. To be more precise, we consider the absolute semideviation (from the
mean)

δ̄x =

∫ µx

−∞

(µx − ξ) Px(dξ) =
1

2

∫

∞

−∞

|ξ − µx| Px(dξ) (1.1)

and the standard semideviation

σ̄x =

(
∫ µx

−∞

(µx − ξ)2 Px(dξ)
)1/2

, (1.2)

where µx = E{x̃}. We show that mean–risk models using standard or absolute semide-
viations as risk measures are consistent with the stochastic dominance, if a bounded set
of mean–risk trade-offs is considered. In the portfolio selection context these models
correspond to the Markowitz (1959,1987) mean–semivariance model and the Konno and
Yamazaki (1991) MAD model with absolute deviation.
The paper is organized as follows. In the next section we recall the basics of the

stochastic dominance and mean–risk approaches. We also specify what we mean by con-
sistency of these approaches. In Section 3 we introduce a convenient graphical tool for the
stochastic dominance methodology: the Outcome–Risk (O–R) diagram, and we examine
various risk measures within the diagram. We further use the O–R diagram to establish
consistency of mean–risk models using the absolute semideviation (Section 4) and the
standard semideviation (Section 5), respectively, with second degree stochastic dominance
rules. In a similar way we reexamine the standard deviation as a possible risk measure in
Section 6. Owing to the use of the O–R diagram all proofs are easy, nevertheless, rigorous.

2 Stochastic dominance and mean–risk models

Stochastic dominance is based on an axiomatic model of risk-averse preferences (Fishburn,
1964). It originated in the majorization theory (Hardy, Littlewood and Polya, 1934) for
the discrete case and was later extended to general distributions (Hanoch and Levy, 1969;
Rothschild and Stiglitz, 1969). Since that time it has been widely used in economics and
finance (see Bawa, 1982; Levy, 1992 for numerous references). In the stochastic dominance
approach random variables are compared by pointwise comparison of some performance
functions constructed from their distribution functions.
Let x̃ be a random variable with the probability measure Px. The first performance

function F
(1)
x is defined as the right-continuous cumulative distribution function itself:

F (1)x (η) = Fx(η) = P{x̃ ≤ η} for η ∈ R.

Weak relation of the first degree stochastic dominance (FSD) is defined as follows

x̃ �FSD ỹ ⇔ Fx(η) ≤ Fy(η) for all η ∈ R. (2.1)
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The second performance function F
(2)
x is given by areas below the distribution function

Fx:

F (2)x (η) =
∫ η

−∞

Fx(ξ) dξ for η ∈ R,

and defines the weak relation of the second degree stochastic dominance (SSD):

x̃ �
SSD
ỹ ⇔ F (2)x (η) ≤ F (2)y (η) for all η ∈ R. (2.2)

The corresponding strict dominance relations ≻
FSD
and ≻

SSD
are defined by the standard

rule
x̃ ≻ ỹ ⇔ x̃ � ỹ and ỹ 6� x̃. (2.3)

Thus, we say that x̃ dominates ỹ by the FSD rules (x̃ ≻FSD ỹ), if Fx(η) ≤ Fy(η) for all
η ∈ R, where at least one strict inequality holds. Similarly, we say that x̃ dominates ỹ by
the SSD rules (x̃ ≻SSD ỹ), if F

(2)
x (η) ≤ F (2)y (η) for all η ∈ R, with at least one inequality

strict. Certainly, x̃ �
FSD
ỹ implies x̃ �

SSD
ỹ and x̃ ≻

FSD
ỹ implies x̃ ≻

SSD
ỹ.

Note that Fx(η) expresses the probability of underachievement for a given target
value η. Thus the first degree stochastic dominance is based on the multidimensional
(continuum-dimensional) objective defined by the probabilities of underachievement for
all target values. The FSD is the most general relation. If x̃ ≻

FSD
ỹ, then x̃ is preferred to

ỹ within all models preferring larger outcomes, no matter how risk-averse or risk-seeking
they are.
For decision making under risk most important is the second degree stochastic dom-

inance relation, associated with the function F
(2)
x . If x̃ ≻SSD ỹ, then x̃ is preferred to

ỹ within all risk-averse preference models that prefer larger outcomes. It is therefore a
matter of primary importance that an approach to the comparison of random outcomes
be consistent with the second degree stochastic dominance relation. Our paper focuses on
the consistency of mean–risk approaches with SSD.
Mean–risk approaches are based on comparing two scalar characteristics (summary

statistics), the first of which—denoted µ—represents the expected outcome (reward), and
the second—denoted r—is some measure of risk. The weak relation of mean–risk domi-
nance is defined as follows:

x̃ �
µ/r
ỹ ⇔ µx ≥ µy and rx ≤ ry.

The corresponding strict dominance relation ≻
µ/r
is defined in the standard way, as in

(2.3). We say that x̃ dominates ỹ by the µ/r rules (x̃ ≻
µ/r
ỹ), if µx ≥ µy and rx ≤ ry, and

at least one of these inequalities is strict.
An important advantage of mean–risk approaches is the possibility of a pictorial trade-

off analysis. Having assumed a trade-off coefficient λ between the risk and the mean, one
may directly compare real values of µx−λrx and µy−λry. Indeed, the following implication
holds:

x̃ �
µ/r
ỹ ⇒ µx − λrx ≥ µy − λry for all λ > 0.

We say that the trade-off approach is consistent with the mean–risk dominance.
Suppose now that the mean–risk model is consistent with the SSD model by the im-

plication
x̃ �

SSD
ỹ ⇒ x̃ �

µ/r
ỹ.
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Then mean–risk and trade-off approaches lead to guaranteed results:

x̃ ≻
µ/r
ỹ ⇒ ỹ 6�

SSD
x̃

and
µx − λrx > µy − λry for some λ > 0 ⇒ ỹ 6�

SSD
x̃.

In other words, they cannot strictly prefer an inferior decision.
In this paper we show that some mean–risk models are consistent with the SSD model

in the following sense: there exists a positive constant α such that for all x̃ and ỹ

x̃ �
SSD
ỹ ⇒ µx ≥ µy and µx − α rx ≥ µy − α ry. (2.4)

In particular, for the risk measure r defined as the absolute semideviation (1.1) or standard
semideviation (1.2), the constant α turns out to be equal to 1.1

Relation (2.4) directly expresses the consistency with SSD of the model using only two
criteria: µ and µ− α r. Both, however, are defined by µ and r, and we have

µx ≥ µy and µx − α rx ≥ µy − α ry ⇒ µx − λrx ≥ µy − λry for 0 < λ ≤ α.

Consequently, (2.4) may be interpreted as the consistency with SSD of the mean–risk
model, provided that the trade-off coefficient is bounded from above by α. Namely, (2.4)
guarantees that

µx − λrx > µy − λry for some 0 < λ ≤ α ⇒ ỹ 6�SSD x̃.

It follows that a single objective can be used to safely remove inferior decisions, provided
that the trade-off coefficient is not too large.
Comparison of random variables is usually related to the problem of choice among risky

alternatives in a given feasible set Q. For instance, in the simplest problem of portfolio
selection (Markowitz, 1987) the feasible set of random variables is defined as all convex
combinations (weighted averages with nonnegative weights totaling 1) of a given number of
investment opportunities (securities). A feasible random variable x̃ ∈ Q is called efficient
by the relation � if there is no ỹ ∈ Q such that ỹ ≻ x̃. Consistency (2.4) leads to the
following result.

Proposition 1. If the mean–risk model satisfies (2.4), then except for random variables
with identical µ and r, every random variable that is maximal by µ− λr with 0 < λ < α
is efficient by the SSD rules.

Proof. Let 0 < λ < α and x̃ ∈ Q be maximal by µ− λr. This means that µx − λrx ≥
µy − λry for all ỹ ∈ Q. Suppose that there exists z̃ ∈ Q such that z̃ ≻SSD x̃. Then, from
(2.4),

µz ≥ µx and µz − αrz ≥ µx − αrx. (2.5)

Adding these inequalities multiplied by (1− λ/α) and λ/α, respectively, we obtain

(1− λ/α)µz + (λ/α)(µz − αrz) ≥ (1− λ/α)µx + (λ/α)(µx − αrx), (2.6)

which after simplification reads: µz −λrz ≥ µx−λrx. But x̃ is maximal, so we must have
µz − λrz = µx − λrx, that is, equality in (2.6) holds. This combined with (2.5) implies
µz = µx and rz = rx.

1Yitzhaki (1982) showed a similar result for the risk measure defined as the Gini’s mean (absolute)
difference rx = Γx =

1
2

∫∫

|ξ − η| Px(dξ)Px(dη).
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Proposition 1 justifies the results of the mean–risk trade-off analysis for 0 < λ < α.
This can be extended to λ = α provided that the inequality µx − α rx ≥ µy − α ry turns
into equality only in the case of µx = µy.

Corollary 1. If the mean–risk model satisfies (2.4) as well as

x̃ �SSD ỹ and µx > µy ⇒ µx − α rx > µy − α ry (2.7)

then except for random variables with identical µ and r, every random variable that is
maximal by µ− λr with 0 < λ ≤ α is efficient by the SSD rules.

Proof. Due to Proposition 1, we only need to prove the case of λ = α. Let x̃ ∈ Q be
maximal by µ − αr. Suppose that there exists z̃ ∈ Q such that z̃ ≻

SSD
x̃. Hence, by

(2.4), µz ≥ µx. If µz > µx, then (2.7) yields µx − αrx < µz − αrz, which contradicts
the maximality of x̃. Thus, µz = µx and, by (2.4) and the maximality of x̃, one has
µx − αrx = µz − αrz. Hence, µz = µx and rz = rx.

It follows from Proposition 1 that for mean–risk models satisfying (2.4) the optimal
solution of the problem

max{µx − λ rx : x̃ ∈ Q} (2.8)

with 0 < λ < α, if it is unique, is efficient by the SSD rules. However, in the case
of nonunique optimal solutions, we only know that the optimal set of (2.8) contains a
solution which is efficient by the SSD rules. The optimal set may contain, however, also
some SSD-dominated solutions. A question arises whether it is possible to additionally
regularize (refine) problem (2.8) in order to select those optimal solutions that are efficient
by the SSD rules. We resolve this question during the analysis of specific risk measures.
In many applications, especially in the portfolio selection problem, the mean–risk

model is analyzed with the so-called critical line algorithm (Markowitz, 1987). This is
a technique for identifying the �

µ/r
efficient frontier by parametric optimization (2.8) for

varying λ > 0. Proposition 1 guarantees that the part of the efficient frontier (in the µ/r
image space) corresponding to trade-off coefficients 0 < λ < α is also efficient by the SSD
rules.

3 The O–R diagram

The second degree stochastic dominance is based on the pointwise dominance of functions
F (2). Therefore, properties of the function F (2) are important for the analysis of rela-
tions between the SSD dominance and the mean–risk models. The following proposition
summarizes the basic properties which we use in our analysis.

Proposition 2. If E{|x̃|} < ∞, then the function F (2)x (η) is well defined for all η ∈ R
and has the following properties:

P1. F
(2)
x (η) is continuous, convex, nonnegative and nondecreasing.

P2. If Fx(η
0) > 0, then F

(2)
x (η) is strictly increasing for all η ≥ η0.

P3. F (2)x (η) =

∫ η

−∞

(η − ξ) dFx(ξ) =
∫ η

−∞

(η − ξ) Px(dξ) = P{x̃ ≤ η}E{η− x̃|x̃ ≤ η}.
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P4. lim
η→−∞

F (2)x (η) = 0.

P5. F (2)x (η)− (η−µx) =
∫

∞

η
(ξ−η) dFx(ξ) =

∫

∞

η
(ξ−η) Px(dξ) = P{x̃ ≥ η}E{x̃−η|x̃ ≥

η}.

P6. F
(2)
x (η)− (η − µx) is a continuous, convex, nonnegative and nonincreasing function
of η.

P7. lim
η→∞
[F (2)x (η)− (η − µx)] = 0.

P8. For any given η0 ∈ R

F (2)x (η) ≥ F (2)x (η0) + (η − η0)sup{Fx(ξ) | ξ < η0} ≥ F (2)x (η0) + η − η0, if η < η0,
F (2)x (η) ≤ F (2)x (η0) + (η − η0)sup{Fx(ξ) | ξ < η} ≤ F (2)x (η0) + η − η0, if η > η0.

Properties P1–P4 are rather commonly known but frequently not expressed in such a
rigorous form for general random variables. Properties P5–P8 seem to be less known or
at least not widely used in the stochastic dominance literature. In the Appendix we give
a formal proof of Proposition 2.
From now on, we assume that all random variables under consideration are integrable

in the sense that E{|x̃|} <∞. Therefore, we are allowed to use all the properties P1–P8
in our analysis.

Note that, due to property P3, F
(2)
x (η) = P{x ≤ η}E{η− x | x ≤ η} thus expressing

the expected shortage for each target outcome η. So, in addition to being the most general
dominance relation for all risk-averse preferences, SSD is a rather intuitive multidimen-

sional (continuum-dimensional) risk measure. Therefore, we will refer to the graph of F
(2)
x

as to the Outcome–Risk (O–R) diagram for the random variable x̃ (Figure 7.1).

The graph of the function F
(2)
x has two asymptotes which intersect at the point (µx, 0).

Specifically, the η-axis is the left asymptote (property P4) and the line η− µx is the right
asymptote (property P7). In the case of a deterministic outcome (x̃ = µx), the graph

of F
(2)
x coincides with the asymptotes, whereas any uncertain outcome with the same

expected value µx yields a graph above (precisely, not below) the asymptotes. Hence, the

space between the curve (η, F
(2)
x (η)), η ∈ R, and its asymptotes represents the dispersion

(and thereby the riskiness) of x̃ in comparison to the deterministic outcome of µx. We
shall call it the dispersion space. Both size and shape of the dispersion space are important
for complete description of the riskiness. Nevertheless, it is quite natural to consider some
size parameters as summary characteristics of riskiness.
As the simplest size parameter one may consider the maximal vertical diameter. By

properties P1 and P6, it is equal to F
(2)
x (µx). Moreover, property P3 yields the following

corollary.

Corollary 2. If E{|x̃|} <∞, then F (2)x (µx) = δ̄x.

The absolute semideviation δ̄x turns out to be a linear measure of the dispersion space.
There are many arguments (see, e.g., Markowitz, 1959) that only the dispersion related

to underachievements should be considered as a measure of riskiness. In such a case we
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should rather focus on the downside dispersion space, that is, to the left of µx. Note that
δ̄x is the largest vertical diameter for both the entire dispersion space and the downside
dispersion space. Thus δ̄x seems to be a quite reasonable linear measure of the risk related
to the representation of a random variable x̃ by its expected value µx. Moreover, the
absolute deviation

δx =

∫

∞

−∞

|ξ − µx| Px(dξ) (3.1)

is symmetric in the sense that δx = 2δ̄x for any (possible nonsymmetric) random variable
x̃. Thus absolute mean δ also can be considered a linear measure of riskiness.
A better measure of the dispersion space should be given by its area. To evaluate it

one needs to calculate the corresponding integrals. The following proposition gives these
results.

Proposition 3. If E{x̃2} <∞, then
∫ η

−∞

F (2)x (ζ) dζ =
1

2

∫ η

−∞

(η − ξ)2 Px(dξ)

=
1

2
P{x̃ ≤ η}E{(η− x̃)2|x̃ ≤ η}, (3.2)

∫

∞

η
[F (2)x (ζ)− (ζ − η)] dζ =

1

2

∫

∞

η
(ξ − η)2 Px(dξ)

=
1

2
P{x̃ ≥ η}E{(x̃− η)2|x̃ ≥ η}. (3.3)

Formula (3.2) was shown by Porter (1974) for continuous random variables. The second
formula seems to be new in the SSD literature. In the Appendix we give a formal proof
of both formulas for general random variables.

Corollary 3. If E{x̃2} <∞, then

σ̄2x = 2

∫ µx

−∞

F (2)x (ζ) dζ, (3.4)

σ2x = 2
∫ µx

−∞

F (2)x (ζ) dζ + 2
∫

∞

µx
[F (2)x (ζ)− (ζ − µx)] dζ. (3.5)

Hereafter, whenever considering variance σ2 or semivariance σ̄2 (standard deviation σ
or standard semideviation σ̄) we will assume that E{x̃2} <∞. Therefore, we are eligible
to use formulas (3.4) and (3.5) in our analysis.
By Corollary 3, the variance σ2x represents the doubled area of the dispersion space of

the random variable x̃, whereas the semivariance σ̄2x is the doubled area of the downside
dispersion space. Thus the semimoments δ̄ and σ̄2, as well as the absolute moments δ and
σ2, can be regarded as some risk characteristics and they are well depicted in the O–R
diagram (Figures 7.2 and 7.3). In further sections we will use the O–R diagram to prove
that the mean–risk model using the semideviations δ̄ and σ̄ is consistent with the SSD
dominance. Geometrical relations in the O–R diagram make the proofs easy. However,
as the geometrical relations are the consequences of Propositions 2 and 3, the proofs are
rigorous.
To conclude this section we derive some additional consequences of Propositions 2 and

3. Let us observe that in the O–R diagram the diagonal line F
(2)
x (η0)+η−η0 is parallel to
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the right asymptote η− µx and intersects the graph of F (2)x (η) at the point (η0, F (2)x (η0)).
Therefore, property P8 can be interpreted as follows. If a diagonal line (parallel to the

right asymptote) intersects the graph of F
(2)
x (η) at η = η0, then for η < η0, F

(2)
x (η) is

bounded from below by the line, and for η > η0, F
(2)
x (η) is bounded from above by the

line. Moreover, the bounding is strict except of the case of sup{Fx(ξ) | ξ < η0} = 1 or
Fx(η

0) = 1, respectively. Setting η0 = µx we obtain the following proposition (Figure 7.4).

Proposition 4. If E{x̃2} < ∞, then σ̄x ≥ δ̄x and this inequality is strict except of the
case σ̄x = δ̄x = 0.

Proof. From P8 in Proposition 2, F
(2)
x (η) > F

(2)
x (µx) + η − µx for all η < µx, since

sup{Fx(ξ) | ξ < µx} < 1. Hence, in the case of F (2)x (µx) > 0, one has 12 σ̄2x > 1
2 δ̄
2
x and

σ̄x > δ̄x. Otherwise σ̄x = δ̄x = 0.

Recall that, due to the Lyapunov inequality for absolute moments (Kendall and Stuart,
1958), the standard deviation and the absolute deviation satisfy the following inequality:

σx ≥ δx. (3.6)

Proposition 4 is its analogue for absolute and standard semideviations.
While considering two random variables x̃ and ỹ in the common O–R diagram one may

easily notice that, if µx < µy, then the right asymptote of F
(2)
x (the diagonal line η − µx)

must intersect the graph of F
(2)
y (η) at some η0. By property P8, F

(2)
x (η) ≥ η−µx ≥ F (2)y (η)

for η ≥ η0. Moreover, since η−µy is the right asymptote of F (2)y (property P7), the exists

η1 > η0 such that F
(2)
x (η) > F

(2)
y (η) for η ≥ η1. Thus, from the O–R diagram one can

easily derive the following, commonly known, necessary condition for the SSD dominance
(Fishburn, 1980; Levy, 1992).

Proposition 5. If x̃ �
SSD
ỹ, then µx ≥ µy.

While considering in the common O–R diagram two random variables x̃ and ỹ with

equal expected values µx = µy, one may easily notice that the functions F
(2)
x and F

(2)
y

have the same asymptotes. It leads us to the following commonly known result (Fishburn,
1980; Levy, 1992).

Proposition 6. For random variables x̃ and ỹ with equal means µx = µy

x̃ �SSD ỹ ⇒ σ2x ≤ σ2y , (3.7)

x̃ ≻
SSD
ỹ ⇒ σ2x < σ

2
y . (3.8)

4 Absolute deviation as risk measure

In this section we analyze the mean–risk model with the risk defined by the absolute

semideviation δ̄ given by (1.1). Recall that δ̄x = F
(2)
x (µx) (Corollary 2) and it represents

the largest vertical diameter of the (downside) dispersion space. Hence, δ̄ is a well defined
geometrical characteristic in the O–R diagram.
Consider two random variables x̃ and ỹ in the common O–R diagram (Figure 7.5). If

x̃ �SSD ỹ, then, by the definition of SSD, F
(2)
x is bounded from above by F

(2)
y , and, by
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Proposition 5, µx ≥ µy. For η ≥ µy, F (2)y (η) is bounded from above by δ̄y+η−µy (second
inequality of P8 in Proposition 2). Hence, δ̄x = F

(2)
x (µx) ≤ F (2)y (µx) ≤ δ̄y + µx − µy. This

simple analysis of the O–R diagram allows us to derive the following necessary condition
for the SSD dominance.

Proposition 7. If x̃ �SSD ỹ, then µx ≥ µy and µx − δ̄x ≥ µy − δ̄y, where the second
inequality is strict whenever µx > µy .

Proof. Due to the considerations preceding the proposition, we only need to prove that
µx − δ̄x > µy − δ̄y whenever x̃ �SSD ỹ and µx > µy. Note that from the second inequality
of P8 (η = µx, η0 = µy), in such a case,

δ̄x = F
(2)
x (µx) ≤ F (2)x (µy) + (µx − µy) sup{Fx(ξ) | ξ < µx} < δ̄y + µx − µy.

Proposition 7 says that the µ/δ̄ mean–risk model is consistent with the SSD dominance
by the rule (2.4) with α = 1. Therefore, a µ/δ̄ comparison leads to guaranteed results in
the sense that

µx − λδ̄x > µy − λδ̄y for some 0 < λ ≤ 1 ⇒ ỹ 6�SSD x̃.

For problems of choice among risky alternatives in a given feasible set, due to Corollary 1,
the following observation can be made.

Corollary 4. Except for random variables with identical mean and absolute semidevia-
tion, every random variable x̃ ∈ Q that is maximal by µx− λδ̄x with 0 < λ ≤ 1 is efficient
by the SSD rules.

The upper bound on the trade-off coefficients λ in Corollary 4 cannot be increased for
general distributions. For any ε > 0 there exist random variables x̃ ≻SSD ỹ such that
µx > µy and µx − (1 + ε)δ̄x = µy − (1 + ε)δ̄y. As an example one may consider two finite
random variables: x̃ defined as P{x̃ = 0} = 1

1 + ε
, P{x̃ = 1} = ε

1 + ε
; and ỹ defined as

P{ỹ = 0} = 1.
Konno and Yamazaki (1991) introduced the portfolio selection model based on the µ/δ

mean–risk model. The model is very attractive computationally, since (for finite random
variables) it leads to linear programming problems. Note that the absolute deviation δ is
a symmetric measure and the absolute semideviation δ̄ is its half. Hence, Proposition 7 is
also valid (with factor 1/2) for the µ/δ mean–risk model. Thus, for the µ/δ model there
exists a bound on the trade-offs such that for smaller trade-offs the model is consistent
with the SSD rules. Specifically, due to Corollary 4, the following observation can be
made.

Corollary 5. Except for random variables with identical mean and absolute deviation,
every random variable x̃ ∈ Q that is maximal by µx − λδx with 0 < λ ≤ 1/2 is efficient by
the SSD rules.

The upper bound on the trade-off coefficients λ in Corollary 5 can be substantially
increased for symmetric distributions.
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Proposition 8. For symmetric random variables x̃ and ỹ,

x̃ �
SSD
ỹ ⇒ µx ≥ µy and µx − δx ≥ µy − δy.

Proof. If x̃ �
SSD
ỹ then, due to Proposition 5, µx ≥ µy. From the second inequality of

P8 in Proposition 2,

1

2
δx = F

(2)
x (µx) ≤ F (2)x (µy) + (µx − µy) sup{Fx(ξ) | ξ < µx} ≤

1

2
δy +

1

2
(µx − µy),

since for symmetric random variables sup{Fx(ξ) | ξ < µx} ≤ 1/2. Hence, µx−δx ≥ µy−δy.

For problems of choice among risky alternatives in a given feasible set, Propositions 1
and 8 imply the following result.

Corollary 6. Within the class of symmetric random variables, every random variable
x̃ ∈ Q that is maximal by µx − λσx with 0 < λ < 1, is efficient by the SSD rules.

The bound on the trade-off coefficient λ in Corollary 6 cannot be increased. There
exist symmetric random variables x̃ ≻SSD ỹ such that µx > µy and µx − δx = µy − δy. As
an example one may consider two finite random variables: x̃ defined as P{x̃ = 0} = 0.5,
P{x̃ = 4} = 0.5; and ỹ defined as P{ỹ = 0} = 0.5, P{ỹ = 2} = 0.5.
It follows from Corollary 4 that the optimal solution of the problem

max{µx − λ δ̄x : x̃ ∈ Q}, 0 < λ ≤ 1 (4.1)

is efficient by the SSD rules, if it is unique. In the case of multiple optimal solutions,
though, we only know that the optimal set of (4.1) contains a solution which is efficient by
SSD rules. The optimal set may contain also some SSD dominated solutions. A question
arises how different can the random variables be that generate a tie (are indifferent) in the
µ/δ̄ mean–risk model. Absolute semideviation is a linear measure of the dispersion space
and therefore many different distributions may tie in the µ/δ̄ comparison. Note that two
random variables x̃ and ỹ with the same expected value µx = µy are µ/δ̄ indifferent if

F
(2)
x (µx) = F

(2)
y (µx), independently of values of F

(2)
x (η) and F

(2)
y (η) for all other η 6= µx

(Figure 7.6)2. As an extreme one may consider the case when F
(2)
x (η) < F

(2)
y (η) for

all η ∈ R except for η = µx = µy, and despite of that x̃ and ỹ are µ/δ̄ indifferent.
Therefore, the µ/δ̄ model, although consistent with the SSD dominance for bounded trade-
offs, dramatically needs some additional regularization to resolve ties in comparisons.
Ties in the µ/δ̄ model can be resolved with additional comparisons of standard devi-

ations or variances. Indeed, a tie in the µ/δ̄ may occur only in the case of equal means,
and this is exactly the case when Proposition 6 applies. We can simply select from x̃ and
ỹ the one that has a smaller standard deviation. It can be formalized as the following
lexicographic comparison

(µx − λδ̄x,−σx) ≥lex (µy − λδ̄y,−σy) ⇔ µx − λδ̄x > µy − λδ̄y or

µx − λδ̄x = µy − λδ̄y and − σx ≥ −σy.
2Consider two finite random variables: x̃ defined as P{x̃ = −20} = 0.5, P{x̃ = 20} = 0.5; and ỹ defined

as P{ỹ = −1000} = 0.01, P{ỹ = 0} = 0.98, P{ỹ = 1000} = 0.01. They are µ/δ̄ indifferent, because

µx = µy = 0 and δ̄x = δ̄y = 10. Nevertheless, x̃ ≻SSD ỹ and F
(2)
x (η) < F

(2)
y (η) for all 0 < |η| < 1000.
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The lexicographic relation defines a linear order. Hence, for problems of choice among
risky alternatives in a given feasible set, the lexicographic maximization of (µ − λδ̄,−σ)
is well defined. It has two phases: the maximization of µ−λδ̄ within the feasible set, and
the selection of the optimal solution that has the smallest standard deviation σ. Owing
to (3.8), such a selection results in SSD efficient solutions.

Corollary 7. Every random variable x̃ ∈ Q that is lexicographically maximal by (µx −
λδ̄x,−σx) with 0 < λ ≤ 1 is efficient by the SSD rules.

For the µ/δ portfolio selection model (Konno and Yamazaki, 1991) the results of our
analysis can be summarized as follows. While identifying the µ/δ efficient frontier by
parametric optimization

max{µx − λ δx : x̃ ∈ Q} (4.2)

for trade-off λ varying in the interval (0, 0.5] the corresponding image in the µ/δ space
represents SSD efficient solutions. Thus it can be used as the mean–risk map to seek a
satisfactory µ/δ compromise. It does not mean, however, that the solutions generated
during the parametric optimization (4.2) are SSD efficient. Therefore, having decided on
some values of µ and δ one should apply the regularization technique (minimization of
standard deviation) to select a specific portfolio which is SSD efficient.

5 Standard semideviation as risk measure

In this section we analyze the mean–risk model with the risk defined by the standard
semideviation σ̄ given by (1.2). Recall that the standard semideviation is the square root
of the semivariance which equals to the doubled area of the downside dispersion space
(Corollary 3). Hence, σ̄ is a well defined geometrical characteristic in the O–R diagram.
Consider two random variables x̃ and ỹ in the common O–R diagram (Figure 7.7). If

x̃ �SSD ỹ, then, by the definition of SSD, F
(2)
x is bounded from above by F

(2)
y , and, by

Proposition 5, µx ≥ µy . Due to the convexity of F (2)x , the downside dispersion space of x̃
is no greater than the downside dispersion space of ỹ plus the area of the trapezoid with

the vertices: (µy, 0), (µx, 0), (µx, F
(2)
x (µx)) and (µy, F

(2)
y (µy)). Formally,

1

2
σ̄2x ≤

1

2
σ̄2y +

1

2
(µx − µy)(δ̄x + δ̄y). (5.1)

This inequality allows us to derive new necessary conditions for the consistency with SSD
of the bicriteria mean–risk model using standard semideviation as the risk measure.

Proposition 9. If x̃ �SSD ỹ, then µx ≥ µy and µx − σ̄x ≥ µy − σ̄y, where the second
inequality is strict whenever µx > µy .

Proof. If x̃ �SSD ỹ then, due to Proposition 5, µx ≥ µy. Moreover, inequality (5.1) is
valid. From Proposition 4 we have σ̄x ≥ δ̄x and σ̄y ≥ δ̄y. Using these inequalities in (5.1)
we get

σ̄2x − σ̄2y ≤ (µx − µy)(σ̄x + σ̄y).
Hence, σ̄x − σ̄y ≤ µx − µy, and finally µx − σ̄x ≥ µy − σ̄y.
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Moreover, from Proposition 4, σ̄x = δ̄x and σ̄y = δ̄y can occur only if σ̄x = σ̄y = 0.
Hence,

x̃ �
SSD
ỹ and µx > µy ⇒ µx − σ̄x > µy − σ̄y,

which completes the proof.

The message of Proposition 9 is that the µ/σ̄ mean–risk model is consistent with
the SSD dominance by the rule (2.4) with α = 1. Therefore, µ/σ̄ comparisons lead to
guaranteed results in the sense that

µx − λσ̄x > µy − λσ̄y for some 0 < λ ≤ 1 ⇒ ỹ 6�SSD x̃.

For problems of choice among risky alternatives in a given feasible set, Corollary 1 results
in the following observation.

Corollary 8. Except for random variables with identical mean and standard semidevia-
tion, every random variable x̃ ∈ Q that is maximal by µx−λσ̄x with 0 < λ ≤ 1 is efficient
by the SSD rules.

The upper bound on the trade-off coefficients λ in Corollary 8 cannot be increased for
general distributions. For any ε > 0 there exist random variables x̃ ≻SSD ỹ such that
µx > µy and µx − (1 + ε)σ̄x = µy − (1+ ε)σ̄y. As an example one may consider two finite
random variables: x̃ defined as P{x̃ = 0} = (1 + ε)−2, P{x̃ = 1} = 1 − (1 + ε)−2; and
ỹ = 0.
It follows from Corollary 8 that the optimal solution of the problem

max{µx − λ σ̄x : x̃ ∈ Q}, 0 < λ ≤ 1, (5.2)

is efficient by the SSD rules, if it is unique. In the case of nonunique optimal solutions,
however, we only know that the optimal set of (4.1) contains a solution which is efficient by
SSD rules. Thus, similar to the µ/δ̄ model, the µ/σ̄ model may generate ties (Figure 7.8)
and the optimal set of (5.2) may contain also some SSD dominated solutions. However,
two random variables that generate a tie (are indifferent) in the µ/σ̄ mean–risk model
cannot be so much different as in the µ/δ̄ model. Standard semideviation σ̄x is an area
measure of the downside dispersion space and therefore it takes into account all values of

F
(2)
x (η) for η ≤ µx. Note that, if two random variables x̃ and ỹ generate a tie in the µ/σ̄
model, then

µx = µy and

∫ µx

−∞

F (2)x (ζ) dζ =

∫ µy

−∞

F (2)y (ζ) dζ.

Functions F (2)(η) are continuous and nonnegative. Hence, if x̃ �
SSD
ỹ generate a µ/σ̄

tie, then F
(2)
x (η) = F

(2)
y (η) for all η ≤ µx. Thus a tie in the µ/σ̄ model may happen for

x̃ ≻SSD ỹ but the SSD dominance x̃ over ỹ is then related to overperformances rather than
the underperformances. Summing up, the µ/σ̄ model needs some additional regularization
to resolve ties in comparisons, but it is not such a dramatic need as in the µ/δ̄ model.
Similar to the µ/δ̄ model, ties in the µ/σ̄ model can be resolved by additional compar-

isons of standard deviations or variances. In the case when comparison of µx − λσ̄x and
µy −λσ̄y results in a tie, one may select from x̃ and ỹ the one that has a smaller standard
deviation. It can be formalized as the following lexicographic comparison

(µx − λσ̄x,−σx) ≥lex (µy − λσ̄y,−σy) ⇔ µx − λσ̄x > µy − λσ̄y or

µx − λσ̄x = µy − λσ̄y and − σx ≥ −σy.
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For problems of choice among risky alternatives in a given feasible set, the lexicographic
maximization of (µ − λσ̄,−σ) has two phases again: maximization of µ − λσ̄ on the
feasible set, and selection of the optimal solution that has the smallest standard deviation
σ, if many optimal solutions occur. Due to (3.8), such a selection results in SSD efficient
solutions.

Corollary 9. Every random variable x̃ ∈ Q that is lexicographically maximal by (µx −
λσ̄x,−σx) with 0 < λ ≤ 1 is efficient by the SSD rules.

The mean–semivariance optimization approach was proposed by Markowitz (1959). It
is quite an intuitive modification of the mean–variance model, since an investor worries
about underperformance rather than overperformance. Nevertheless, it is less used in
portfolio optimization. One reason is that it is more difficult to compute the mean–
semivariance efficient frontier that for the mean–variance model. Still, Markowitz et al.
(1993) have developed a critical line algorithm for the mean–semivariance efficient frontier.
The use of semivariance σ̄2 or standard semideviation σ̄ in the mean–risk analysis

are commonly considered to be equivalent, with the former easier to implement. In fact,
both define exactly the same efficient set, since standard deviation is nonnegative and the
square function is strictly increasing for nonnegative arguments. However, our result that
the µ/σ̄ model with trade-offs bounded by 1 is consistent with the SSD rules cannot be
directly applied to the mean–semivariance model. Note that x̃ ∈ Q that is maximal by
µ− λσ̄2 may be not maximal by µ − (λσ̄x)σ̄, in general3. While comparing two random
variables x̃ and ỹ by the mean–semivariance trade-off analysis the following relationship
is valid

µx − λσ̄2x ≥ µy − λσ̄2y ⇔ µx − [λ(σ̄x + σ̄y)]σ̄x ≥ µy − [λ(σ̄x + σ̄y)]σ̄y.

Thus for problems where the µ/σ̄2 efficient set is bounded (like typical portfolio selection
problems), there exists an upper bound on the trade-off coefficients which guarantees that
for smaller trade-offs the corresponding mean–risk efficient solutions are also efficient by
the SSD rules. It explains the high number of SSD efficient solutions included in the µ/σ̄2

efficient set observed in experiments with real-life portfolio selection problems (Porter,
1974). The upper bound, though, may be very tight.

6 Standard deviation as risk measure

After the work of Markowitz (1952) the variance (or the standard deviation) is the most
frequently used risk measure in mean–risk models for portfolio selection. The O–R diagram
(Figure 7.3) shows the variance as a natural area measure of dispersion. Comparison of
random variables with equal means leads to guaranteed results (Proposition 6). However,
for general random variables x̃ and ỹ with unequal means, no relation involving their
standard deviations is known to be necessary for the second degree stochastic dominance
of x̃ over ỹ.
In the case of symmetric distributions one has σ =

√
2σ̄, and σ̄ in Proposition 9 can

be replaced with standard deviation σ multiplied by factor
√
2/2. It turns out, however,

that for symmetric distributions the relation between δ̄ and σ̄ can be described in more
detail.

3Consider two random variables x̃ and ỹ with µx = 0, σ̄x = 1 and µy = 1, σ̄y = 2, respectively. For
λ = 0.4, µx − 0.4σ̄

2
x = −0.4 > −0.6 = µy − 0.4σ̄

2
y but µx − 0.4σ̄x = −0.4 < 0.2 = µy − 0.4σ̄y.
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Proposition 10. For symmetric random variables x̃ and ỹ,

x̃ �
SSD
ỹ ⇒ µx ≥ µy and µx − σx ≥ µy − σy. (6.1)

Proof. If x̃ �SSD ỹ then, by Proposition 5, µx ≥ µy. Moreover, inequality (5.1) is valid.
Lyapunov inequality (3.6) for symmetric variables yields σx ≥ 2δ̄x and σy ≥ 2δ̄y. Using
these inequalities in (5.1) we get

σ2x − σ2y ≤ (µx − µy)(σx + σy).

Hence, σx − σy ≤ µx − µy, and finally µx − σx ≥ µy − σy which completes the proof.

For problems of choice among risky alternatives in a given feasible set, Propositions 1
and 6 imply the following result.

Corollary 10. Within the class of symmetric random variables, every random variable
x̃ ∈ Q that is maximal by µx − λσx with 0 < λ < 1, is efficient by the SSD rules.

The bound on the trade-off coefficient in Corollary 10 is the best in the sense that
there exist symmetric random variables x̃ ≻SSD ỹ such that µx − σx = µy − σy. As an
example one may consider two finite random variables: x̃ defined as P{x̃ = 0} = 0.5,
P{x̃ = 4} = 0.5; and ỹ defined as P{ỹ = 0} = 0.5, P{ỹ = 2} = 0.5. Therefore, the upper
bound on the trade-off coefficients λ in Corollary 10 cannot be increased.
In the general case of nonsymmetric random variables, standard deviation is not a

symmetric measure and there is no direct analogue of Proposition 9 for the standard
deviation. Some similar, but much weaker, necessary conditions for the SSD dominance
can be derived for distributions bounded from above (random variables with an upper
bounded support). Note that, if x̃ is upper bounded by a real number Mx (i.e. P{x̃ >
Mx} = 0), then Mx ≥ µx and for η ≥ Mx, Fx(η) = 1. Thus for η ≥ Mx the function
F
(2)
x (η) coincides with its right asymptote (F

(2)
x (η) = η − µx). Hence

σ2x = 2

∫ µx

−∞

F (2)x (ζ) dζ + 2

∫ Mx

µx
[F (2)x (ζ)− (ζ − µx)] dζ.

Consider two random variables x̃ and ỹ such that P{x̃ > Mx} = 0 and P{ỹ > My} = 0
in the common O–R diagram (Figure 7.9). If x̃ �

SSD
ỹ, then, by the definition of SSD,

F
(2)
x is bounded from above by F

(2)
y and, by Proposition 5, one has µx ≥ µy. Due to the

convexity of F
(2)
x , the area between this function and its asymptotes cannot be greater

than the area between F
(2)
y and its asymptotes plus the area of the trapezoid defined by

the vertices: (µy, 0), (µx, 0), (Mx,Mx−µx) and (My,My−µy). This is valid forMx > My
(like in Figure 7.9), as well as for Mx ≤My. Formally,

1

2
σ2x ≤

1

2
σ2y +

1

2
(µx − µy)[(Mx − µx) + (My − µy)]. (6.2)

This inequality4 allows for the formulation of the following necessary conditions for the
bicriteria mean–risk model with the standard deviation used as the risk measure.

4Inequality (6.2) is similar but stronger than the inequality derived by Levy (1992, Theorem 9, p.570),
which reads: σ2x − σ

2
y ≤ (µx − µy)(2max{Mx,My} − µx − µy).
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Proposition 11. Suppose that a common upper bound h > 0 is known for
x̃− µx
σx

and

ỹ − µy
σy

. Then

x̃ �
SSD
ỹ ⇒ µx ≥ µy and µx −

1

h
σx ≥ µy −

1

h
σy.

Proof. If x̃ �SSD ỹ, then due to Proposition 5, µx ≥ µy. Further, note that inequality
(6.2) can be rewritten as

σ2x − σ2y ≤ h(σx + σy)(µx − µy).

This immediately yields the required result.

Corollary 11. Within the class of random variables such that P{x̃ > µx + hσx} = 0,
every random variable that is maximal by µx − λσx with 0 < λ < 1/h, is efficient by the
SSD rules.

Note that Proposition 11 is applicable to any pair of finite random variables. Similarly,
Corollary 11 shows that in the case of a portfolio selection problem with finite random
variables (for example defined by historical data), there exists a positive bound on the
trade-off coefficient for the standard deviation which guarantees that for smaller trade-offs
the corresponding mean–risk efficient solutions are also efficient by the SSD rules.
Analogously to the case of the semivariance discussed in the previous section, an up-

per bound on the variance trade-off coefficients exists which guarantees that µ/σ2 efficient
solutions are also efficient by the SSD rules. However, the upper bound may be very tight.
Corollary 11 provides a theoretical explanation for the results of numerous experimen-
tal comparisons of mean–variance and SSD efficient sets on real–life portfolio selection
problems (Porter, 1974, and references therein). Most of them, like that performed by
Porter and Gaumnitz (1972) on over 900 portfolios of securities randomly selected from
the Chicago Price Relative File, provided some support for the idea that mean–variance
and SSD choices are empirically similar. The main difference was the tendency of the
mean–variance efficient set to include some low mean, low variance portfolios that were
eliminated by the SSD rules. Although efficient in the mean–variance analysis, they obvi-
ously correspond to large trade-off coefficients for the variance.

7 Concluding remarks

The second degree stochastic dominance relation is based on an axiomatic model of risk-
averse preferences, but does not provide us with a simple computational recipe.
The mean–risk approach quantifies the problem in only two criteria: the mean, repre-

senting the expected outcome, and the risk: a scalar measure of the variability of outcomes
(usually, a central moment or the corresponding deviation). This is appealing to decision
makers and allows a simple trade-off analysis, analytical or geometrical.
In the paper we have analyzed the consistency of these two approaches. We have shown

that standard semideviation (square root of semivariance) as the risk measure makes the
mean–risk model consistent with the second degree stochastic dominance, provided that
the trade-off coefficient is bounded by 1. Similar results have been obtained for the absolute
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semideviation as the risk measure. These results are valid for all (possibly nonsymmetric)
random variables for which these moments are well-defined. In the case of symmetric
random variables the same results are valid for the standard and absolute deviations,
respectively.
In many applications, especially in portfolio selection problems, the mean–risk model

is analyzed by the critical line algorithm. This is a technique for identifying the mean–risk
efficient frontier via parametric optimization with a varying trade-off coefficient. Our re-
sults guarantee that when risk is measured by the standard or the absolute semideviation
(the standard or the absolute deviation in the case of symmetric distributions), the part
of the efficient frontier (in the mean–risk image space) corresponding to trade-off coeffi-
cients smaller than 1 is also efficient by the SSD rules. In some way our analysis justifies
the critical line methodology for typical risk measures, provided that it is not extended
too far in terms of the trade-off coefficient. It also explains some results of experimental
comparisons of the SSD and mean–risk efficient sets for portfolio selection problems. Ad-
ditionally, our results provide simple SSD dominance tests which can eliminate many SSD
inferior random variables by computation of simple statistics.
In the analysis we have used a new graphical tool, the Outcome–Risk diagram, which

appears to be particularly convenient for comparing uncertain outcomes and examining
SSD dominance. Typical dispersion statistics, commonly used as risk measures (absolute
deviation and semideviation, variance and semivariance) are well depicted in the O–R
diagram, and it may be useful for various types of comparisons of uncertain outcomes,
especially in computerized decision support systems.
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Appendix

Proof of Proposition 2

P1. Simple consequence from definition of F
(2)
x .

P2. Simple consequence from definition of F
(2)
x .

P3. Integrating by parts on gets F (2)x (η) = ηFx(η)−
∫ η

−∞

ξ dFx(ξ). Hence

F (2)x (η) =
∫ η

−∞

(η − ξ) dFx(ξ) =
∫ η

−∞

(η − ξ) Px(dξ) = P{x̃ ≤ η}E{η− x̃|x̃ ≤ η}.

P4. 0 ≤ lim
η→−∞

F (2)x (η) = lim
η→−∞

∫ η

−∞

(η − ξ) Px(dξ) ≤ lim
η→−∞

∫ η

−∞

|ξ| Px(dξ) = 0,
because E{|x̃|} <∞.

P5. F (2)x (η)− (η− µx) =
∫ η

−∞

(η− ξ) Px(dξ)− η+ µx =
∫ η

−∞

η Px(dξ) +

∫

∞

η
ξ Px(dξ)− η

=

∫

∞

η
(ξ − η) Px(dξ) = P{x̃ ≥ η}E{x̃− η|x̃ ≥ η}.

P6. Simple consequence from P5.

P7. 0 ≤ lim
η→∞
[F (2)x (η)− (η − µx)] = limη→∞

∫

∞

η
(ξ − η) Px(dξ) ≤ lim

η→∞

∫

∞

η
ξ Px(dξ) = 0,

similarly to P4.

P8. If η < η0, then

F (2)x (η
0)− F (2)x (η) =

∫ η0

η
Fx(ξ)dξ ≤ (η0 − η) sup{Fx(ξ) | ξ < η0} ≤ η0 − η.

Interchanging η and η0 we obtain the second inequality.

Proof of Proposition 3

By Fubini’s theorem,

∫ η

−∞

F (2)x (ζ) dζ =

∫ η

−∞

[

∫ ζ

−∞

(ζ − ξ)Px(dξ)
]

dζ =

∫ ∫

ζ≤η
ξ≤ζ

(ζ − ξ) Px(dξ) dζ

=
∫ η

−∞

[

∫ η

ξ
(ζ − ξ)dζ

]

Px(dξ) =
1

2

∫ η

−∞

(η − ξ)2 Px(dξ)

=
1

2
P{x̃ ≤ η}E{(η− x̃)2|x̃ ≤ η}.

Analogously,
∫

∞

η
[F (2)x (ζ)− (ζ − η)] dζ =

∫

∞

η

[

∫

∞

ζ
(ξ − ζ)Px(dξ)

]

dζ =

∫ ∫

η≤ζ
ζ≤ξ

(ξ − ζ) Px(dξ) dζ

=
∫

∞

η

[

∫ ξ

η
(ξ − ζ)dζ

]

Px(dξ) =
1

2

∫

∞

η
(ξ − η)2 Px(dξ)

=
1

2
P{x̃ ≥ η}E{(x̃− η)2|x̃ ≥ η}.
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