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Abstract

The mathematical model of portfolio optimization is usually represented as a bicri-
teria optimization problem where a reasonable trade–off between expected rate of
return and risk is sought. In a classical Markowitz model the risk is measured by
a variance, thus resulting in a quadratic programming model. As an alternative,
the MAD model was proposed where risk is measured by (mean) absolute deviation
instead of a variance. The MAD model is computationally attractive, since it is
transformed into an easy to solve linear programming program. In this paper we
present an extension to the MAD model allowing to account for downside risk aver-
sion of an investor, and at the same time preserving simplicity and linearity of the
original MAD model.
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Extending the MAD Portfolio Optimization

Model to Incorporate Downside Risk Aversion

Wojtek Michalowski(michalow@iiasa.ac.at)
Wlodzimierz Ogryczak(Wlodzimierz.Ogryczak@mimuw.edu.pl)

1 Introduction

Since the advent of the Modern Portfolio Theory (MPT) arising from the work
of Markowitz (1952), the notion of investing in diversified portfolios has become
one of the most fundamental concepts of portfolio management. While developed
as a financial economic theory in conditional-normative framework, the MPT has
spawned a variety of applications and provided background for further theoretical
models. The original Markowitz model was derived using a representative investor
belonging to the normative utility framework, which manifested in portfolio opti-
mization techniques based on the mean-variance rule. This framework proved to
be sufficiently rich to provide the main theoretical background for the analysis of
importance of diversification. It also gave rise to asset pricing models for secu-
rity pricing, the most known among them being the Capital Asset Pricing Model
(CAPM) (Elton and Gruber, 1987). A reliance on the MPT let to the notion that
the best managed portfolio is the one which is most widely diversified and such a
portfolio may be created through passive buy-and-hold investment strategy.
The portfolio optimization problem considered in this paper follows the original

Markowitz formulation and is based on a single period model of investment. At the
beginning of a period, an investor allocates capital among various securities. As-
suming that each security is represented by a variable, this is equivalent to assigning
a nonnegative weight to each of the variables. During the investment period, a se-
curity generates a certain (random) rate of return. The change of capital invested
observed at the end of the period is measured by the weighted average of the in-
dividual rates of return. In mathematical terms, for selecting weights reflecting an
amount invested in each security, an investor needs to solve a model consisting of
a set of linear constraints, one of which should state that the weights must sum to
one (thus reflecting the fact that portions of available total capital are invested into
individual securities).
Following the seminal work by Markowitz (1952), such a portfolio optimization

problem is usually modeled as a bicriteria optimization problem where a reasonable
trade–off between expected rate of return and risk is sought. In the Markowitz
model the risk is measured by a variance from mean rate of return, thus resulting in
a formulation of a quadratic programming model. Following Sharpe (1971), many
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attempts have been made to linearize the portfolio optimization problem (c.f., Sper-
anza, 1993 and references therein). Lately, Konno and Yamazaki (1991) proposed
the MAD portfolio optimization model where risk is measured by (mean) absolute
deviation instead of variance. The model is computationally attractive as (for dis-
crete random variables) it results in solving linear programming (LP) problems.
There is an argument that the variability of rate of return above the mean

should not be penalized since an investor worries rather about underperformance
of a portfolio than its overperformance. This led Markowitz (1959) to propose
downside risk measures such as (downside) semivariance to replace variance as the
risk measure. The absolute deviation used in the MAD model to measure risk is
taken as twice the downside semideviation. Therefore, the MAD model is, in fact,
based on the downside risk measured with mean deviation to the mean. However,
an investor who uses this model is assumed to have constant dis-utility (a term ”dis-
utility” is used here to emphasize a fact that an investor is a ”utility minimizer”)
for a unit deviation from the mean portfolio rate of return. This assumption does
not allow for the distinction of risk associated with larger losses. The purpose of
this paper is to account for such risk attitude and to present an extension to the
MAD model which incorporates downside risk aversion.
The Markowitz model has been criticized as not being consistent with axiomatic

models of preferences for choice under risk because it does not rely on a relation
of stochastic dominance (c.f., Whitmore and Findlay, 1978; Levy, 1992). However,
the MAD model is consistent with the second degree stochastic dominance, provided
that the trade-off coefficient between risk and return is bounded by a certain constant
(Ogryczak and Ruszczyński, 1997). The proposed extension of the MAD model
retains consistency with the stochastic dominance.
The paper is organized as follows. In the next section we discuss the original

MAD model. Section 3 deals with the proposed extension of MAD, enabling to
incorporate (downside) risk aversion of an investor. Consistency of a resulting model
with the stochastic dominance is discussed in Section 4. The paper concludes with
a discussion.

2 The MAD model

Let J = {1, 2, . . . , n} denotes set of securities considered for an investment. For
each security j ∈ J , its rate of return is represented by a random variable Rj with
a given mean µj = E{Rj}.
Further, let x = (xj)j=1,2,...,n denote a vector of securities’ weights (decision

variables) defining a portfolio. To represent a portfolio, the weights must satisfy
a set of constraints which form a feasible set Q. The simplest way of defining a
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feasible set is by a requirement that the weights must sum to one, i.e.:

{x = (x1, x2, . . . , xn)
T :

n
∑

j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n} (1)

An investor usually needs to consider some other requirements expressed as a set of
additional side constraints. Hereafter, it is assumed that Q is a general LP feasible
set given in a canonical form as a system of linear equations with nonnegative
variables:

Q = {x = (x1, x2, . . . , xn)
T : Ax = b, x

>
= 0} (2)

where A is a given p × n matrix and b = (b1, . . . , bp)T is a given RHS vector. A
vector x ∈ Q is called a portfolio.
Each portfolio x defines a corresponding random variable Rx =

∑n
j=1 Rjxj which

represents portfolio’s rate of return. The mean rate of return for portfolio x is given
as:

µ(x) = E{Rx} =
n
∑

j=1

µjxj

Following Markowitz (1952), the portfolio optimization problem is modeled as a
mean–risk optimization problem where µ(x) is maximized and some risk measure
̺(x) is minimized. An important advantage of mean–risk approaches is a possibility
of trade-off analysis. Having assumed a trade-off coefficient λ between the risk and
the mean, one may directly compare real values µ(x) − λ̺(x) and find the best
portfolio by solving the optimization problem:

max {µ(x)− λ̺(x) : x ∈ Q} (3)

This analysis is conducted with a so-called critical line approach (Markowitz, 1987),
by solving parametric problem (3) with changing λ > 0. Such an approach allows to
select appropriate value of the trade-off coefficient λ and the corresponding optimal
portfolio through a graphical analysis in the mean-risk image space.
It is clear that if the risk is measured by variance:

σ2(x) = E{(µ(x)−Rx)
2} =

n
∑

i=1

n
∑

j=1

σijxixj

where σij = E{(Ri − µi)(Rj − µj)} is the covariance of securities i and j, then
problem (3) results in having a quadratic objective function.
Despite the fact that problem (3) is seldom used as a tool for optimizing large

portfolios, this model is widely recognized as a starting point for the MPT (c.f., Elton
and Gruber, 1987). In an attempt to analyze reasons behind limited popularity of
the Markowitz’s model among investors, Konno and Yamazaki (1991) summarized
its shortcomings as:

a) a necessity to solve a large scale quadratic programming problem;
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b) investor’s reluctance to rely on variance as a measure of risk (Kroll at al.,
1984).
The Markowitz model is known to be valid (and consistent with the stochastic
dominance) in the case of normal distribution of returns but, becomes doubtful
in case of other return distributions, especially nonsymmetric ones;

c) possible existence of too many weights with nonzero values in the optimal
solution of (3), thus making the resulting portfolio over-diversified and hardly
implementable.

Konno and Yamazaki (1991) proposed an alternative model where they use
(mean) absolute deviation from a mean as a risk measure. It is defined as:

δ(x) = E{|Rx − µ(x)|} =
∫ +∞

−∞

|µ(x)− ξ| Px(dξ) (4)

where Px denotes a probability measure induced by the random variable Rx (Pratt
et al., 1995). When δ(x) is used as a risk measure ̺(x) in model (3), it gives a
so-called MAD portfolio optimization model.
The absolute deviation (4) was already considered by Edgeworth (1887) in the

context of regression analysis. Within this context it was used in various areas
of decision making resulting among others in the goal programming formulation
of LP problems (Charnes et al., 1955). The absolute deviation as a measure was
also considered in the portfolio analysis (Sharpe, 1971a, and references therein) and
has been recommended by the Bank Administration Institute (1968) as a measure of
dispersion. The MADmodel is based on the absolute semideviation as a risk measure
and Konno and Yamazaki validated this model using the Tokyo stock exchange data
(Konno and Yamazaki, 1991).
Many authors pointed out that the MAD model opens up opportunities for more

specific modeling of the downside risk (Konno, 1990; Feinstein and Thapa, 1993),
because absolute deviation may be considered as a measure of the downside risk,
(observe that δ(x) equals twice the (downside) absolute semideviation):

δ̄(x) = E{max{µ(x)−Rx, 0}} (5)

= E{µ(x)−Rx|Rx ≤ µ(x)}P{Rx ≤ µ(x)} =
∫ µ(x)

−∞

(µ(x)− ξ) Px(dξ)

Hence, the following parametric optimization problem will be called the MADmodel:

max {µ(x)− λδ̄(x) : x ∈ Q} (6)

Simplicity and computational robustness are perceived as the most important
advantages of the MAD model. According to Konno and Yamazaki (1991), rjt is
the realization of random variable Rj during period t (where t = 1, . . . , T ) which is
available from the historical data or from some future projection. It is also assumed
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that the expected value of the random variable can be approximated by the average
derived from these data. Then:

µj =
1

T

T
∑

t=1

rjt

Therefore, MAD model (6) can be rewritten (Feinstein and Thapa, 1993) as the
following LP:

max
n
∑

j=1

µjxj −
λ

T

T
∑

t=1

dt (7)

subject to

x ∈ Q (8)

dt ≥
n
∑

j=1

(µj − rjt)xj for t = 1, . . . , T (9)

dt ≥ 0 for t = 1, . . . , T (10)

The LP formulation (7)–(10) can be effectively solved even for large number of
securities. Moreover, a number of securities included in the optimal portfolio (i.e. a
number of weights with nonzero values) is controlled by number T . In the case when
Q as given by (1), no more than T + 1 securities will be included in the optimal
portfolio.
The MAD model is clearly a downside risk model. Note that for any real number

η it holds that:
η − E{max{η −Rx, 0}} = E{min{Rx, η}} (11)

Hence

µ(x)− λδ̄(x) = (1− λ)µ(x) + λ(µ(x)− δ̄(x)) = (1− λ)µ(x) + λE{min{Rx, µ(x)}}

This implies that in the MAD model, a convex combination of the original mean
and the mean of underachievements (where all larger outcomes are replaced by the
mean) is maximized. Therefore, 0 < λ ≤ 1 represents reasonable trade-offs between
the mean and the downside risk. However, the downside risk is measured just by the
mean of downside deviations (see (5)), and thus the MAD model assumes a constant
dis-utility of an investor for a unit of the downside deviation from the mean portfolio
rate of return.
An extension to the MAD model should allow to penalize larger downside de-

viations, thus providing for better modeling of the risk avert preferences. Observe
that such an extension is in some manner equivalent to introduction of a convex
dis-utility function u, resulting in replacing (5) with:

δ̄u(x) = E{u(max{µ(x)−Rx, 0})} (12)

Certainly, to preserve a linearity of the model, function u must be piecewise linear.
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If the rates of return are multivariate normally distributed, then the MAD model
is equivalent to the Markowitz model (Konno and Yamazaki, 1991). However, the
MAD model does not require any specific type of return distributions, what facili-
tated its application to portfolio optimization for mortgage-backed securities (Zenios
and Kang, 1993) and other classes of investments where distribution of rate of return
is known to be not symmetric.
Recently, the MAD model was further validated by Ogryczak and Ruszczyński

(1997) who demonstrated that if the trade-off coefficient λ is bounded by 1, then the
model is partially consistent with the second degree stochastic dominance (Whitmore
and Findlay, 1978). Origins of a stochastic dominance are in an axiomatic model
of risk-averse preferences (Fishburn, 1964; Hanoch and Levy, 1969; Rothschild and
Stiglitz, 1970). Since that time it has been widely used in economics and finance
(see Levy, 1992 for numerous references). Detailed and comprehensive discussion of
a stochastic dominance and its relation to the downside risk measures is given in
Ogryczak and Ruszczyński (1997, 1998).
In the stochastic dominance approach uncertain prospects (random variables)

are compared by pointwise comparison of some performance functions constructed
from their distribution functions. Let Rx be a random variable which represents
the rate of return for portfolio x and Px denote the induced probability measure.
The first performance function F (1)

x
is defined as the right-continuous cumulative

distribution function itself:

F (1)
x
(η) = Fx(η) = P{Rx ≤ η} for real numbers η.

The second performance function F (2)
x
is derived from the distribution function Fx

as:
F (2)
x
(η) =

∫ η

−∞

Fx(ξ) dξ for real numbers η,

and defines the weak relation of the second degree stochastic dominance (SSD):

Rx′ �SSD Rx′′ ⇔ F (2)
x
′ (η) ≤ F

(2)
x
′′ (η) for all η.

The corresponding strict dominance relation ≻
SSD
is defined as

Rx′ ≻SSD Rx′′ ⇔ Rx′ �SSD Rx′′ and Rx′′ 6�SSD Rx′ .

Thus, we say that portfolio x′ dominates x′′ under the SSD rules (Rx′ ≻SSD Rx′′),

if F
(2)
x
′ (η) ≤ F

(2)
x
′′ (η) for all η, with at least one inequality strict. A feasible portfolio

x0 ∈ Q is called efficient under the SSD rules if there is no x ∈ Q such that
Rx ≻SSD Rx0 .
The SSD relation is crucial for decision making under risk. If Rx′ ≻SSD Rx′′ ,

then Rx′ is preferred to Rx′′ within all risk-averse preference models where larger
outcomes are preferred. It is therefore a matter of primary importance that a model
for portfolio optimization be consistent with the SSD relation, which implies that
the optimal portfolio is efficient under the SSD rules.
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The necessary condition for the SSD relation is (c.f. Fishburn, 1980):

Rx′ �SSD Rx′′ ⇒ µ(x′) ≥ µ(x′′)

Ogryczak and Ruszczyński (1997) modified this relation to consider absolute semide-
viations, and proved the following proposition:

Proposition 1 If Rx′ �SSD Rx′′ , then µ(x
′) ≥ µ(x′′) and µ(x′) − δ̄(x′) ≥ µ(x′′) −

δ̄(x′′), where the second inequality is strict whenever µ(x′) > µ(x′′).

The assertion of Proposition 1 together with relation (11) lead to the following
corollary (see Ogryczak and Ruszczyński, 1997, for details):

Corollary 1 Except for portfolios with identical mean and absolute semideviation,

every portfolio x ∈ Q that is maximal by µ(x) − λδ̄(x) with 0 < λ ≤ 1 is efficient

under the SSD rules.

It follows from Corollary 1 that the unique optimal solution of the MAD problem
(model (6)) with the trade-off coefficient 0 < λ ≤ 1 is efficient under the SSD rules.
In the case of multiple optimal solutions of model (6), one of them is efficient under
SSD rules, but also some of them may be SSD dominated. Due to Corollary 1, an
optimal portfolio x′ ∈ Q can be SSD dominated only by another optimal portfolio
x′′ ∈ Q such that µ(x′′) = µ(x′) and δ̄(x′′) = δ̄(x′). Although, the MAD model is
consistent with the SSD for bounded trade-offs, it requires additional specification if
one wants to maintain the SSD efficiency for every optimal portfolio. An extension
of the MAD model presented in this paper provides such a specification.

3 Extended MAD model

The MAD model (6) measures downside risk but it does not properly account for
risk aversion attitude. In order to do so, one needs to differentiate between differ-
ent levels of deviations, and to penalize “larger” ones. Such an extension of the
MAD model for portfolio optimization was already proposed by Konno (1990) who
considered additional mean deviations from some target rate of return predefined
as proportional to the mean rate of return. Within the framework of downside
risk (and downside deviations) this may be interpreted as an introduction to the
following deviations:

δ̄κ(x) = E{max{κ µ(x)−Rx, 0}} for 0 ≤ κ ≤ 1 (13)

For κ = 1 one gets the δ̄1(x) = δ̄(x), i.e. the absolute semideviation used in
the original MAD model. One may try to augment the downside risk measure by
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penalizing additional deviations for several κ < 1. In terms of dis-utility function
of deviations (see (12)), this approach is equivalent to introduction of a convex
piecewise linear function with breakpoints proportional to the mean of Rx.
Let us focus on the model with one additional downside deviation as Konno

(1990) did:
max {µ(x)− λδ̄(x)− λκδ̄κ(x) : x ∈ Q} (14)

where λ > 0 is the basic trade-off parameter and λκ > 0 is an additional parameter
(a penalty for larger deviations). We refer to this model as the κ–MAD.
Note that in the κ–MAD model one penalizes deviations which are relatively

large with respect to the expected rate of return (larger that (1−κ)µ(x)). However,
the model behaves correctly (defines target outcomes smaller than the mean) only
in the case of nonnegative mean. This is true for a typical portfolio optimization
problem, but in general, one needs to be very cautious while trying to apply the
κ–MAD model to other types of outcomes. Especially, because the deviations δ̄κ(x)
are sensitive to any shift of the scale of outcomes.
Konno (1990) did not analyze the consistency of the κ–MAD model with the

stochastic dominance. Such a comprehensive analysis is beyond the scope of this
paper. Nevertheless, one can see that for the SSD consistency, a proper selection of
the parameters in κ–MAD may be quite a difficult task. We illustrate this with a
small example. Consider two finite random variables Rx′ and Rx′′ defined as:

P{Rx′ = ξ} =











1/(1 + ε), ξ = 0
ε/(1 + ε), ξ = 1
0, otherwise

, P{Rx′′ = ξ} =

{

1, ξ = 0
0, otherwise

(15)

where ε is arbitrarily a small positive number. Note that Rx′ ≻SSD Rx′′ and µ(x
′) =

ε/(1+ ε), δ̄(x′) = ε/(1+ ε)2 while µ(x′′) = δ̄(x′′) = 0. Simple arithmetic shows that
Rx′ is preferred to Rx′′ in the MAD model with any 0 < λ ≤ 1. Consider now κ–
MAD with κ = 0.5 as suggested by Konno (1990). Then δ̄0.5(x′) = (0.5ε)/(1+ ε)2 =
0.5δ̄(x′). Hence, the objective function of the κ–MAD model for Rx′ is µ(x′) −
(λ + 0.5λ0.5)δ̄(x′) which means that only λ0.5 increases the trade-off coefficient λ.
It is easy to see that in the case of λ0.5 ≥ 1 − λ + ε, Rx′′ is preferred Rx′ . This
inconsistency of κ–MAD is overcome in the proposed extension of the MAD model.
Lets start with the original MADmodel (6) assuming that the trade-off coefficient

(λ) has value τ1. Since the mean deviation is already considered in (6), it is quite
natural to focus on this part of large deviations which exceed the mean deviation
(later referred to as “surplus deviations”). Mean surplus deviation E{max{µ(x) −
δ̄(x)−Rx, 0}} needs to be penalized by a value, let’s say τ2, of a trade-off between
surplus deviation and a mean deviation which leads to the maximization of:

µ(x)− τ1(δ̄(x) + τ2E{max{µ(x)− δ̄(x)−Rx, 0}})

Consequently, because surplus deviations are again measured by their mean, one
may wish to penalize the ”second level” surplus deviations exceeding that mean.
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This can be formalized as follows:

max {µ(x)−
m
∑

i=1

(
i
∏

k=1

τk)δ̄i(x) : x ∈ Q} (16)

where τ1 > 0, . . . , τm > 0 are the assumed to be known trade-off coefficients and

δ̄1(x) = δ̄(x) = E{max{µ(x)−Rx, 0}}

δ̄i(x) = E{max{µ(x)−
i−1
∑

k=1

δ̄k(x)−Rx, 0}} for i = 2, . . . ,m

By substitution

λi =
i
∏

k=1

τk for i = 1, . . . ,m (17)

one gets the model:

max {µ(x)−
m
∑

i=1

λiδ̄i(x) : x ∈ Q} (18)

where λ1 > 0, . . . , λm > 0 are the model parameters. Hereafter, we will refer to the
problem (18) as the recursive m–level MAD model (or m–MAD for short).
The parameters λi in the m–MAD model represent corresponding trade-offs for

different perceptions of downside risk. Using (17), they can be easily derived from
trade-off coefficients τi. If specific trade-off coefficient λ is selected in the MAD
model, then it is quite natural to use the same value for the whole m–MAD model,
thus assuming τi = λ for i = 1, . . . ,m. This gives λ1 = λ, λ2 = λ2,. . . , λm = λm.
One may consider the objective function of the form:

µ(x)− λ1
m
∑

i=1

λi
λ1
δ̄i(x)

which explicitly shows that λ1 is the basic risk to mean trade-off (denoted by λ in
the original MAD model), whereas the quotients λi/λ1 define additional penalties
for larger deviations. Specifically, in terms of a dis-utility function of downside
deviations (see (12) in Section 2), the objective function in the m–MAD model
takes the form

µ(x)− λ1 E{u(max{µ(x)−Rx, 0})}

where u is the (distribution dependent) piecewise linear convex function defined (for
nonnegative arguments) by breakpoints: b0 = 0, bi = bi−1+ δ̄i(x) for i = 1, . . . ,m−1
and the corresponding slopes s1 = 1, si =

∑i
k=1 λi/λ1 for i = 1, . . . ,m. The

quotients λi/λ1 represent the increment of the slope of u at the breakpoints bi−1. In
particular, while assuming λm = . . . = λ2 = λ1 one gets the convex function u with
slopes si = i. The original MAD model with linear function u, may be considered
as a limiting case of m–MAD with λm = . . . = λ2 = 0.
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Lets consider the case when the mean rates of return of securities are derived
from a finite set of (historical) data rjt (for j = 1, . . . , n and t = 1, . . . , T ). Then,
assuming that 1 ≥ λ1 ≥ . . . ≥ λm > 0, the m–MAD model can be formulated as
an LP problem. For instance, 2–MAD model (i.e. m–MAD model with m = 2) is
given as:

max
n
∑

j=1

µjxj −
λ1
T

T
∑

t=1

dt1 −
λ2
T

T
∑

t=1

dt2 (19)

subject to

x ∈ Q (20)

dt1 ≥
n
∑

j=1

(µj − rjt)xj for t = 1, . . . , T (21)

dt2 ≥
n
∑

j=1

(µj − rjt)xj −
1

T

T
∑

l=1

dl1 for t = 1, . . . , T (22)

dt1 ≥ 0, dt2 ≥ 0 for t = 1, . . . , T (23)

The above formulation differs from (7)–(10) by having an additional group of T
deviational variables dt2 (while the original dt are renamed to dt1) and corresponding
additional group of T inequalities (22) linking these variables together (similar to
equations (9) in the MAD model).
A general m–MAD model can be formulated with mT deviational variables and

mT inequalities linking them. In order to maintain sparsity of its LP formulation
(which is convenient while searching for the solutions of large scale LPs), it is better
to write the m–MAD as:

max z0 +
m
∑

i=1

λizi (24)

subject to

x ∈ Q (25)

z0 −
n
∑

j=1

µjxj = 0 (26)

Tzi +
T
∑

t=1

dti = 0 for i = 1, . . . ,m (27)

dti −
i−1
∑

k=0

zs +
n
∑

j=1

rjtxj ≥ 0 for t = 1, . . . , T ; i = 1, . . . ,m (28)

dti ≥ 0 for t = 1, . . . , T ; i = 1, . . . ,m (29)

In the above formulation µ(x) and δ̄i(x) (i = 1, . . . ,m) are explicitly represented
using additional variables z0 and −zi (i = 1, . . . ,m), respectively. Therefore, addi-
tional m + 1 constraints (26)–(27) need to be introduced to define these variables.
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A number of nonzero coefficients in (28) can be further reduced if repetitions of
coefficients rjt in several groups of inequalities (28) for various t are avoided. This
can be accomplished by introducing additional variables yt =

∑n
j=1 rjtxj, however,

it would increase the size of the LP problem to be solved.
Recall the pair of random variables in (15) used to show drawbacks of the κ–

MAD model. While applying the m–MAD model one gets: δ̄i(x′) = εi/(1 + ε)i and
δ̄i(x′′) = 0. It is easy to show that for any m ≥ 1 and 0 < λi ≤ 1:

µ(x′)−
m
∑

i=1

λiδ̄i(x
′) > 0 = µ(x′′)−

m
∑

i=1

λiδ̄i(x
′′)

which is consistent with the fact that Rx′ ≻SSD Rx′′ . In fact, an important fea-
ture of the m–MAD model is its consistency with the SSD relation. This will be
demonstrated in the next section.
To illustrate how the m–MAD model introduces downside risk aversion into the

original MAD, consider two finite random variables Rx′ and Rx′′ defined as (Konno,
1990):

P{Rx′ = ξ} =































0.2, ξ = 0
0.1, ξ = 1
0.4, ξ = 2
0.3, ξ = 7
0, otherwise

and P{Rx′′ = ξ} =































0.3, ξ = −1
0.4, ξ = 4
0.1, ξ = 5
0.2, ξ = 6
0, otherwise

Note that µ(x′) = µ(x′′) = 3, δ̄(x′) = δ̄(x′′) = 1.2 and σ2(x′) = σ2(x′′) = 7.4.
Hence, two random variables are identical from the viewpoint of Markowitz’s as
well as the MAD models. It turns out, however, that Rx′′ has a longer tail to the
left of the mean which can be demonstrated by comparing third moments of the
random variables or their F (2) functions for η < 3. Simple arithmetic shows that
for any m > 1 and λi satisfying 1 ≥ λ1 ≥ . . . ≥ λm > 0, Rx′ is preferred to Rx′′
according to the m–MAD model.

4 The m–MAD model and stochastic dominance

Function F (2)
x
, used to define the SSD relation (see Section 2) can also be presented

as (Ogryczak and Ruszczyński, 1997):

F (2)
x
(η) =

∫ η

−∞

(η−ξ) Px(dξ) = P{Rx ≤ η}E{η−Rx|Rx ≤ η} = E{max{η−Rx, 0}}

thus expressing the expected shortage for each target outcome η. Hence, in addi-
tion to being the most general dominance relation for all risk-averse preferences,
SSD is a rather intuitive multidimensional (continuum-dimensional) risk measure.
As shown by Ogryczak and Ruszczyński (1997), the graph of F (2)

X
, referred to as
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the Outcome–Risk (O–R) diagram, appears to be particularly useful for comparing
uncertain prospects. The function F (2)

x
is continuous, convex, nonnegative and non-

decreasing. The graph F (2)
x
(η) (Figure 1) has two asymptotes which intersect at the

point (µ(x), 0). Specifically, the η-axis is the left asymptote and the line η−µ(x) is
the right asymptote. In the case of a deterministic (risk-free) outcome (Rx = µ(x)),
the graph of F (2)

x
(η) coincides with the asymptotes, whereas any uncertain outcome

with the same expected value µ(x) yields a graph above (precisely, not below) the
asymptotes. The space between the curve (η, F (2)

x
(η)), and its asymptotes represents

the dispersion (and thereby the riskiness) of Rx in comparison to the deterministic
outcome of µ(x). It is called the dispersion space.

-

6

ηµ(x)
�
�
�
�
�
�
�
�
�
�
�
�
� η − µ(x)F (2)

x
(η)

p

p

p

p

p

p

p

p

p

p

p

p

pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pδ̄(x)

Figure 1: The O–R diagram and the absolute semideviation

Both size and shape of the dispersion space are important for complete de-
scription of the riskiness. Nevertheless, it is quite natural to consider some “size
parameters” as summary characteristics of riskiness. The absolute semideviation
δ̄(x) = F (2)

x
(µ(x)) turns out to be the maximal vertical diameter of the dispersion

space (Ogryczak and Ruszczyński, 1997). According to arguments that only the
dispersion related to underachievements should be considered as a measure of risk-
iness (Markowitz, 1959), one should focus on the downside dispersion space, that
is, to the left of µ(x). Note that δ̄(x) is the largest vertical diameter for both the
entire dispersion space and the downside dispersion space. Thus δ̄(x) appears to be
a reasonable linear measure of the risk related to the representation of a random
variable Rx by its expected value µ(x).
Due to (11) and Proposition 1, it is possible to state that

Rx′ �SSD Rx′′ ⇒ E{min{Rx′, µ(x
′)}} ≥ E{min{Rx′′ , µ(x

′′)}} (30)

Note that P{min{Rx, µ(x)} ≤ η} is equal to P{Rx ≤ η} for η < µ(x) and equal
to 1 for η ≥ µ(x). The second performance function F (2) for the random variable
min{Rx, µ(x)} coincides with F (2)x (η) for η ≤ µ(x) and takes the form of a straight
line η − (µ(x)− δ̄(x)) for η > 1. One may notice that

Rx′ �SSD Rx′′ ⇒ min{Rx′ , µ(x
′)} �

SSD
min{Rx′′ , µ(x

′′)} (31)
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which is stronger relation than (30). ¿From (31) it is possible to derive a stronger
form of Proposition 1, namely:

Proposition 2 If Rx′ �SSD Rx′′ , then min{Rx′, µ(x
′)} �

SSD
min{Rx′′, µ(x′′)}

and E{min{Rx′ , µ(x′)}} > E{min{Rx′′ , µ(x′′)}} whenever µ(x′) > µ(x′′).

Let us define a sequence of random variables related to portfolio x:

R(0)
x
= Rx and R(i)

x
= min{R(i−1)

x
, E{R(i−1)

x
}} for i = 1, . . . ,m. (32)

and the corresponding means:

µi(x) = E{R
(i)
x
} for i = 0, 1, . . . ,m (33)

where µ0(x) = µ(x). Note that:

µi(x) = E{min{R
(i−1)
x
, µi−1(x)}} ≤ µi−1(x) for i = 1, . . . ,m.

Hence, R(i)
x
= min{Rx, µi−1(x)}} for i = 1, . . . ,m and:

µ0(x) = µ(x) and µi(x) = E{min{Rx, µi−1(x)}} for i = 1, . . . ,m.

Finally, due to (11), one gets µi(x) = µi−1(x)− δ̄i(x) for i = 1, . . . ,m. Thus:

µi(x) = µ(x)−
i
∑

k=1

δ̄k(x) for i = 1, . . . ,m (34)

and

δ̄i(x) = E{max{µi−1(x)−Rx, 0}} = F
(2)
x
(µi−1(x)) for i = 1, . . . ,m

The relations between µi(x) and δ̄i(x) may be illustrated on the O–R diagram as
shown in Figure 2.
Note that, µi(x) ≤ µi−1(x) for any i ≥ 1. However, if Rx is lower bounded by a

real number lx (i.e. P{Rx < lx} = 0), then lx ≤ µi(x) for any i ≥ 0. One may prove
that, in the case of P{Rx = lx} > 0, if m tends to infinity, then µm(x) converges to
lx.
The objective function of the m–MAD model (18) can be expressed as:

µ(x)−
m
∑

i=1

λiδ̄i(x) =
m
∑

i=0

αiµi(x) (35)

where

α0 = 1− λ1 , αi = λi − λi+1 for i = 1, . . . ,m− 1 and αm = λm (36)

Note that
∑m
i=0 αi = 1. Moreover, if

1 ≥ λ1 ≥ . . . ≥ λm > 0, (37)

then all αi are nonnegative and the objective function (35) of the m–MAD becomes
a convex combination of means µi(x). Maximization of the means µi(x) is consistent
with the SSD rules. Thus, the following theorem is true:
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ηµ0(x)
�
�
�
�
�
�
�
�
�
�
�
�
� η − µ(x)F (2)

x
(η)

µ1(x)
�
�
�
�
�

µ2(x)
�
�
�

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

δ̄1(x)

p p p p p p p p p p p p p p p p p p p p p p p p p

δ̄2(x)
p p p p p p p p p p p p p p p p p p

δ̄3(x)

Figure 2: µi(x) and δ̄i(x) on the O–R diagram for Rx

Theorem 1 If Rx′ �SSD Rx′′ , then µi(x
′) ≥ µi(x′′) for all i = 0, 1, . . . ,m and if

any of these inequalities is strict (µio(x
′) > µio(x

′′)), then all subsequent inequalities

are also strict (µi(x′) > µi(x′′) for i = io, . . . ,m).

Proof. According to (33), µi(x) (i = 0, . . . ,m) are means of the corresponding
random variables R(i)

x
defined in (32). By (recursive) application of Proposition 2 m

times for defined random variables R(i)
x
(for i = 0, . . . ,m−1) one gets R(i)

x
′ �

SSD
R(i)
x
′′ ,

and thereby µi(x′) ≥ µi(x′′) for all i = 0, 1, . . . ,m, as well as µi(x′) > µi(x′′)
whenever µi−1(x

′) > µi−1(x
′′) for all i = 1, . . . ,m 2

The assertion of Theorem 1 together with the relations (35)–(36) lead to the
following theorem.

Theorem 2 Except for the portfolios characterized by identical mean and all similar

semideviations, every portfolio x ∈ Q that maximizes µ(x) −
∑m
i=1 λiδ̄i(x) with

0 < λm ≤ . . . ≤ λ1 ≤ 1 is efficient under the SSD rules.

Proof. According to (35)–(36) and the requirement (37) it follows that µ(x) −
∑m
i=1 λiδ̄i(x) =

∑m
i=0 αiµi(x) where all the coefficients αi for i = 0, . . . ,m are non-

negative whereas αm is strictly positive. Let x0 ∈ Q maximizes µ(x)−
∑m
i=1 λiδ̄i(x).

This means that
∑m
i=0 αiµi(x

0) ≥
∑m
i=0 αiµi(x) for all x ∈ Q. Suppose that there

exists x′ ∈ Q such that Rx′ ≻SSD Rx0 . Then, from Theorem 1, µi(x
′) ≥ µi(x0)

for all i = 0, . . . ,m and it follows that
∑m
i=0 αiµi(x

′) ≥
∑m
i=0 αiµi(x

0). The latter
together with a fact that x0 is optimal implies that

∑m
i=0 αiµi(x

′) =
∑m
i=0 αiµi(x

0)
which means that x′ must also be an optimal solution. Further, suppose that for
some io (0 ≤ io ≤ m) there is µio(x

′) > µio(x
0). Then, according to Theorem 1 it

holds that µm(x′) > µm(x0). Since αm > 0, the latter leads to the conclusion that
∑m
i=0 αiµi(x

′) >
∑m
i=0 αiµi(x

0) which contradicts the assumption that x0 is optimal.
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Hence, µi(x′) = µi(x0) for all i = 0, . . . ,m, and therefore µ(x′) = µ(x0). Due to
(34) it follows that δ̄i(x′) = δ̄i(x0) for all i = 1, . . . ,m. 2

According to Theorem 2, a unique optimal solution of the m–MAD problem
(problem (18)) with the trade-off coefficient λi satisfying the requirement (37) is
efficient under the SSD rules. In the case of multiple optimal solutions of (18) (simi-
larly to the case of the original MAD model) some of them may be SSD dominated.
Due to Theorem 2, an optimal portfolio x′ ∈ Q can be SSD dominated only by
another optimal portfolio x′′ ∈ Q such that µ(x′′) = µ(x′) and δ̄i(x′′) = δ̄i(x′) for all
i = 1, . . . ,m. This means that even if one generates an SSD dominated portfolio,
then it has the same mean and is quite similar in terms of a downside risk to the
dominating one.

5 Discussion

Them–MADmodel is well defined for any type of rate of return distribution and it is
not sensitive to the scale shifting with regards to the mean and deviations. Moreover,
it allows to account for investor’s (downside) risk aversion, and as demonstrated in
the paper, it is robust considering the SSD efficiency. These advantages of the m–
MAD model simultaneously maintain simplicity and linearity associated with the
original MAD approach.
Both the Markowitz and MAD models are powerful portfolio optimization tools

which for a given risk/return trade-off do not impose a significant information burden
on an investor. This feature, considered as an advantage in certain situations, may be
also viewed as a shortcoming because it does not provide an investor with any process
control mechanism. This is not the case with the m–MAD model proposed here.
Application of this model allows an investor to control and fine-tune the portfolio
optimization process through the ability to determine m trade-off parameters λi.
Thus, an investor exhibiting (downside) risk aversion can, to some extent, control
which securities enter optimal portfolio through varying a penalty associated with
”larger” (downside) deviations from a mean return. Within such a framework,
higher risk aversion is reflected in an investor’s desire to exclude from a portfolio
those securities which have potential ”large” deviations, while a more risk neutral
investment attitude will result in accepting those securities. On the other hand,
the modeling opportunities of the m–MAD constitute at the same time its possible
drawback related to the selection of proper values for m and λi parameters. It
is important to stress here, that if specific trade-off coefficient λ is selected in the
original MAD model, then it is quite natural to use the same coefficient in the whole
m–MAD model gives: λ1 = λ, λ2 = λ2,. . . , λm = λm. For computational reasons it
is clear that a rather small value of m should be considered. It turns out that there
would be no reason to consider larger values ofm even if it would be computationally
acceptable. For the trade-off λ < 1 it is very likely that small values of m will have
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a corresponding λm close to 0.
In this paper we argue that a solution of the m–MAD model for a particular m,

corresponds to specific (downside) risk aversion attitude of an investor. At the same
time, by varying m and solving a sequence of the m–MAD models, it is possible
to generate a set of optimal portfolios {x0(m)}m=1,2,.... Assuming that this process
is applied to historical data, for every {x0(m)}m=1,2,... it is possible to calculate
the portfolio cumulative wealth index (pcwi). Therefore, a trajectory of x0(m)
plotted on the ”pcwi scale” allows to represent investors proneness to (downside) risk
aversion as a function of the pcwi instead of often difficult to interpret risk or value
functions. Such a representation may prove to be intuitive enough to serve as a useful
tool in evaluating an investor’s risk aversion attitude - information quite important
when designing effective investment strategy. However, specific computational and
methodological issues associated with this representation and evaluation need to be
further investigated and resolved prior to its practical application.
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