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Abstract 

Particulate matter affects our health and climate. In addition to well based knowledge 

on the adverse health effects related to particle mass concentrations, there is 

increasing evidence showing that the number concentrations of ultra-fine aerosol 

particles, with diameters below 0.1 μm, have negative health impacts, which are 
significantly different from those caused by larger particles with sizes over 1 μm. 
Particles with diameters between 0.1 and 1µm can also be activated as cloud droplets; 

thereby, higher number concentrations can increase the cloud albedo and thus the 

proportion of solar radiation reflected back to space, causing a cooling aerosol climate 

effect. In addition to this indirect effect, aerosol particles affect Earth radiation budget 

directly by either scattering solar radiation (e.g. sulphate aerosol, cooling effect) or 

absorbing it (black carbon aerosol, warming effect). 

Currently, European air quality legislation on particulate matter is mainly focussing on 

particle mass, although emission standards for particle numbers have been introduced 

for mobile sources. Mass concentration is dominated by particles larger than 0.1 μm, 
and it is not well associated with number concentration, due to the often different 

formation mechanisms of ultra-fine and larger particles. For combustion sources, some 

emission control technologies affect mainly large particle emissions, and may even 

increase emissions of ultra-fine particles. Hence, in order to comprehensively estimate 

health and climate effects of anthropogenic aerosol particles, it is necessary to 

quantify their emissions with both mass and number based metrics, including 

information on their size distribution. 

This report describes the implementation of size segregated particle number emission 

calculations in the GAINS model. Results show that in 2010 in Europe more than 60 % 

of particle number emissions emerge from road transport, even though their share in 

total PM1 mass emissions (i.e., the mass of emitted particles with diameters below 1 

µm) is only 12 %. Particle number emissions from road transport are expected to 

decrease rapidly in the future due to further tightening of exhaust emission legislation 

(EURO-standards). Due to the envisaged more pronounced particle number emission 

reduction in the road transport sector compared to the currently second and third 

largest source sectors, shipping and combustion of fuel wood and coal in the 

residential sector, emissions from the latter two sectors are anticipated to exceed road 

transport emissions by 2025. Estimated shares in total European emissions in 2025 

range, depending on the applied future scenario, from 35 to 41 % for shipping, from 26 

to 29 % for residential combustion and from 17 to 21 % for road transport. The 

presented initial results are, however, subject to significant uncertainties, primarily 

due to limited measurement data for several emission sources. 
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Aerosol particle number emissions and size distributions: 

Implementation in the GAINS model and initial results 

Pauli Paasonen, Antoon Visshedjik, Kaarle Kupiainen, Zbigniew Klimont, Hugo Denier 

van der Gon, Markku Kulmala 

1 Introduction 

Current air quality legislation in the European Union concerning aerosol particles is 

focussing on the total mass of particles with diameters (dp) below 2.5 μm (PM2.5) or 
below 10 μm (PM10), with the exception of source-specific emission limit values for 

solid particle numbers from new vehicles. However, there is increasing evidence that 

adverse health effects of aerosols are also partly associated with the number 

concentration of ultrafine particles (UFP) with dp < 0.1 μm (WHO, 2013, more details 
e.g. in Samet et al., 2009 and references 13-26 therein). These particles can enter deep 

into human lungs and further to the cardiovascular system, and affect the central 

nervous system. Thereby, health effects of UFP differ from those of particles in 

micrometre size scales.  On the other hand, climate effects of aerosol particles are 

strongly dependent on the number concentrations of particles with dp > 0.1 μm. All 
aerosol particles have direct climate effects: they either scatter solar radiation thus 

cooling the climate (e.g. sulphur aerosol) or absorb solar radiation (e.g. black carbon 

aerosol) which warms the atmosphere. However, particles with approximately dp > 0.1 

µm also form cloud droplets and thus cool the climate (indirect aerosol climate effects) 

by increasing the share of solar radiation reflected back to space (Forster et al., 2007). 

Whereas the anthropogenic direct climate effects of aerosols are estimated from 

slightly negative to slightly positive, it is agreed that the indirect cloud forming effects 

turn the total aerosol forcing (at least most likely) to negative, i.e. cooling (Forster et 

al., 2007, Murphy et al., 2009, Bond et al., 2013). 

The particle number concentration is not directly related to PM2.5 or PM10, because 

mass concentrations are dominated by particles with dp > 0.1 μm and number 
concentrations by particles with dp < 0.1 μm. Sources of particles in different size 
ranges are often different: particles larger than roughly 0.3 µm are directly emitted to 

the atmosphere, whereas a significant share of the smaller particles is formed from 

vapour molecules during the nucleation process, e.g., in exhaust plumes or in the 

atmosphere (secondary particles). Also number emissions of particles > 0.1 µm differ 

significantly from particle mass emissions, because particles with diameters close to or 

over 1 μm have a strong effect on mass emissions, but in numbers their emissions are 
far less significant.  
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Number emissions and concentrations of aerosol particles are dominated by UFP. 

Particle number emissions differ from mass emissions not only because of different 

origins of particles, but also because the concentrations of UFP are partly controlled by 

larger particles. Basically in all combustion processes of organic matter that dominate 

anthropogenic emissions, potential nucleating vapours are formed. When the trace gas 

exits, e.g., the tailpipe or chimney, the decline in trace gas temperature decreases the 

volatility of these vapours, allowing for their condensation and nucleation. At this 

stage the aerosol population entering the atmosphere is very concentrated, and the 

larger particles form an efficient condensation/coagulation sink for nucleating vapours 

as well as for the freshly nucleated particles (Kulmala et al., 2001). Thus, the decrease 

in the emissions of larger particles i) leads to enhanced formation of UFP, since more 

vapours are available for nucleation, and ii) extends the lifetime of UFP by decreasing 

the rate of their scavenging to the larger particles.  

In addition to the total number of particles, mainly determined by UFP, also the size of 

particles has prominent impact on the effects of particles. Particles with diameters of 

some tens of nanometres enter efficiently deep into lungs and are transported from 

there to the cardiovascular system, whereas most of the particles with diameters of 

some hundreds of nanometres are exhaled (Politis et al., 2008). Particles in the 

micrometre size range are mostly deposited to the nasal and larynx areas. On the 

other hand, particles with diameters close to or over 0.1 μm (100 nm) have more 
impact on climate than the smaller ones due to their cloud forming potential. In 

addition to the health and climate effects, particle size is important for the evolution of 

the aerosol particle population due to the size dependence of their coagulation 

scavenging, and thus of their lifetime. Hence, the knowledge of the number size 

distribution of aerosol particles is an essential input parameter for climate and air 

quality models: in absence of data on size distributions, several models assume one for 

distributing the particle number to different sizes.  

Within the last year, we have introduced the calculation of particle number emissions 

into the GAINS model.  Our analysis is based on the results of the EU FP6 EUCAARI 

project (Kulmala et al., 2011), which provided a first European size-resolved particle 

number emission inventory (H. Denier van der Gon et al., 2009, H. Denier van der Gon 

et al., 2010). Despite the limited information on the number and size distributions of 

anthropogenic emissions, we demonstrate that current knowledge allows a reasonable 

analysis of particle number emissions and their anticipated changes due to emission 

control strategies that focus on PM-mass. 

 

2 Methods 

2.1 GAINS structure and scenarios 

The GAINS (Greenhouse gas – Air pollutant Interactions and Synergies) model (Markus 

Amann et al., 2011) is an integrated assessment model that brings together 

information on the sources and impacts of air pollutant and greenhouse gas emissions 
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and their interactions. GAINS combines data on economic development, the structure, 

control potential and costs of emission sources, the formation and dispersion of 

pollutants in the atmosphere and an assessment of environmental impacts of 

pollution.  

GAINS addresses air pollution impacts on human health from fine particulate matter 

and ground-level ozone, vegetation damage caused by ground-level ozone, the 

acidification of terrestrial and aquatic ecosystems and excess nitrogen deposition of 

soils, in addition to the mitigation of greenhouse gas emissions.  

GAINS describes the inter-relations between these multiple effects and the range of 

pollutants (SO2, NOx, PM, NMVOC, NH3, CO2, CH4, N2O, F-gases) that contribute to 

these effects at the European scale. GAINS assesses, for each of the 43 countries in 

Europe, more than 1000 measures to control the emissions to the atmosphere. It 

computes the atmospheric dispersion of pollutants and analyses costs and 

environmental impacts of pollution control strategies. In its optimization mode, GAINS 

identifies the least-cost balance of emission control measures across pollutants, 

economic sectors and countries that meet user-specified air quality and climate 

targets. 

In GAINS, emissions from different sources are calculated with three basic input 

parameters (Z. Klimont et al., 2002):  

- volumes of yearly activities (A) in a given sector, corresponding to certain fuels (e.g., 

fuel wood used (burned) per year in domestic single house boilers),  

- the shares (X) of abatement technologies applied to fuel consumption of the activity 

(e.g., improved boilers with accumulation tank, pellet boilers, boilers with electrostatic 

precipitator, etc.) such that ∑X=1, 
- the emission factors (EF) for each sector-fuel-technology –combination (emissions per 

activity unit). 

The yearly emissions E in region i are calculated as  �� = ∑ ����� = ∑ ����������EF������������  ,     (1) 

where the indices j refer to source sector, k to fuel and m to abatement technology. 

Within GAINS, future emissions are estimated for different scenarios of anthropogenic 

activities (e.g., energy use), for which shares X of different technology levels for all 

emission sources are assumed. This report employs estimates of historic and future 

emissions that have been produced for the analyses supporting the revision of the 

Thematic Strategy on Air Pollution of the European Commission. In particular, particle 

number emissions are calculated for scenarios that are presented in TSAP Report #10 

(Markus Amann et al., 2013). 

2.2 Emission factors for particle numbers  

The determination of emission factors (EFN) for particle number (PN) emissions and 

particle size distributions (PSD) is based on the European particle number emission 
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inventory developed by TNO (H. Denier van der Gon et al., 2009, H. Denier van der Gon 

et al., 2010) during the EUCAARI project (Kulmala et al., 2011). In that work, as well as 

here, the PSDs present the size segregation of the number emissions into size classes, 

i.e., the proportions Pi of the total number of emitted particles in each size sector i. 

Thus, the emission factor for a single size class i is written as  

EFN,� = ��EFN,          (2) 

and the sum over all Pi:s equals one. Values for the proportions Pi are calculated from 

modal presentations of PSDs, consisting of one to three lognormal modes. 

In the TNO study, EFN:s were determined through two alternative ways. For some 

source sectors, especially for traffic and domestic combustion, both EFN:s and PSDs 

were determined from the literature directly. For other source sectors, EFN:s were 

based on PM1 mass emission factors (EFPM1), which were originally adapted from an 

earlier version of the GAINS model (M. Kulmala et al., 2011, H. Denier van der Gon et 

al., 2010). The latter group of EFN:s was formed by first determining particle mass and 

number size distributions and estimating the particle densities from the literature, 

then converting EFPM1 to (mass) emission factors of particles smaller than 300 nm 

(EFPM0.3) based on the mass size distributions, and finally resolving the EFN:s that yield 

the EFPM0.3:s by applying the particle number size distributions. 

In our first analysis, we employ for many source sectors the emission factors and size 

distributions provided in the TNO study.  However, for sources that are most important 

for particle numbers, such as road transport and wood combustion in the domestic 

sector, we developed improved emission factors and size distributions. The 

modifications to the TNO study are described below. 

Firstly, we extend the PSDs in GAINS to cover sizes from electrical mobility diameter 

(dM) of 3 nm up to aerodynamic diameter (dA) of 1 μm, whereas the particle size range 
in the TNO study was from dM =10 nm to dA =300 nm. The size range was extended to 
larger sizes in order to allow for comparison between the emission factors for particle 

number and PM1 mass, the latter being determined as the total mass of particles with 

dA ≤ 1 μm. Additionally, even though the share of particles larger than 300 nm in all 

emitted particles is negligible, large particles are important in some source sectors. The 

extension towards smaller diameters was made to provide the whole particle size 

range for climate model calculations. These extensions of the particle size ranges 

required recalculation of the EFN:s for source sectors that were originally based on 

PM0.3 emission factors, with the formula 

EFN =
1�∑ ���6��3� EFPM1,         (3) 

where ρ is the estimated density of the emitted particles, Pi is the proportion of 

particles in size class i out of the total number of emitted particles and di is the 

geometric mean diameter of the particles in size class i. The values for ρ and PSDs were 

taken from the TNO analysis, with the exception of the PSDs mentioned below.  

Secondly, new PSDs were introduced for road transport sources with the highest 

activities (diesel heavy duty trucks and busses, both diesel and gasoline light duty 
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trucks and passenger cars), based on the EU FP7 project TRANSPHORM database 

(Vouitsis et al., 2013 and 2014). Also EFN:s and PSDs for domestic wood combustion 

(including pellet burning and medium size district heating boilers) and for shipping 

emissions were updated (domestic sector: Gaegauf et al., 2001, Emma Hedberg et al., 

2002, L. S. Johansson et al., 2004, C. Johansson et al., 2008, Kinsey et al., 2009, 

Lamberg et al., 2011, Bäfver et al., 2011, C. Boman et al., 2011, Pettersson et al., 2011, 

Chandrasekaran et al., 2011; shipping: Hobbs et al., 2000, Sinha et al., 2003, Petzold et 

al., 2008, Murphy et al., 2009, Moldanova et al., 2011, Diesch et al., 2013), as well as 

for two stroke vehicles in road transport (Ntziachristos et al., 2005, Etissa et al., 2008). 

New PSDs were introduced also for flaring in gas and oil industry (Canteenwalla et al., 

2006) and for coke production (Weitkamp et al., 2005). The EFN for tire wear, 

previously based on EFPM0.3, was replaced with a direct PN emission factor (Dahl et al., 

2006). 

2.3 Particle number size distributions 

Emission factors include the total number emission factor (EFN) and the particle 

number size distribution (PSD) in 15 size classes (see Table 1). 

Table 1. Particle diameter ranges of the size classes in nanometres (0.001 μm). 
Diameters are electrical mobility diameters, except for * which is aerodynamic 

diameter (see text below). 

Size 

class 

numbe

r 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Min dp 3 6 
1

0 

1

4 

1

9 

2

6 

3

6 

5

0 
70 

10

0 

14

2 

20

0 

28

5 

40

5 
577 

Max dp 6 
1

0 

1

4 

1

9 

2

6 

3

6 

5

0 

7

0 

10

0 

14

2 

20

0 

28

5 

40

5 

57

7 

1000

* 

 

PSDs are initially determined with a size distribution function fN, which is set by one to 

three lognormal modes. The modal size distributions are converted to particle 

concentrations Ni in 15 size bins i, with ∑Ni=1. The class of the smallest particles has a 
minimum diameter of 3 nm and a maximum of 6 nm (electric mobility diameters, dM), 

whereas the largest size class extends from dM = 577 nm to 1 μm in aerodynamic 
diameter (dA). The electrical mobility diameters are applied for all size class boundaries 

except 1 μm, because it is the diameter relevant to the PSD measurements typically 

made with Scanning/Differential Mobility Particle Sizers (SMPS/DMPS). Aerodynamic 

diameter is chosen for the upper diameter limit of the largest size class (1 μm) to allow 
comparison between the number emissions and PM1 mass emissions, determined as 

the total mass of particles with dA ≤ 1 μm. For calculating the concentration of the 
largest size class, the upper diameter limit in dM is calculated with 
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�� =
����/1000,          (4) 

where ρ is the estimated density of particles in units [kg m-3]. Because the upper size 

limit of the largest size class is in dA, concentrations N15 are not directly comparable 

(e.g., for particles with the highest estimated density, ρ = 3000 kg m-3, the upper size 

limit equals the lower size limit dM=577, resulting in N15=0). For the total particle 
number this causes, however, only negligible inaccuracy, since particle number 

emissions are much higher in smaller size bins. 

It is planned to implement EFN for the total number emissions and EFN>0.1 for the 

emissions of particles with dp > 0.1 μm for routine calculations in the GAINS model. The 
latter emission factor is relevant for, e.g., climate model calculations addressing 

particles active in cloud formation processes (Dusek et al., 2006). Additionally, 

emissions in all 15 size classes are available upon request. 

2.4 Examples of particle emission factors and size distributions 

Emission factors applied for different technologies of heavy duty diesel trucks (MD 

HDT) and domestic wood (FWD) and hard coal (HC1) fuelled stoves are presented as 

examples in Table 2. The related particle size distributions multiplied with the emission 

factor EFN are presented in Figure 1. For hard coal combustion the emission factors are 

PM1 mass based with identical PSDs, whereas for the other emissions presented in 

Figure 1 direct EFN:s and individual PSDs for technologies are applied. 

 

Table 2. Examples of particle number emission factors: heavy duty diesel truck 

emissions (MD HDT) for uncontrolled (NOC) and EURO I-VI vehicles, and domestic 

stove emissions for wood (FWD) and hard coal (HC1) fuelled old (NOC), new, improved 

(IMP), electrostatic precipitator equipped (ESP) and pellet burning (PELL) stoves. 

Technology EFN (10
22

 #/PJ) 

MD HDT NOC 6.85 

MD HDT EURO I 10.52 

MD HDT EURO II 12.88 

MD HDT EUROIII 8.21 

MD HDT EURO IV 2.02 

MD HDT EURO V 0.92 

MD HDT EURO VI 0.01 

    

FWD STOVE NOC 3.20 

FWD STOVE NEW/IMP/ESP 4.80 

FWD STOVE PELL 5.64 

FWD STOVE PELL+ESP 0.05 

HC1 STOVE NOC 20.33 

HC1 STOVE IMP 16.26 

HC1 STOVE NEW 11.62 
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Figure 1. Examples of emission factor size distributions. Upper panel: heavy duty diesel 

truck emissions for uncontrolled (NOC) and EURO I-VI vehicles. Lower panel: domestic 

stove emissions for wood (FWD) and hard coal (HC1) fuelled old (NOC), new, improved 

(IMP), electrostatic precipitator equipped (ESP) and pellet burning (PELL) stoves.  

 

3 Initial results 

 

In this section, we present first results of the particle number emission calculations 

with the GAINS model. It is important to note that these are first estimates and are 

subject to significant uncertainties. The reasons behind the uncertainties are discussed 

in the Discussion section. 

We compare particle number emissions with mass emissions of particles with 

diameters below 1 µm, because these emissions correspond to different metrics of the 

same particles. PM2.5 mass emissions are less correlated with the number emissions 

than PM1 emissions. 
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3.1 Comparison of number and mass emission factors 

The inaccuracy of EFPM1 for estimating particle number emissions is illustrated in Figs. 

2a-b. The maximum variability of EFN from different sources with similar EFPM1 is 

roughly four orders of magnitude (depicted with an arrow in Fig. 2b). This means that 

from two different sources emitting the same mass of particles per activity unit, the 

other may have larger number emissions by a factor of 10,000. The difference arises, 

naturally, from the difference in sizes of the emitted particles. The relation between 

emission factors of particles larger than 0.1 μm (EFN>0.1) and total number emission 

factor (EFN) is depicted in Fig. 2c, showing that also these factors are not coupled. 

 

 

Figure 2. Particle number emission factors EFN vs. particle mass emission factors EFPM1 

in linear (a) and logarithmic (b) scale. The arrow in (b) shows the maximum variability 

of EFN:s corresponding to similar EFPM1:s. Panel c) illustrates the lack of a direct 

coupling between number emissions of particles with diameters above 0.1 μm (EFN>0.1) 

and total particle number emissions. Panels (a) and (c) do not present the whole 

ranges of the emission factors. 

 

3.2 Current and future particle number emissions in the EU28 

Estimates of total particle number emissions (Ntot) and emissions of particles with dp > 

0.1 μm (N>0.1) are presented in Table 3 for the 28 EU countries (EU28). The table 

includes estimates for the years 2010, 2020 and 2025, based on the assumption that 

all measures included in current legislation will be effectively implemented according 

to current schedule (the current legislation, CLE, scenario). For 2025, estimates are 

also provided for the central policy scenario A5 analysed in TSAP Report #10 and for 

the maximum feasible reductions (MTFR) scenario (Amann et al., 2013). Changes in 

c) 

a
 

b) 
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emissions relative to 2010 are presented as well, including the corresponding changes 

in PM1 mass emissions for comparison. Results for European non-EU countries are 

presented in Appendix A.  

Particle number emissions are clearly dominated by the ultrafine particles (UFP, dp<0.1 

μm) in all the source sectors excluding waste treatment and agriculture, which can be 
seen from the average factor of five difference between Ntot and N>0.1.  

 

Table 3. Total particle number emissions (Ntot) and emissions of particles with dp>0.1 μm 
(N>0.1) for EU28 countries, by source sector. Emissions are presented for years 2010, for 

the current legislation scenario (CLE) in 2020 and 2025, and for 2025 for the central 

ambition level (A5) and the maximum technically feasible reductions (MTFR) scenarios. 

Percentage changes from year 2010 refer also to PM1 mass emissions for comparison. 

  

Ntot N>0.1 Ntot N>0.1 Ntot N>0.1 Ntot N>0.1 Ntot N>0.1 Ntot N>0.1 PM1 Ntot N>0.1 PM1 Ntot N>0.1 PM1 Ntot N>0.1 PM1

176 42 139 34 139 34 78 11 68 3 -21 -20 -37 -21 -19 -38 -56 -75 -79 -62 -93 -93

1639 347 1494 315 1357 286 1307 243 1114 209 -9 -9 -13 -17 -18 -23 -20 -30 -46 -32 -40 -66

109 24 118 29 104 25 66 10 49 5 9 22 10 -5 6 -4 -40 -59 -54 -55 -78 -71

218 16 199 16 197 17 58 10 56 9 -9 4 3 -9 6 4 -73 -36 -32 -74 -43 -38

0.14 0.14 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 -4 -4 -4 -14 -14 -14 -14 -14 -14 -14 -14 -14

7741 1243 1889 286 894 132 894 132 894 132 -76 -77 -64 -88 -89 -74 -88 -89 -74 -88 -89 -74

Shipping 1824 12 1776 10 1788 10 1788 10 1788 10 -3 -19 -8 -2 -19 -8 -2 -19 -8 -2 -19 -8

597 157 393 84 338 63 338 63 338 63 -34 -46 -57 -43 -60 -73 -43 -60 -73 -43 -60 -73

38 28 39 29 39 29 30 22 30 22 2 2 2 3 3 3 -22 -23 -21 -22 -23 -21

262 162 303 187 303 187 0 0 0 0 15 15 15 15 15 15 -100 -100 -99 -100 -100 -99

3039 776 2685 694 2478 641 1877 359 1656 311 -12 -11 -13 -18 -17 -20 -38 -54 -52 -46 -60 -66

12603 2031 6350 990 5159 783 4559 501 4337 453 -50 -51 -19 -59 -61 -27 -64 -75 -54 -66 -78 -66

Road transport (RT)

Other non-road trans.

Waste treatment

Agriculture

Total

Total excl. RT & ships

Fuel extraction

Emissions (x1023 particles) Change from 2010 (%)

2010 CLE 2020 CLE 2025 A5 2025 MTFR 2025 CLE 2020 CLE 2025 A5 2025 MTFR 2025

Power generation

Domestic sector

Industrial comb.

Industrial proc.
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Table 4. Same as Table 3, but segregating the emissions between EU28 countries. 

 

 

The distribution of number emissions Ntot and N>0.1 and PM1 mass emissions in 

different source sectors for 2010 is depicted in Figure 3. Over 60 % of total particle 

number emissions originate from road transport, 14 % from shipping and 13 % from 

the domestic sector. This is in strong contrast to PM1 mass emissions, for which the 

domestic sector is dominant with a share of 56 %, and road transport and shipping 

contribute only 12 % and 1 %, respectively. Non-road transport (excluding shipping) 

contributes 5 % to Ntot emissions, whereas the shares of each of the remaining sectors 

are 2 % or smaller. 



 11 

 

Figure 3. The distribution of number emissions Ntot and N>0.1 and mass emissions PM1 

in different source sectors in EU28 for year 2010. 

 

The on-going and planned developments in road transport technologies are expected 

to cut PN emissions drastically. The estimated evolution of total particle number 

emissions is depicted in Figure 4 (note that road transport emissions for 2010, 7.7x1026 

#/year, are far above the emission scale of the figure). Road transport PN emissions 

are estimated to decrease by 76 % from 2010 until 2020 and by 88 % until 2025 

(scenarios for 2025 are similar to each other in terms of road and non-road transport 

emissions). Number emissions from the domestic sector are anticipated to decrease 

until 2025 far less than those from road transport, from 17 to 32 % depending on the 

scenario. PN emissions from shipping remain in these estimations practically constant. 

Emissions per ship decrease due to the decreasing share of ships using heavy fuel oil, 

which contains more sulphur and thus causes higher PN emissions than diesel oil (e.g. 

Diesch et al., 2013), but the increase in total activity evens out this decrease. However, 

due to lack of appropriate measurements we have not considered here the effect of 

limiting the sulphur content of ship fuel to 0.1 %, which will most probably decrease 

the emissions from national shipping in future. According to this analysis, particle 

number emissions from both domestic combustion and shipping will be higher than 

road transport emissions by 2025 (Table 2). The shares of shipping, domestic 

combustion and road transport in 2025 will be 35 %, 26 % and 17 %, respectively, in 

the CLE scenario, and  39 %, 29 % and 20% in the A5 scenario, and 41 %, 26 % and 21 % 

in the MTFR scenario. 
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Figure 4. The yearly total particle number emission under the investigated scenarios.  

Road transport is the major factor of future change in particle number emissions, and 

reductions in number emissions Ntot and N>0.1 and mass emissions PM1 from road 

traffic are quite similar (see right hand side of Table 3). Also in the source sectors other 

than road transport and shipping the decreases in these different emission metrics are 

quite similar under the CLE scenario, as can be seen in the changes from year 2010 in 

Table 3, row ‘Total excluding road transport and ships’. However, in total emissions the 

decrease of PM1 mass emissions is much smaller than of number emissions, because 

PM1 emissions are dominated by the domestic sector (see Figure 3). Under the more 

ambitious scenarios the reductions of emissions from other sources than road 

transport and shipping are far more effective for PM1 and N>0.1 than for Ntot, and also 

the total reductions in N>0.1 are over 10 percentage points higher than in Ntot. Higher 

reductions of emissions of larger particles in the A5 and MTFR scenarios arise mainly 

from the banning of open burning of agricultural waste, which emits mostly particles 

with diameters over 0.1 μm. 

3.2.1 Detailed size segregation of estimated particle number emissions 

More detailed size segregation of the reductions in particle number emissions under 

the different scenarios is depicted in Figure 5, in which emissions from road transport, 

shipping, domestic sector and the other source sectors are presented together with 

total emissions. In Figure 5a, the dominant role of road transport emissions in 2010, as 

well as their significant decrease, is clearly visible. In road transport emissions the 

highest emissions are of particles with diameter around 60 nm, which emerge from 

both diesel and gasoline vehicles. The nucleation mode particles, which form the 

‘elbow’-shape between 20 and 40 nm, originate mainly from diesel fuelled vehicles. As 

can be seen from Figure 1 the nucleation mode is dominant for EURO-III and VI heavy 

duty diesel vehicles. For older vehicles, from uncontrolled to EURO-II, the high 

emissions of larger particles seem to have scavenged the nucleating vapours and 

nucleation mode particles from the exhaust plumes. Improved technology in EURO-IV 

and newer heavy duty vehicles seems to decrease efficiently both the larger particle 

and nucleation mode particle emissions.  

0

500

1000

1500

2000

2500

3000
E

m
is

si
o

n
s 

N
to

t 
(x

1
0

2
3
 #

/y
e

a
r)

 

2010

2020 CLE

2025 CLE

2025 A5

2025 MTFR

7741 (x 1023) #/year 



 13 

For the domestic sector (Figure 5c), only one mode with mean diameter between 40 

and 50 nm is visible. This is the size range in which residential combustion of both 

wood and hard coal has high emissions, even though the peak diameter of hard coal 

emissions is in smaller sizes and that of conventional stoves in larger sizes (see Figure 

2). In Figure 5c, for other source sectors than domestic and road transport, the 

decrease in emission in the CLE scenario emerges from non-road transport sources. 

Banning open burning of agricultural residuals causes a drastic difference between the 

CLE and the more ambitious A5 and MTFR scenarios. 

 

Figure 5. Size resolved PN emissions in EU28 under the studied scenarios, which are 

indicated in panel (a). Total emissions are shown with dotted lines in all panels, 

whereas the solid lines indicate PN emissions from (a) road transport, (b) shipping, (c) 

domestic combustion and (d) other source sectors. Note the order of magnitude 

difference in scales between upper and lower panels. 

 

4 Discussion 

4.1 Uncertainties in the estimates 

The results presented above are the first estimates of particle number emissions with 

the GAINS model. While compiled to the best of our knowledge given time and budget 

constraints, they are subject to significant uncertainties, and there are numerous 
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possibilities for further improvements.  However, we are confident that the applied 

emission factors and size distributions give reasonable estimates of i) the overall 

magnitudes of the particle number emissions, ii) the significance of different source 

sectors and iii) of the size ranges of emitted particles from these source sectors.  

A comparison between the emission estimates for 2005 developed within the EU FP6 

EUCAARI project by TNO and the GAINS results show reasonable agreement in all the 

above points i-iii), especially when corrected for the adjusted new PN emission factors.  

In general, uncertainties in PN emission estimates originate mainly from the following 

reasons:  

• Particle number emissions are dominated by nucleation mode particles in the ultra-fine 

particle size range. Most of these particles have formed from vapours through nucleation 

processes and are not in the solid phase. The level of nucleation mode emissions depends 

i) on air temperature, as at higher temperatures the nucleation of vapours is less effective, 

and ii) on the rate at which the aerosol is mixed with surrounding air, as the scavenging of 

vapours and nucleated particles to larger particles is most efficient before and immediately 

after the highly concentrated aerosol is introduced to the surrounding air. Thus, emission 

factors and size distributions are dependent on the measurement conditions in terms of 

temperature and dilution rate, but also the actual atmospheric emissions vary under 

different atmospheric conditions, mostly in terms of air temperature. 

• Another main uncertainty relates to the scarcity of particle number emission data for 

several important source sectors. The majority of emission factors apart from road 

transport and domestic wood combustion are derived from PM1 mass emissions by 

distributing the mass according to the applied particle size distribution (PSD). Because a 

uniform PSD is applied for different technologies in these sources, the decrease in mass 

emissions results in a similar relative decrease in number emissions. This is, however, not 

correct in many cases: when emissions of large particles (which determine the total mass 

emissions) decrease, the sink for nucleating vapours and nucleation mode particles is 

reduced, leading to a smaller decrease or even an increase in total number emissions. This 

is visible in the data for domestic wood combustion, for which total number emissions 

increase and diameters of emitted particles decrease with advancing technologies. 

Up to some point, these uncertainties can be reduced by a more detailed review of the 

most recent literature, but it is obvious that in order to derive quantitative estimates 

for particle number emissions more measurements are needed. 

4.2 Future strategies for emission reductions 

Even with a prime focus of emission control strategies on particle mass, it is important 

to monitor the concurrent evolution of particle number emissions, as their 

development can follow different trends. As mentioned earlier, the decrease in 

emissions of larger particles can in some cases lead to increasing number emissions of 

nucleation mode particles. It is possible that the increase in number emissions from 

newer/improved stoves compared to old/uncontrolled ones arises partly from this 
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phenomenon. It has been proposed that similar effect would take place in diesel 

vehicle emissions when the particle mass emissions decrease drastically while DPF 

systems are introduced (e.g. Arnold et al., 2012), but in the TRANSPHORM database 

this effect is not visible. This is most probably due to the very low sulphur content in 

diesel fuel in Europe, and the situation may be very different in countries in which 

diesel fuel contains more sulphur. 

4.3 Climate-relevant particle number emissions 

Particles with the highest climatic impact, with respect to their size and typical levels of 

concentration, fall in the size classes roughly between 0.1 and 1 µm, which are least 

efficient in depositing into the human respiratory system (Politis, M. et al., 2008). 

Roughly half of the number concentrations of >0.1µm particles in the European 

continental boundary layer originate directly from anthropogenic emissions, whereas 

the other half has grown to this size from smaller particles through condensation of 

biogenic vapours on smaller bio- and anthropogenic particles (Paasonen et al., 2013). 

Climate effects of aerosol particles are various. In addition to the capability of >0.1 µm 

particles to form cloud droplets thus cooling the climate (indirect effects), particles 

have direct climate effects: they either scatter solar radiation (also a cooling effect) or 

exert a warming impact by absorbing solar radiation (e.g., black carbon particles). Since 

also the share of black carbon emissions on total anthropogenic particle emissions can 

be quantified with GAINS (Kupiainen and Klimont, 2004 and 2007, Bond et al., 2013), 

estimation of the overall climate effects of reducing particle emissions will be  possible 

in future studies. 

Our initial analysis on particle number emissions suggests that in the current legislation 

scenario the decrease of emissions of particles in the size range > 0.1 μm is very similar 
to the decrease in total number emissions. However, in the more ambitious A5 and 

MTFR scenarios, emissions of particles > 0.1 μm are reduced by over 10 percentage 
points more than the corresponding total number emissions. This size resolved 

information is important when estimating the climatic impacts of emission reductions.  

4.4 Next steps for calculating particle number emissions in GAINS  

While a first step has been made to estimate current and future particle number 

emissions in Europe, improvements in the calculation methodology for several source 

sectors could significantly reduce uncertainties.  This requires more detailed and/or 

more representative direct size resolved particle number emission measurements. 

Especially, more detailed descriptions of emissions from shipping, domestic coal 

combustion, non-road transport and industrial processes may alter the results 

significantly. The currently PM1 based emission factors in these source sectors should 

be replaced with direct emission factors corresponding to the different technologies 

considered in the GAINS model. Additionally, emissions from vehicles using alternative 

fuels, e.g., natural gas, biodiesel, etc., should be addressed in more detail. Finally, 

more detailed technology segregation for wood combustion emissions in the 

household sector may lead to slightly different conclusions on future emission trends.  
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It is also important to examine the representativeness of the current emission factors 

and size distributions, especially at the global scale. For instance, current emission 

factors for domestic combustion are derived from experiments for typical European 

and North-American burners and stoves. For global road transport, some of the 

vehicles outside the EURO standards are not well described, and the effect of fuel 

sulphur content on number emissions should be addressed. Additional efforts to 

improve the knowledge base will be warranted. However, even without such 

improvements, preliminary calculations at the global scale would be valuable as 

especially the climate relevance of particles active in cloud formation is as much a 

global as a regional issue. 

 

5 Summary and conclusions 

Particle number emission factors and the particle number size distributions related to 

these emissions have been introduced into the GAINS model. Addition of particle 

number emissions to the online GAINS model is envisaged during 2013.  

Results show that road transport is currently the dominant source of particle number 

emissions in Europe, contributing more than 60 % to total emissions. Roughly 85 % of 

the particles emitted from road transport are ultra-fine particles (UFP), i.e., have 

diameters <0.1 µm (100 nm). This is in agreement with earlier particle number 

emissions estimates (H. Denier van der Gon et al., 2010a). However, the road transport 

share in particle numbers is rather different from the shares in PM2.5 or PM1 mass 

emissions, which are dominated by the domestic combustion sector. Also particles 

emitted from shipping, which is the second largest particle number source, are in the 

UFP size range and contribute minimally to mass based metrics. 

The current legislation (CLE) scenario would reduce particle number emissions until 

2025 by close to 60 %, mainly as a consequence of the 88 % reduction in road 

transport emissions. Shipping emissions are estimated to remain quite constant and 

domestic sector emissions to decrease by 17 %. Consequently, in 2025 road transport 

emissions would account for only 17 % of total emissions, whereas shipping emissions 

would contribute 35 % and the domestic sector 26 %. 

Under the CLE scenario, the overall decrease in particle number emissions is estimated 

to be much stronger than the decrease in particulate mass emissions, due to the major 

impact of road transport emission mitigation measures especially on particle number 

emissions. However, for the more ambitious A5- and maximum technologically feasible 

reductions scenarios, particle number emissions from other sectors are estimated to 

decrease clearly less (from 14 to 20 percentage points) than the particle mass 

emissions. The different response of particle number and particle mass to changes in 

technologies can be expected, and in some cases a reduction in mass can even 

increase the number emissions. 

These new estimates provide input for the calculation of indirect climate impacts of 

aerosols, which are heavily affected by number concentration of particles > 0.1 μm.  
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The current estimates of particle number emissions are subject to significant 

uncertainties, arising partly from the difficulties in estimating emissions of non-solid 

ultrafine particles, and partly from the limited number of available data for several 

source sectors. In order to reduce these uncertainties, new size resolved measurement 

data on particle number emissions from several important sources and (new) 

technologies are required. 

It should be realized that our knowledge on the role and impact of UFP and particles > 

0.1 μm in ambient air for both human health and climate controls through cloud 
formation are still not perfect. However, for making progress in these research fields, it 

is important to improve emission estimates. With increasing knowledge on health and 

climate effects of particle number concentrations, it is expected that in the future the 

number and size of emitted particles will play an important role in addition to the mass 

based metrics of PM10 and PM2.5. 
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7 Appendix A: Emissions in European non-EU countries 

 

Total particle number emissions and the emissions of particles > 0.1 µm for non-EU 

countries are presented in Tables A1 and A2. Under the applied scenarios for year 

2025 there was no difference in activities or technologies for non-EU countries. 

 

Table A1. The estimated total particle number emissions (Ntot) and the emissions of 

particles with dp>0.1 μm (N>0.1) for EU28 countries, divided to source sectors. Estimated 

emissions are presented for years 2010, 2020 and 2025 under the current legislation 

scenario (CLE). In percentage changes from year 2010, on right, corresponding changes in 

PM1 mass emissions are shown for comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ntot N>0.1 Ntot N>0.1 Ntot N>0.1 Ntot N>0.1 PM1 Ntot N>0.1 PM1

111 48 102 44 106 46 -8 -8 -11 -4 -3 -10

578 136 548 126 541 124 -5 -7 -7 -6 -9 -9

174 53 218 70 235 76 25 32 24 35 44 37

1509 125 1527 135 1530 139 1 8 8 1 11 11

0.12 0.12 0.12 0.12 0.12 0.12 0 0 0 6 6 6

1784 321 1057 163 645 98 -41 -49 -48 -64 -69 -61

Shipping 280 1 290 1 299 1 4 -1 2 7 6 7

1223 114 1221 113 1178 113 0 -1 -1 -4 -1 -2

37 30 38 31 38 31 2 2 2 3 3 2

660 408 651 402 643 397 -1 -1 -1 -3 -3 -3

4292 913 4305 922 4271 927 0 1 1 0 1 2

6357 1236 5652 1085 5215 1026 -11 -12 -1 -18 -17 0Total

Change from 2010 (%)Emissions (x10
23

 particles)

Road transport (RT)

Other non-road trans.

Waste treatment

Agriculture

Total excl. RT & ships

Power generation

Domestic sector

Industrial comb.

Industrial proc.

Fuel extraction

2010 2020 2025 2020 2025
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Table A2. Same as Table A1, but segregating the emissions between non-EU countries. 

 

 

 

Ntot N>0.1 Ntot N>0.1 Ntot N>0.1 Ntot N>0.1 PM1 Ntot N>0.1 PM1

Albania 32 9 23 7 19 6 -27 -23 -4 -41 -33 -8

Belarus 129 43 144 43 156 44 12 1 5 21 4 6

Bosnia Herzegovina 30 10 19 6 15 5 -35 -37 -32 -48 -45 -35

Iceland 24 1 27 1 28 0 10 -40 13 16 -51 12

Macedonia 21 8 14 5 11 4 -34 -38 -48 -46 -47 -57

Moldova 25 9 25 9 22 8 -1 -5 0 -15 -11 0

Norway 317 23 196 10 174 8 -38 -54 -6 -45 -66 -2

Russia (Eur) 3213 597 2946 536 2588 491 -8 -10 2 -19 -18 2

Serbia Montenegro 156 49 123 37 108 34 -21 -24 -26 -31 -30 -30

Switzerland 115 20 47 8 30 5 -59 -58 -37 -74 -73 -47

Turkey 1110 277 833 238 798 230 -25 -14 4 -28 -17 4

Ukraine 1208 193 1282 185 1294 190 6 -4 -3 7 -1 1

Total non-EU 6357 1236 5652 1085 5215 1026 -11 -12 -1 -18 -17 0

Emissions (x10
23

 particles) Change from 2010 (%)

202520202010 2020 2025
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