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The Adaptive Dynamics Network at
IIASA fosters the development of new
mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term implica-
tions of adaptive processes in systems
of limited growth, the Adaptive Dy-
namics Network brings together scien-
tists and institutions from around the
world with IIASA acting as the central
node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability to
provide causal explanations for phenomena that are highly improbable in the physico-
chemical sense. Yet, until recently, many facts in biology could not be accounted for in
the light of evolution. Just as physicists for a long time ignored the presence of chaos,
these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Origin
of Species” sparked off the whole evolutionary revolution, oddly enough, the popula-
tion genetic framework underlying the modern synthesis holds no clues to speciation
events. A second illustration is the more recently appreciated issue of jump increases
in biological complexity that result from the aggregation of individuals into mutualistic
wholes.
These and many more problems possess a common source: the interactions of individ-
uals are bound to change the environments these individuals live in. By closing the
feedback loop in the evolutionary explanation, a new mathematical theory of the evolu-
tion of complex adaptive systems arises. It is this general theoretical option that lies at
the core of the emerging field of adaptive dynamics. In consequence a major promise
of adaptive dynamics studies is to elucidate the long-term effects of the interactions
between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary both
for validation and for management problems. For example, empirical evidence indi-
cates that to control pests and diseases or to achieve sustainable harvesting of renewable
resources evolutionary deliberation is already crucial on the time scale of two decades.
The Adaptive Dynamics Network has as its primary objective the development of mathe-
matical tools for the analysis of adaptive systems inside and outside the biological realm.
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No. 44 Meszéna G, KisdíE, Dieckmann U, Geritz SAH, Metz JAJ:
Evolutionary Optimisation Models and Matrix Games in the Unified Perspec-
tive of Adaptive Dynamics.
IIASA Interim Report IR-00-039.

No. 45 Parvinen K, Dieckmann U, Gyllenberg M, Metz JAJ:
Evolution of Dispersal in Metapopulations with Local Density Dependence
and Demographic Stochasticity.
IIASA Interim Report IR-00-035.

No. 46 Doebeli M, Dieckmann U:
Evolutionary Branching and Sympatric Speciation Caused by Different Types
of Ecological Interactions.
IIASA Interim Report IR-00-040.

No. 47 Heino M, Hanski I:
Evolution of Migration Rate in a Spatially Realistic Metapopulation Model.
IIASA Interim Report IR-00-044.

No. 48 Gyllenberg M, Parvinen K, Dieckmann U:
Evolutionary Suicide and Evolution of Dispersal in Structured Metapopula-
tions.
IIASA Interim Report IR-00-056.

Issues of the IIASA Studies in Adaptive Dynamics series can be obtained free of charge.
Please contact:

Adaptive Dynamics Network
International Institute for Applied Systems Analysis
Schlossplatz 1
A–2361 Laxenburg
Austria

Telephone +43 2236 807, Telefax +43 2236 71313, E-Mail adn@iiasa.ac.at,
Internet http://www.iiasa.ac.at/Research/ADN



Contents

1 Introduction 1

2 Model description 1

2.1 Resident dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Resident equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Basic reproduction ratio of the resident . . . . . . . . . . . . . . . . . . . . 4
2.4 Invasion fitness of the mutant . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Without catastrophes the strategy not to disperse is an ESS 5

4 Continuous transition to extinction 7

4.1 Limit patch size distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Evolutionary repulsion of the extinction boundary . . . . . . . . . . . . . . 8
4.3 First example: Constant catastrophe rate . . . . . . . . . . . . . . . . . . . 8

5 Discontinuous transition to extinction 9

5.1 A discontinuous transition to extinction is necessary for evolutionary suicide 9
5.2 Second example: Size-dependent catastrophe rate . . . . . . . . . . . . . . . 10
5.3 Third example: Allee effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.4 A discontinuous transition to extinction is not sufficient for evolutionary

suicide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Discussion 13

A Cumulative formulation of the model 16



Abstract

In this article we study the evolution of dispersal in a structured metapopulation model.
The metapopulation consists of a large (infinite) number of local populations living in
patches of habitable environment. Dispersal between patches is modelled by a disperser
pool and individuals in transit between patches are exposed to a risk of mortality. Oc-
casionally, local catastrophes eradicate a local population: all individuals in the affected
patch die, yet the patch remains habitable. The rate at which such disasters occur can de-
pend on the local population size of a patch. We prove that, in the absence of catastrophes,
the strategy not to migrate is evolutionarily stable. It is also convergence stable unless
there is no mortality during dispersal. Under a given set of environmental conditions, a
metapopulation may be viable and yet selection may favor dispersal rates that drive the
metapopulation to extinction. This phenomenon is known as evolutionary suicide. We
show that in our model evolutionary suicide can occur for certain types of size-dependent
catastrophes. Evolutionary suicide can also happen for constant catastrophe rates, if lo-
cal growth within patches shows an Allee effect. We study the evolutionary bifurcation
towards evolutionary suicide and show that a discontinuous transition to extinction is a
necessary condition for evolutionary suicide to occur. In other words, if population size
smoothly approaches zero at a boundary of viability in parameter space, this boundary is
evolutionarily repelling and no suicide can occur.
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Evolutionary suicide and evolution of dispersal

in structured metapopulations

Mats Gyllenberg

Kalle Parvinen*

Ulf Dieckmann

1 Introduction

Most natural populations live in heterogeneous environments. A metapopulation consists
of several local populations living in habitat patches. In the classical Levins (1969,1970)
metapopulation model, local population dynamics are neglected and habitat patches are
assumed to be equal in all respects. In nature this is usually not the case, therefore
structured metapopulation models (Gyllenberg et al. 1997; Gyllenberg and Hanski 1992,
1997; Hanski and Gyllenberg 1993, 1997) are more realistic and more interesting to study.

Dispersal between habitat patches is a key feature of metapopulation ecology. Recently,
the evolution of dispersal has raised a lot of interest (Gandon 1999; Gandon and Michalakis
1999; Gyllenberg and Metz 1999; Heino and Hanski 2000; Metz and Gyllenberg 2001;
Parvinen 1999; Parvinen et al. 2000; Ronce et al. 2000). We study the evolution of
dispersal in a metapopulation evolving according to the model of Gyllenberg and Metz
(1999) and Metz and Gyllenberg (2001).

The paper is structured as follows. In Section 2 we present the metapopulation model
and derive expressions for steady states, the basic reproduction ratio and invasion fitness.
In Section 3 we show that without catastrophes the strategy not to disperse is evolution-
arily stable. It is also convergence stable (Christiansen 1991), i.e., it is an evolutionary
attractor, unless there is no mortality during dispersal. A transition from a viable parame-
ter region to a region predicting extinction can occur in several different ways, i.e., through
different kinds of bifurcation. In Section 4 we study transitions to extinction where the
equilibrium immigration rate, and thus the total metapopulation size, continuously goes
to zero as the dispersal rate varies. We show that for such continuous transitions to extinc-
tion the boundaries of viability are evolutionarily repelling: therefore evolutionary suicide
cannot occur. In Section 5 we study discontinuous transititions to extinction. We present
two ecological scenarios that can give rise to evolutionary suicide. We prove and illustrate
that a discontinuous transition to extinction is a necessary, but not a sufficient condition
for evolutionary suicide.

2 Model description

We consider a metapopulation with a large number of identical habitat patches. This
number is assumed to be large enough for the metapopulation dynamics to be well ap-
proximated by a metapopulation with infinitely many patches. Each patch can support a

*Author for correspondence
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local population. The metapopulation is structured by the size x of local populations. The
state of the metapopulation is thus the distribution n of local populations (Gyllenberg et
al. 1997). The size x of local populations grows or decreases due to birth and death events
according to local density regulation with a per capita growth rate g(x). Patches are
connected by dispersal: individuals leave their patch at a rate k(x) and enter a disperser
pool. k(x) is the emigration rate or dispersal rate. The density of dispersers is denoted
by D. Individuals in the disperser pool experience mortality at a per capita rate ν and
they leave the pool and immigrate into a patch at a per capita rate α. The quantity

I = αD (1)

is the immigration rate to each patch, which for simplicity we from now on call immigration
rate. The quantity

π =
α

α + ν
(2)

is the probability that a disperser survives migration. Correspondingly, ρ = 1 − π =
ν/(α + ν) is the probability that a disperser dies during migration. We therefore refer to
ρ as the dispersal risk.

Local populations may go extinct as a result of catastrophes, which are assumed to
occur at a size-specific rate µ(x). After a catastrophe, the patch is immediately recolonized
by migrants from the disperser pool. We assume that the rates g, k, and µ are continuous
functions of local population size.

In the following subsections, we first investigate the dynamics of a metapopulation of
resident individuals with dispersal rate k(x), and then analyze how the resident metapop-
ulation responds to the arrival of mutants with a different dispersal rate kmut(x). All
theorems apply for size-dependent dispersal strategies, but in the examples dispersal is
assumed to be constant k(x) = k.

2.1 Resident dynamics

As our basic metapopulation model we use the one introduced by Gyllenberg and Metz
1999. The local population growth, including emigration and immigration, is given by

dx

dt
= f(x, I(t)), (3)

with

f(x, I) = g(x)x− k(x)x+ I. (4)

At the metapopulation level, we study the density n(t, x) of local population sizes x.
The dynamics of this density can be described by the partial differential equation,

∂

∂t
n(t, x) +

∂

∂x
[f(x, I(t))n(t, x)] = −µ(x)n(t, x), (5)

which has to obey the following side condition at x = 0:

I(t)n(t, 0) =

∫

∞

0
µ(x)n(t, x)dx. (6)

The dynamics of the immigration rate is given by

d

dt
I(t) = −(α+ ν)I(t) + α

∫

∞

0
k(x)xn(t, x)dx. (7)
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As a matter of fact, we consider the model (5)-(7) as a shorthand notation for a
mathematically precise model in the so-called cumulative formulation (Diekmann et al.
1998,2001; Gyllenberg et al. 1997).

One of the reasons for this is that the metapopulation state corresponding to metapop-
ulation extinction is the point mass concentrated at the origin and this cannot be rep-
resented by a density n. Another reason is that we shall consider the situation of no
catastrophes (µ = 0), in which case the boundary condition (6) becomes meaningless.
And last but not least, it follows from the results by Diekmann et al. (2001) that the
model in the cumulative formulation is well-posed. Diekmann et al. (2000) gave examples
of innocent looking hyperbolic systems very similar to (5)-(7), that lack unique solutions.
We refer to Gyllenberg and Metz (1999) for a complete cumulative model formulation. In
the Appendix we derive expressions for the steady states in the cases µ = 0 and I = 0,
which require the cumulative formulation.

2.2 Resident equilibria

For a given constant value I > 0 of the input, we infer from (5)-(6) that the unique
distribution of local population sizes satisfying ∂

∂tn(t, x) = 0 is

n(x, I) =

{

1
l(I)
Π(x,I)
f(x,I) if x < x̃(I)

0 otherwise,
(8)

where

x̃(I) = inf {x > 0|f(x, I) = 0} (9)

is the supremum of attainable sizes. Two other functions are used in (8). First,

Π(x, I) = exp

[

−

∫ x

0

µ(ξ)

f(ξ, I)
dξ

]

(10)

is the probability that a local population will survive at least to size x. Second,

l(I) =

∫ x̃(I)

0

1

f(x, I)
Π(x, I)dx (11)

is the expected lifetime of a local population. From (7) we see that the equilibrium
immigration rate must satisfy the balance equation

I = π

∫ x̃(I)

0
k(x)xn(x, I)dx= π

E(I)

l(I)
, (12)

where

E(I) =

∫ x̃(I)

0

k(x)x

f(x, I)
Π(x, I)dx (13)

denotes the expected number of dispersers produced by a local population during its
entire life. Equation (12) therefore has the natural interpretation that, at equilibrium, the
immigration rate equals the emigration rate times the probability of surviving migration.
We denote equilibrium inputs, that is, solutions of (12), by I∗. The equilibrium local
population size distribution corresponding to I∗ is

n∗(x) = n(x, I∗). (14)



– 4–

(a) (b) (c)

0.2 0.4 0.6 0.8 1 1.2

0.05

I∗

k 0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.2

I∗

k 0.2 0.4 0.6 0.8

0.1

I∗

k

Figure 1: Dependence of the equilibrium immigration rate I∗ on the dispersal rate k in
different settings. (a) Constant catastrophes µ(x) = 0.4. (b) & (c) Catastrophe rate
µ decreases with local population size x according to (36) with µ(0) = 0.4 in (b) and
µ(0) = 1.2 in (c). Stable and unstable equilibria I∗ are shown as thick and thin curves,
respectively. Local growth is logistic with g(x) = 1− x. Parameters: α = 0.5, ν = 0.4.

2.3 Basic reproduction ratio of the resident

We define the basic reproduction ratioR as the mean number of arriving offspring produced
over the lifetime of a local population divided by the mean number of arrivals. When the
input I is constant, the mean number of arrivals equals l(I)I . Thus we obtain

Rres(I) = π
E(I)

l(I)I
. (15)

Observe that the steady-state condition (12) reduces to Rres(I) = 1, which means that
every arriving disperser exactly replaces itself. For a more abstract way of defining Rres(I)
as the spectral radius of the next-generation operator we refer to Diekmann et al. (1998),
Gyllenberg et al. (1997) and Gyllenberg and Metz (1999).

The number

Rres0 := lim
I→0

Rres(I) (16)

determines whether the resident population can spread in a virgin environment.

Theorem 1. The number Rres0 equals

Rres0 =

{

π
k(0)

µ(0)−g(0)+k(0) if µ(0)− g(0) + k(0) > 0

∞ otherwise.
(17)

Proof. Consider the quantity

Ē(I) =
E(I)

I
=

∫ x̃(I)

0

k(x)x

If(x, I)
Π(x, I)dx. (18)

By a change of variables, z = x/I , we obtain

Ē(I) =

∫ x̃(I)/I

0

k(zI)z

[g(zI)− k(zI)] z + 1
exp

[

−

∫ z

0

µ(ηI)

[g(ηI)− k(ηI)]η + 1
dη

]

dz. (19)

Let I → 0 to get

lim
I→0

Ē(I) =

∫

∞

0

k(0)z

[g(0)− k(0)]z + 1
exp

[

−

∫ z

0

µ(0)

[g(0)− k(0)] η + 1
dη

]

dz

=
k(0)

µ(0)[µ(0)− g(0) + k(0)]
.

(20)

The result (17) follows from this, from equation (15), and from the fact that limI→0 l(I) =
1/µ(0).
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If Rres0 > 1, the metapopulation is viable. The model can have multiple equilibria, as
can be seen in Figs. 1b and 1c. This was already noted by Gyllenberg and Hanski (1992)
for a very similar model with a different colonization rule. Therefore, Rres0 < 1 does not
necessarily imply extinction.

2.4 Invasion fitness of the mutant

When a mutant arrives in a patch where the resident population has size x0res, it feels the
local population size XI(t, x

0
res), where XI(t, x

0
res) is the solution of (3) with x(0) = x0res.

The expected number of dispersers per individual produced by a mutant population can
be written in two integral forms. In the first one the integration variable is the age of a
mutant colony, in the other one it is the resident population size;

Emut(x0res, I) =

∫

∞

0
kmut(XI(t, x

0
res)) exp

[

∫ t

0
g(XI(τ, x

0
res))

− kmut(XI(τ, x
0
res))− µ(XI(τ, x

0
res))dτ

]

dt

=

∫ x̃(I)

x0res

kmut(x)

f(x, I)
exp

[

∫ x

x0res

g(ξ)− kmut(ξ)− µ(ξ)

f(ξ, I)
dξ

]

dx.

(21)

The fitness of the mutant is therefore given by

Rmut(I∗) = π

∫ x̃(I)

0
Emut(xres, I

∗)n∗(xres)dxres

=
π

l(I∗)

∫

∞

0

Emut(XI∗(t, xres), I
∗)Π(XI∗(t, xres), I

∗)dt.

(22)

Based on this invasion fitness, which was derived by Gyllenberg and Metz (1999), frame-
work of adaptive dynamics (Metz et al. 996a; Geritz et al. 1997,1998) to analyze the
evolutionary dynamics of the metapopulation.

A strategy k∗ is an evolutionarily stable strategy (ESS) if it cannot be invaded by
other strategies (Maynard Smith and Price 1973, Maynard Smith 1982). A strategy k∗ is
convergence stable or an evolutionary attractor if the repeated invasion of nearby mutant
strategies into nearby resident strategies will lead to the convergence of resident strategies
towards k∗ (Christiansen 1991). A strategy that is both convergence stable and evolu-
tionarily stable is a continuously stable strategy or CSS (Eshel 1983). For the distinction
between evolutionary and convergence stability see also Taylor (1989). This terminology
might not be ideal, but has nevertheless become established in the literature.

3 Without catastrophes the strategy not to disperse is an

ESS

If there are no catastrophes, populations in all patches will grow towards the supremum size
x̃(I∗). It is therefore intuitively clear that the equilibrium local population size distribution
will be δx̃(I∗), a fact that will be proved in Lemma 1. At a demographic equilibrium there
is no advantage to dispersal; a dispersing individual will arrive at a patch that has the
same conditions as the one it has left. In fact, we shall prove that the strategy not to
disperse is evolutionarily stable in the absence of catastrophes. Furthermore, we shall
prove that it is a continuously stable strategy (CSS) if, in the absence of catastrophes,
there is positive dispersal risk: ρ > 0.
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The equilibrium distribution n∗ of local population sizes found in (14) is a density, that
is, an element of L1(R+). By the usual (Radon-Nikodym) embedding of L1 into M (the
space of all Borel measures), densities can be regarded as absolutely continuous measures.
In particular, it makes sense to speak about weak*-convergence of densities.

Lemma 1. Assume µ(x) = µ > 0 is independent of x. If µ = 0, then n∗ = δx̃(I∗).
Moreover, n∗ tends to δx̃(I) in the weak*-topology as µ→ 0.

Proof. That µ = 0 implies n∗ = δx̃(I) is proved in the Appendix.
When µ(x) = µ �= 0 then l(I) = 1/µ. Let H(x) be continuously differentiable. Inte-

grating by parts, we obtain

G(µ,H) =

∫ x̃(I)

0

H(x)n∗(x)dx =

∫ x̃(I)

0

H(x)
µ

f(x, I)
Π(x, I)dx

= H(0) +

∫ x̃(I)

0
H ′(x)Π(x, I)dx.

(23)

The integral is bounded and Π(x, I) → 1 for x < x̃(I) when µ → 0. By Lebesque’s
dominated convergence theorem we have

lim
µ→0

G(µ,H) = H(0) +

∫ x̃(I)

0

H ′(x)dx = H(x̃(I)). (24)

Since continuously differentiable functions are dense in the set of continuous functions,
the claim limµ→0G(µ,H) = H(x̃(I)) holds also when H is only continuous.

Using the weak*-convergence of the local population size distribution we can evaluate
explicitly the fitness of rare mutants and conduct the evolutionary analysis in the absence
of catastrophes.

Theorem 2. If µ = 0, the non-dispersing strategy k(x) = 0 is evolutionarily stable; it is
also an evolutionary attractor (convergence stable) if ν > 0.

Proof. According to Lemma 1, the fitness of the mutant is

Rmut(I∗) = πEmut(x̃(I∗), I∗)

= π

∫

∞

0

kmut(x̃(I
∗)) exp

[
∫ t

0

g(x̃(I∗))− kmut(x̃(I
∗))dτ

]

dt

=

{

π kmut(x̃(I∗))
kmut(x̃(I∗))−g(x̃(I∗))

if kmut( ˜x(I∗))− g(x̃(I∗)) > 0

∞ if kmut(x̃(I
∗))− g(x̃(I∗)) < 0.

(25)

As proved in the Appendix, I∗ = πk(x̃(I∗))x̃(I∗). Therefore, from f(x̃(I∗), I∗) = 0,

g(x̃(I∗)) = k(x̃(I∗))−
I∗

x̃(I∗)
= ρk(x̃(I∗)). (26)

Therefore, when kmut(x̃(I
∗)) > ρk(x̃(I∗)), we have

Rmut0 (I∗) =
αkmut(x̃(I

∗))

αkmut(x̃(I∗)) + ν[kmut(x̃(I∗))− kres(x̃(I∗))]
. (27)

The case ν = 0 is neutral, since then Rmut0 (I∗) = 1. If ν > 0 we easily see

Rmut0 (I∗)







= 1 if kmut(x̃(I
∗)) = kres(x̃(I

∗))
> 1 if kmut(x̃(I

∗)) < kres(x̃(I
∗))

< 1 if kmut(x̃(I
∗)) > kres(x̃(I

∗))
(28)

and Rmut0 (I∗) = π = α
α+ν < 1 if kres(x̃(I

∗)) = 0. Therefore, the strategy not to disperse is
continuously stable.
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(a) Supercritical bifurcation (b) Subcritical bifurcation
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Figure 2: Typical examples of (a) continuous and (b) discontinuous transitions to extinc-
tion. The equilibrium immigration rate I∗ is plotted against some parameter p. Stable
equilibria lie on the thick curve, unstable ones on the thin curve.

The evolutionary stability of zero dispersal in the absence of catastrophes has been
studied before. Hastings (1983) found this in a continuous-time model with a finite number
of patches. Parvinen (1999) investigated a discrete-time metapopulation model with a
finite number of patches without catastrophes and proved that within the model the
strategy not to migrate is a CSS, if the resident is at a fixed point equilibrium and there
is mortality during dispersal.

4 Continuous transition to extinction

The metapopulation is not viable for all parameter values. The change from viability
to extinction can happen through several different bifurcations. In this section we study
transitions to extinction, for which the equilibrium immigration rate goes to zero con-
tinuously as the dispersal rate k varies. A typical example is the situation in which the
solution corresponding to metapopulation extinction (I∗ = 0) loses its stability through a
supercritical bifurcation (see Fig. 2a).

4.1 Limit patch size distribution

If the immigration rate I becomes zero, patches will not be recolonized after a catastrophe
has occurred. Accordingly, the corresponding equilibrium size distribution n∗ is the trivial
one, δ0, with all patches being empty. Our next lemma shows that n∗ continuously depends
on I at δ0 with respect to the weak*-topology.

Lemma 2. I = 0 implies n∗ = δ0. Furthermore n∗ → δ0 in the weak*-topology as I∗ → 0.

Proof. That I = 0 implies n∗ = δ0 is proven in the Appendix.
Let H(x) be a continuously differentiable function. By partial integration we get

∫ x̃(I)

0

H(x)
Π(x, I)

f(x, I)
dx =

H(0)

µ(0)
+

∫ x̃(I)

0

d

dx

[

H(x)

µ(x)

]

Π(x, I)dx. (29)

The last integral is bounded, therefore Lebesques dominated convergence theorem can be
used. Since Π(0, I) = 1 and limI→0Π(x, I) = 0 when x > 0, the last integral tends to zero
for I → 0. The integral

∫ x̃(I)

0
H(x)

Π(x, I)

f(x, I)
dx→

H(0)

µ(0)
(30)
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for I → 0, if H/µ is bounded. Take H(x) = 1 to obtain limI→0 l(I) = 1/µ(0). Therefore

∫ x̃(I)

0
H(x)n∗(x)dx =

∫ x̃(I)

0
H(x)

Π(x, I)

l(I)f(x, I)
dx→ H(0) (31)

for I → 0. As in the proof of Lemma 1, the claim holds also when H is only continuous,
since continuously differentiable functions are dense in the set of continuous functions.

4.2 Evolutionary repulsion of the extinction boundary

When the resident population size is low, the mutant metapopulation will grow and pro-
duce dispersers as if it were in a virgin environment. Therefore the mutant’s fitness equals
Rres0 . This is proven in the following lemma.

Lemma 3.

lim
I→0

Rmut(I) = Rres0
∣

∣

kres=kmut
. (32)

Proof. According to Lemma 2

lim
I→0

Rmut(I) = π lim
I→0

Emut(0, I). (33)

The result (32) follows from

Emut(0, 0) =

∫

∞

0
kmut(0) exp

[
∫ t

0
[g(0)− kmut(0)− µ(0)]dτ

]

dt

=

{

kmut(0)
kmut(0)+µ(0)−g(0)

, if kmut(0) + µ(0)− g(0) > 0

∞ otherwise.

(34)

For those readers interested in adaptive dynamics theory we mention that Lemma 3 is
very closely related to the assumption S3 in section 6.3.3 of Metz et al. (996a).

If the value of an evolving parameter p is at the boundary ∂V of the viability region
V , then mutants that are viable in the absence of the resident can invade. Mutants that
are not viable cannot invade. This proves the following theorem.

Theorem 3. Let p be an evolving parameter, V the viability region and I∗(p) a branch
of stable nontrivial equilibria corresponding to p. If limp→∂V I

∗(p) = 0, then ∂V is evolu-
tionarily repelling.

Theorem 3 says that if the immigration rate goes continuously to zero when the viability
boundary is approached, then this boundary is evolutionarily repelling; thus selection will
move the dispersal strategy into the interior of the viability region.

4.3 First example: Constant catastrophe rate

We now study an example, in which the metapopulation exhibits a transcritical bifurcation,
i.e., a continuous transition to extinction. We assume that neither the catastrophe rate
nor the dispersal rate depend on local population size; the local growth rate is chosen as
being logistic, g(x) = a(1− x/K).
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Figure 3: (a) Dependance of CSS dispersal rate k∗ on catastrophe rate µ0 and dispersal
risk ρ for the first example. Parameters: a = 1, K = 1, α = 0.5. (b) Pairwise invasibility
plot for µ0 = 0.8 and ρ = 0.005. The CSS dispersal rate is located at k∗ ≈ 5.5.

In this case the basic reproduction ratio is given by

Rres(I) = π

∫ 1

0

2k[1− y
S(I)
µ ]

S(I) + k − a+ y
S(I)
µ [S(I)− k + a]

dy, (35)

with S(I) =
√

(k − a)2 + 4aI/K. Tedious but straightforward calculations show that
d
dIR

res(I) 6 0, so the function Rres(I) is monotonically nonincreasing. Therefore, if Rres0 >
1, there exists a unique positive equilibrium, which is stable. If Rres0 < 1, the extinct state
is the only equilibrium. At the boundary of viability Rres0 = 1 and the immigration rate
goes continuously to zero. We thus have a transcritical bifurcation at k = (a − µ)/ρ
and at k = 0. See Fig. 1a for an example. According to Theorem 3 the boundaries are
evolutionarily repelling.

In Fig. 3a there is always a continuously stable strategy in the viability region 0 6
µ < 1. As studied by Parvinen et al. (2000), the dispersal rate exhibits an intermediate
maximum with respect to catastrophe rate µ. Increasing dispersal risk ρ decreases the
dispersal rate.

5 Discontinuous transition to extinction

In this section we study the case of discontinuous transition to extinction: here the equilib-
rium immigration rate first changes continuously, but then suddenly drops to zero as the
dispersal rate k varies. As a typical example we mention the case in which the equilibrium
corresponding to I∗ = 0 loses its stability in a subcritical bifurcation (see Fig. 2b).

5.1 A discontinuous transition to extinction is necessary for evolution-

ary suicide

Evolutionary suicide is an evolutionary process, during which an initially viable metapop-
ulation adapts in such a way that it can no longer persist, see Ferrière (1999, 2000,in
prep.). See also Matsuda and Abrams (1994).

Theorem 3 shows that, in the case of a continuous transition to extinction, the bound-
aries of viability are evolutionarily repelling. Therefore, a discontinuous transition to
extinction is a necessary condition for evolutionary suicide. It is, however, not a sufficient
condition, as we will see from our second and third example below. In the following section
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Figure 4: The catastrophe function µ(x) as described by (36) for µ0 = 1.8, p = 0.05,
K = 1, z = 5.
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Figure 5: Pairwise invasibility plots illustrating the route to evolutionary suicide. The
medium gray rectangle on the left side of each panel corresponds to values of the resident
strategy k for which the metapopulation is not viable. Local growth is logistic with
g(x) = a(1− x/K). Parameters: α = 0.5, a = 1, K = 1. The catastrophe function µ(x)
is given by (36) with µ0 = 1.8, p = 0.05, z = 5.

we analyze how the phenomenon of evolutionary suicide can occur in the metapopulation
model studied in this paper.

5.2 Second example: Size-dependent catastrophe rate

If the catastrophe rate is a decreasing function of the local population size and Rres0 < 1,
we can observe a special type of evolutionary bifurcation when increasing the dispersal
risk ρ. In the following examples we use the catastrophe function

µ(x) = µ0

[

1− (1− p)
1− exp(−zx/K)

1− exp(−z)

]

. (36)

This specific choice is used for illustration only. See Fig. 4 for an example. The number
µ(0) = µ0 describes the level of the catastrophe functions, it does not change its shape.
The number K is chosen to be the carrying capacity of the local growth function g(x) and
p is the fraction of the catastrophe rate at the carrying capacity K relative to µ0, thus
µ(K) = pµ0. The parameter z describes the steepness of decrease.

With low dispersal risk ρ, there exists one CSS (Fig. 5a). When the risk increases,
the viable region decreases and the CSS dispersal rate approaches the lower boundary of
viability. When the risk is high enough, there appears another evolutionarily stable strat-
egy that, however, is not convergence stable, i.e., it is an evolutionary repellor (Fig. 5b).
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Figure 6: (a) Dependence of CSS dispersal rate k∗ on catastrophe rate µ0 and dispersal
risk ρ for the second example. For small dispersal risk and catastrophe rate there exists
a CSS dispersal rate. When either dispersal risk or catastrophe rate is increased enough,
an evolutionary bifurcation to evolutionary suicide occurs (gray part of bottom plane).
The white part of the bottom plane corresponds to parameter combinations for which the
metapopulation is not viable. (b) Bifurcation diagram with respect to ρ for a cross-section
at µ0 = 1.8. Dispersal rates at which selection favors lower dispersal rates are plotted in
light gray; selection for higher dispersal rates is indicated by dark gray. In the white area
the metapopulation is not viable. For low dispersal risk, a CSS dispersal rate exists. When
the dispersal risk is increased, the domain in which selection favors higher dispersal rates
shrinks and finally disappears. After that point, selection for lower dispersal rates leads
to evolutionary suicide. Local growth is logistic, g(x) = a(1 − x/K). The catastrophe
function is given by (36) with z = 5, p = 0.05. Other parameters: α = 0.5, a = 1, K = 1.

When the dispersal risk increases even more, these two singular strategies collide (Fig. 5c)
and thereby disappear (Fig. 5d).

Once the regime depicted in Fig. 5d has been reached, residents with a viable dispersal
rate can always be invaded by some mutants with a lower dispersal rate. The dispersal
rate will therefore decrease and will move closer and closer towards the lower boundary
of viability. Once a resident at the lower boundary has become established, again a
mutant with even lower dispersal rate can increase in population size. The mutant is
not viable alone and therefore it cannot replace the resident. It will, however, move the
resident population size away from its original attractor into the basin of attraction of the
equilibrium that corresponds to extinction. Thus, the metapopulation will go extinct.

Fig. 6a shows the interplay of dispersal risk ρ and catastrophe rate µ0 in setting the
stage for evolutionary suicide. For low dispersal risks and catastrophe rates the viability
boundaries are repelling and there is a continuously stable dispersal rate. When either
dispersal risk or catastrophe rate is increased enough an evolutionary bifurcation to evolu-
tionary suicide occurs as described above. Beyond that point, the viability region shrinks
and finally disappears, leading to extinction of the metapopulation. Fig. 6b illustrates this
bifurcation structure along a cross-section at µ0 = 1.8.

5.3 Third example: Allee effect

Another ecological scenario for which we would expect a discontinuous transition to ex-
tinction arises from local population growth functions with an Allee effect, i.e., with a
negative per capita growth rate at low population sizes (Allee et al. 1949).

The resulting bifurcation structure is similar to that in the second example: interme-



–12 –

(a) Growth functions (b) Equilibrium values of I

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

x

g(x)

1 2 3 4

0.5

1

1.5

2
I∗

k

Figure 7: (a) Logistic growth function g(x) = 1−x (thin curve) and a growth function with
Allee effect (thick curve) g(x) = a x

1+x − b− cx with a = 18, b = 1, c = 8. (b) Equilibrium
values for the immigration rate I in the case of an Allee effect. Stable equilibria lie on the
thick curve, unstable ones on the thin curve. Parameters: α = 0.5, µ = 0.2, ν = 0.1.

diate dispersal risks and catastrophe rates result in a CSS dispersal rate. When either
dispersal risk or catastrophe rate is increased enough, a bifurcation to evolutionary suicide
occurs. See Fig. 8.

For low catastrophe rates, however, the situation is different. Selection towards low
dispersal then leads to evolutionary suicide. This is remarkable: one would naively expect
that only too high catastrophe rates may cause a metapopulation to go extinct. Yet in
this example extinction also happens if there are too few catastrophes.

Is this finding compatible with Theorem 2, which states that without catastrophes
the strategy not to disperse is a CSS? It is indeed compatible, as the remainder of this
paragraph explains. When there are no catastrophes, all patches will reach the maximum
population size x̃, therefore the average population size is x̃. Selection will favor low
dispersal: after adaptation is completed, we have k = 0. Therefore x̃ equals the carrying
capacity of the growth function. Patches with very small population size would become
empty if an Allee effect were present, but this is not a problem to the metapopulation since
all local populations are large and no catastrophes occur. However, as soon as we introduce
a little amount of catastrophes, the situation changes drastically. Catastrophes are so
infrequent that low dispersal is still favored by selection. Yet, when dispersal becomes too
low, a patch cannot be rescued after its population has been eradicated by a catastrophe.
Since all patches will eventually experience a catastrophe, the metapopulation goes extinct.

Fig. 9 illustrates this situation. In the absence of catastrophes, the metapopulation
is viable for any dispersal rate that is not too large. With positive catastrophe rate, the
range of viable dispersal rates shrinks at both ends. In particular, the metapopulation is
not viable for sufficiently small dispersal rates and a discontinuous transition to extinction
arises that allows for evolutionary suicide.

5.4 A discontinuous transition to extinction is not sufficient for evolu-

tionary suicide

According to Theorem 3, no evolutionary suicide can occur when the transition to extinc-
tion is continuous. As stated in Section 5.1, a discontinuous transition to extinction is
therefore a necessary condition for evolutionary suicide. Nevertheless, the boundaries of
the viability region can be repelling also in this case. Both our second and third example
allow for some parameter values that bring about a discontinuous transition to extinction
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Figure 8: (a) Dependence of CSS dispersal rate k∗ on catastrophe rate µ0 and dispersal risk
ρ for the third example. For high dispersal risk and catastrophe rate we observe the same
pattern as in Fig. 6: the range for which selection favors higher dispersal rates decreases
and eventually disappears, leading to evolutionary suicide. For low catastrophe rates the
situation is completely different: evolutionary suicide can result from an improvement of
environmental conditions by decreasing µ0. (b) Bifurcation diagram with respect to µ0
for a cross-section at ρ = 0.05. The region of parameter values where lower dispersal is
selected for is plotted in light gray, and selection for higher dispersal occurs for the region
plotted in dark gray. In the white area the metapopulation is not viable. Local growth
exhibits an Allee effect according to Fig. 7a. Parameters: α = 0.5, µ(x) = µ0.

without resulting in evolutionary suicide.
In the second example the catastrophe rate µ(x) is a decreasing function of the local

population size x. If µ(0) > g(0), the basic reproduction ratio Rres0 is negative for any
dispersal rate. Therefore, either a discontinuous transition to extinction occurs (as in
Fig. 1c) or the metapopulation is not viable for any dispersal rate k. When the dispersal
risk ρ is low enough, a CSS dispersal rate exists and no evolutionary suicide occurs (see
Figs. 5a and 6).

In the third example we have g(0) < 0 and the basic reproduction ratio Rres0 is negative
for any catastrophe rate µ and dispersal rate k. Like in the second example, there is either a
discontinuous transition to extinction (Fig. 7b) or certain extinction. Also in this example
there are parameter combinations of µ and ρ that allow for a CSS dispersal rate (see
Fig. 8).

6 Discussion

In this paper we have studied the evolution of dispersal and the potential for evolutionary
suicide in a structured metapopulation model. We have proved that, in the absence of local
catastrophes, selection will favor decreased dispersal rates: the strategy not to disperse is
an ESS. In the presence of catastrophes, we have studied bifurcations that result from a
parameter value crossing the boundary between regions of viability and extinction. If a
continuous transition to extinction takes place (i.e. the immigration rate goes continuously
to zero) when dispersal is varied, the extinction boundary is evolutionarily repelling and
no evolutionary suicide can occur. We proved that a discontinuous transition to extinction
(a positive immigration rate goes abruptly to zero at some parameter value) is a necessary
but not a sufficient condition for evolutionary suicide. These findings are summarized in
Fig. 10.

Two examples have illustrated that evolution does not necessarily optimize at the
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Figure 9: Average population size x̄ at equilibrium for µ = 0 and µ = 0.2 when the growth
function exhibits an Allee effect. Population sizes corresponding to stable equilibria lie on
the thick curve, unstable ones on the thin curve. Parameters: α = 0.5, ν = 0.1.
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Figure 10: Summary of the different cases investigated in this paper. *: convergence
stability applies if dispersal risk is positive.

population or metapopulation level (Metz et al. 996b). What is good for an individual
is not always good for the metapopulation. Metapopulation extinction due to selfish
individual adaptation is an extreme example of this general feature of frequency-dependent
selection. Other real-life examples of this phenomenon are related to the tragedy of the
commons (Hardin 1968).

To our knowledge, Matsuda and Abrams (1994) were the first to show in a math-
ematical model that frequency-dependent selection can lead to evolutionary suicide, or,
as they called it, runaway evolution to self-extinction. They studied a population under
asymmetric competition, in which, for some conditions, individuals of larger body size
are always favoured by selection, leading to a continuous decrease in carrying capacity.
Consequently, no evolutionary suicide is possible in the deterministic version of that model
and Matsuda and Abrams correctly emphasize that, if the carrying capacity would reach
zero at a finite body size, self-extinction could not occur. In this sense, our model and the
one by Ferrière (2000) may be the first to demonstrate the existence of an evolutionarily
attracting extinction boundary.

Yet, the study by Matsuda and Abrams (1994) makes another important point: when-
ever adaptation takes a biological population into or through regions of trait space that
imply small carrying capacities, the evolving population can go extinct. Evidently, evo-
lutionary suicide therefore occurs more easily under stochastic population dynamics than
under deterministic ones. While conditions for the deterministic form of evolutionary
suicide have been analyzed in this paper, we do not expect that similarly systematic con-
ditions exist for the form of evolutionary suicide that requires populations of finite size.

Another repercussion of frequency-dependent selection in our model is even more strik-



–15 –

ing. In general, we are used to the phenomenon that, if the living conditions of a metapop-
ulation become too unfavorable, the metapopulation will go extinct. This can result from
increasing either the catastrophe rate or the dispersal risk in our model. However in the
presence of an Allee effect and for low catastrophe rates, individuals select to disperse
too little to re-colonize the patches after catastrophes have occurred. Under such con-
ditions, making the environment more favorable will have a very strong negative effect
on metapopulation viability: improving environmental conditions can sometimes send a
population to extinction.



–16 –

A Cumulative formulation of the model

In this appendix we derive the expressions for the metapopulation steady states in the
cases µ = 0 and I = 0, which could not be dealt with using the shorthand notation
(5)-(7) of the model. The nonlinear theory of general structured population models was
presented by Diekmann et al. (2001) and adapted to structured metapopulation models
by Gyllenberg et al. (1997). The specific model treated in this paper was formulated by
Gyllenberg and Metz (1999).

Because we are only dealing with steady states we can replace equation (7) by its
quasi-steady approximation

I(t) = π

∫

∞

0
k(x)xn(t, dx). (37)

This approximation leads, of course, to precisely the same metapopulation steady states
as the full model incorporating a disperser pool. In (37) the metapopulation state n(t, ·)
at time t is a measure. If n(t, ·) has a density, as in Section 2, we write (abusing notation)
n(t, x)dx instead of n(t, dx).

Local population growth is modelled as a Markov process with local extinction as an
absorbing state by prescribing the transition probabilities uI(t, x), that is, uI(t, x)(ω) is
the probability that a local population which had size x at time 0 is still extant at time
t and has size in the set ω. Reproduction (the formation of new local populations) is
modelled by prescribing the reproduction kernel Λ: ΛI(t, x)(ω) is the expected number of
new local populations with ”size-at-birth” in the set ω, produced in the time interval [0, t)
by a local population which had size x at time 0. Our notation differs slightly from the
one used by Diekmann et al. (2001).

A local population, which at time 0 had size x, will at time t have sizeXI(t, x), provided
it has not been wiped out by a local catastrophe. The probability that the population is
still extant at time t is

FI(t, x) = exp

[

−

∫ t

0
µ(XI(s, x))ds

]

. (38)

Note that if µ = 0 (there are no catastrophes), FI ≡ 1. The transition probability of the
local population size is given by the measure

uI(t, x) = FI(t, x)δXI(t,x). (39)

When a local population is destroyed by a catastrophe, the patch it inhabited will
immediately be recolonized by migrants arriving from other patches provided I > 0. We
consider this event as the simultaneous death of the local population and the birth of a
new local population with size 0. If I = 0, there are no dispersers and there will still be
death but no birth of a new population. The expected number of new local populations
produced in the time interval [0, t) by a local population having size x at time 0 and
subject to the input I is therefore

1−FI(t, x) (40)

and the reproduction kernel is

ΛI(t, x) =

{

(1− FI(t, x))δ0 if I > 0
0 if I = 0.

(41)
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Let us first consider the case µ = 0. Then there are neither births nor deaths of local
populations, that is, ΛI ≡ 0. The system is therefore at equilibrium if and only if the local
dynamics given by uI is at equilibrium:

n =

∫

uI(t, x)n(dx) (42)

for all t. Inserting (39) (with FI ≡ 1) into (42) one gets

n =

∫

δXI (t,x)n(dx), t > 0 (43)

from which it follows that n = δx̃(I). We have now shown that δx̃(I) is the steady state,
where I is solved from

I = π

∫

k(x)xδx̃(I)(dx) (44)

that is, from

I = πk(x̃(I))x̃(I). (45)

Let us now turn to the case I = 0. In this case we still have ΛI ≡ 0. Because f(0, 0) = 0,
we have XI(t, 0) = 0 for all t. Therefore uI(t, 0) = δ0 for I = 0 and consequently (42) can
be satisfied by n = δ0 only. Thus I = 0 implies n = δ0.
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Geritz, S. A. H., É. Kisdi, G. Meszéna, and J. A. J. Metz (1998). Evolutionarily singu-
lar strategies and the adaptive growth and branching of the evolutionary tree. Evol.
Ecol. 12, 35–57.
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Metz, J. A. J., S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs, and J. S. van Heerwaarden
(1996a). Adaptive dynamics, a geometrical study of the consequenses of nearly faithful
reproduction. In S. J. van Strien and S. M. Verduyn Lunel (Eds.), Stochastic and
Spatial Structures of Dynamical Systems, pp. 183–231. North-Holland,Amsterdam.

Metz, J. A. J. and M. Gyllenberg (to appear in 2001). How should we define fitness in
structured metapopulation models? Including an application to the calculation of ES
dispersal strategies. Proc. Royal Soc. B .

Metz, J. A. J., S. D. Mylius, and O. Diekmann (1996b). When does evolution opti-
mize? On the relation between types of density dependence and evolutionarily sta-
ble life-history parameters. Working paper WP-96-004, IIASA, Laxenburg, Austria.
http://www.iiasa.ac.at/cgi-bin/pubsrch?WP96004.

Parvinen, K. (1999). Evolution of migration in a metapopulation. Bull. Math. Biol. 61,
531–550.

Parvinen, K., U. Dieckmann, M. Gyllenberg, and J. A. J. Metz (2000). Evolution of dis-
persal in metapopulations with local density dependence and demographic stochastic-
ity. Interim report IR-00-035, IIASA, Laxenburg, Austria. http://www.iiasa.ac.at/cgi-
bin/pubsrch?IR00035.

Ronce, O., F. Perret, and I. Olivieri (2000). Evolutionary stable dispersal rates do not
always increase with local extinction rates. Am. Nat. 155, 485–496.

Taylor, P. D. (1989). Evolutionary stability in one-parameter models under weak selection.
Theor. Popul. Biol. 36, 125–143.


