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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 25

ADN

The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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No. 7 Ferrìere R, Gatto M:
Lyapunov Exponents and the Mathematics of Invasion in Oscillatory or
Chaotic Populations.
Theoretical Population Biology (1995) 48, 126–171.

No. 8 Ferrìere R, Fox GA:
Chaos and Evolution.
Trends in Ecology and Evolution (1995) 10, 480–485.

No. 9 Ferrière R, Michod RE:
The Evolution of Cooperation in Spatially Heterogeneous Populations.
IIASA Working Paper WP-96-029.
American Naturalist (1996) 147, 692–717.



No. 10 Van Dooren TJM, Metz JAJ:
Delayed Maturation in Temporally Structured Populations with Non-
Equilibrium Dynamics.
IIASA Working Paper WP-96-070.
Journal of Evolutionary Biology (1998) 11, 41–62.

No. 11 Geritz SAH, Metz JAJ, Kisdi E, Meszéna G:
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Abstract

We investigate how a genetic polymorphism of distinctly different alleles can evolve in

an initially monomorphic population under frequency-dependent selection if mutations

have only a small phenotypic effect. We consider the case of a single additive locus

with a continuum of potential allele types in a diploid outbreeding population. As a

specific example, we use a version of Levene’s (1953) soft selection model, where

stabilizing selection acts on a continuous trait within each of two habitats. If the optimal

phenotypes within the habitats are sufficiantly different, then two distinctly different

alleles evolve gradually from a single ancestral allele. In a wide range of parameter

values, the two locally optimal phenotypes will be realized by one of the homozygotes

and the heterozygote, rather than the two homozygotes. Unlike in the haploid analogue

of the model, there can be multiple polymorphic evolutionary attractors with different

probabilities of convergence.

Keywords: adaptive dynamics, ESS, evolutionary branching, frequency dependent

selection, genetic polymorphism, mutation-limited evolution, soft selection model
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Adaptive Dynamics in Allele Space:

Evolution of Genetic Polymorphism

by Small Mutations

in a Heterogeneous Environment

É. Kisdi
S.A.H. Geritz

Introduction

Frequency dependent selection arises under a wide variety of ecological situations

such as multiple-niche environments, resource competition, predation, etc. There

are two approaches frequently used in theoretical analyses of frequency

dependent evolution of continuous traits. The first searches for evolutionarily

stable strategies (Maynard Smith, 1982), or evolutionarily stable coalitions of

coexisting strategies (Brown and Vincent, 1987a,b, 1992; Brown and Pavlovic,

1992) as the possible final states of evolution. The  second models the dynamics

of how traits change in time, most often by difference equations describing

directional evolution (e.g., Hofbauer and Sigmund, 1990; Marrow et al., 1992,

1996; Abrams et al., 1993a; Vincent et al., 1993; Matsuda and Abrams, 1994a,b;

Dieckmann et al., 1995; Dieckmann and Law, 1996; Abrams et Matsuda, 1997;

Law et al., 1997); these models are largely compatible with quantitative genetic

models (Charlesworth, 1990; Iwasa et al., 1991; Taper and Case, 1992; Abrams et

al., 1993a,b; Taylor, 1996).
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The attractors of directional evolution need not be evolutionarily stable strategies

(Eshel, 1983; Taylor, 1989; Nowak, 1990; Christiansen, 1991; Abrams et al.,

1993a; Vincent et al., 1993; Eshel et al., 1997). Metz et al. (1996) and Geritz et al.

(1997, 1998) show that the attractors which lack local evolutionary stability are

evolutionary branching points, at which two coexisting strategies evolve from a

single ancestral strategy by small mutational steps (similar results were obtained

independently by Eshel et al., 1997).

The evolution of polymorphism at a branching point proceeds as follows. As

long as the monomorphic population is away from the branching point, a mutant

somewhat nearer the branching point can invade and replace the resident. When

directional evolution has arrived at the neighbourhood of a branching point, the

invading mutant does not replace the former resident anymore, but the two

phenotypically similar strategies form a protected dimorphism. Once dimorphic,

the population undergoes disruptive evolution during which the two strategies

grow further and further apart. The emergence of two widely distinct strategies

by small evolutionary steps in an initially monomorphic population can be

envisaged as branching on the evolutionary tree.

Protected polymorphism and disruptive selection near a branching point have

been indicated in a number of specific models (Christiansen and Loeschcke, 1980;

Van Tienderen and De Jong, 1986; Christiansen, 1991; Brown and Pavlovic, 1992;

Abrams et al. 1993a). Specific examples of evolutionary branching have been

investigated by Metz et al. (1992, 1996), Doebeli (1996a), Doebeli and Ruxton

(1997), Meszéna et al. (1997), Geritz et al. (1998), Doebeli and Dieckmann (in

press), Geritz and Kisdi (in press), Mathias and Kisdi (in press), Meszéna and

Metz (in press), Geritz et al. (in prep.). The evolutionary attractors corresponding

to fitness minima found, for example, by Cohen and Levin (1991), Ludwig and

Levin (1991), Vincent et al. (1993), Doebeli (1996b), and Law et al. (1997) are

evolutionary branching points.
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An important limitation of the adaptive dynamics framework used for modelling

evolutionary branching (Metz et al., 1996; Geritz et al., 1997, 1998) is the

assumption of haploid or clonal inheritance. In this paper we investigate how this

framework can be applied to diploid sexually reproducing organisms. Since in

diploid populations alleles (rather than phenotypes) undergo mutation and are

passed from one generation to the next, we model evolution in allele space by

keeping track of the full allelic composition of the population. Evolutionary

branching in allele space produces genetic polymorphism of alleles with distinctly

different phenotypic effects via a series of small mutations. Specifically, we

address the following questions:

 (1) Does genetic polymorphism evolve by evolutionary branching under similar

ecological conditions where phenotypic adaptive dynamics leads to branching?

 (2) What are the qualitative differences between evolution in haploid and diploid

populations?

In order to tackle these questions, we use a continuous version of Levene’s soft

selection model (Levene, 1953) as an example, because of its relative simplicity

and because of its well-known population genetics (see, for example,

Roughgarden, 1979; Maynard Smith, 1989). In the original model of Levene

(1953), there is one locus with a fixed number of pre-defined alleles all of which

are already present in the population. Here we assume an initially monomorphic

population, and a continuum of potential allele types that could arise by

mutation. Mutations are assumed to have small but finite (i.e., not infinitesimally

small) phenotypic effect. We investigate (1) under which conditions

polymorphism evolves via evolutionary branching, (2) the existence of

evolutionarily stable polymorphisms, and (3) how the number and properties of

evolutionary attractors change under different patterns of environmental

heterogeneity. Finally we show that if there are multiple polymorphic
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evolutionary attractors, any of them may be reached by the population, but the

probability of evolving to one or another may be markedly different.

The Model

Consider a population of an annual organism in an environment consisting of

two habitats or patches. Within each patch, there is first a period of selection,

followed by nonselective competition. During selection, the probability of

survival is a Gaussian function of a continuous phenotypic trait, x. The patches

have different optimal phenotypes, m
1
 and m

2
, respectively, but have the same

width of the fitness function, σ. The survival probability of an individual with

phenotype x is thus

1 1
1

2

2

2 2
2

2

2

f (x) =   -
(x - m )

2
  

f (x) =   -
(x - m )

2
  

α
σ

α
σ

exp in patch 1,  and

exp in patch 2,

















(1)

where α
1
, α

2
 are arbitrary constants of proportionality. Without loss of

generality, we assume that m
1
=-d/2 and m

2
=d/2, where d is the difference between

the optimal phenotypes.

During the competition phase, a fixed number of adults survive within each

patch, such that a fraction c
1
 of the adult population is recruited from the first

patch, and the remaining fraction c
2
=1-c

1
 from the second patch ("soft selection";

Levene, 1953). Offspring are produced by random mating in the entire

population, and are distributed over the patches randomly.

The trait under selection, x, is determined by a single locus with a continuum of

possible alleles. Each allele is represented by the phenotype of the corresponding

homozygote. In order to avoid excessive notation, we shall use the same symbol,

e.g. x, to denote an allele and to denote the phenotype of an individual
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homozygous for this allele. The alleles act additively on the phenotype, the

phenotype of a heterozygote being exactly half-way between the homozygotes.

Notice that this does not imply additive fitnesses, since the fitness functions (Eqs.

1) are nonlinear.

The alleles may undergo mutation. In the analysis of the model, we assume that

mutations are of small (but not infinitesimally small) phenotypic effect. Evolution

is mutation-limited, i.e., mutations occur infrequently such that a mutant allele

either has been excluded or has spread, and the population has reached its

equilibrium, by the time the next mutant comes along. To test the robustness of

the model predictions, we performed direct simulations of the evolutionary

process, in which we relaxed the assumption of strict mutation limitation (see

Appendix A for the simulation methods).

Adaptive Dynamics

Pairwise Invasibility Plots

Consider a rare mutant allele, y, in a resident population which is otherwise

monomorphic for allele x. The rare allele is present almost exclusively in

heterozygotes with phenotype (x+y)/2. During the trait-dependent selection

phase, the frequency of the mutant allele increases by a factor ( )f f xi
x y

i
+
2 ( )

within patch i (i=1 or 2). The marginal fitness of y in the entire population is

x 1
1

x+y
2

1
2

2
x+y

2

2

W (y) =  c
f

f (x)
 +  c

f

f (x)













(2)

 (cf. Roughgarden, 1979, p. 232). If W
x
(y) is greater than one, the mutant allele

can spread, otherwise it is excluded from the population.
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A convenient way to summarize which mutant allele can invade a monomorphic

resident population is to construct a so-called pairwise invasibility plot, which

indicates for each pair of resident and mutant alleles whether W
x
(y) is greater or

smaller than 1 (Van Tienderen and De Jong, 1986; Metz et al., 1992, 1996; Kisdi

and Meszéna, 1993, 1995; Geritz et al., 1997, 1998). In Fig. 1 (top panels), the

dotted areas are those resident-mutant pairs where the mutant can invade; in the

clear areas the mutant dies out. Since the resident allele neither spreads nor

vanishes (so that W
x
(x)=1), the main diagonal (y=x) is one of the border lines

between the 'invasion' (W
x
(y)>1) and 'noninvasion' (W

x
(y)<1) areas.

If a mutant allele invades, it may either replace the original resident, or it may

form a polymorphism with the original allele. A pair of alleles forms a protected

polymorphism if both of them can spread when rare, i.e., if both W
x
(y) and W

y
(x)

are greater than one. These pairs can be visualized by taking the mirror image of

the pairwise invasibility plot along its main diagonal, and superimposing the

mirror image on the original: The area where the 'invasion' parts of the mirror

image and the original overlap defines the possible protected polymorphisms (Fig.

1, bottom panels). All two-allele polymorphisms in this model are protected (see

Appendix B).

If mutations are of small phenotypic effect (| y - x|≤ δ 1), a mutant cannot form a

polymorphism with the resident unless the population is in the neighbourhood of

x*, the so-called evolutionarily singular allele (Fig. 1). As long as the population is

away from x*, invasion implies allele substitution, and recurrent allele

substitutions result in directional evolution. In both examples shown in Fig. 1,

directional evolution proceeds towards the singular allele x*.
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-1

0

1

-1 0 1
-1

0
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-1

0

1

-1 0 1
-1

0

1
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x

x1x1

x

yy

x2x2

(a) (b)
Pairwise Invasibility Plot

Area of protected polymorphism

ESS branching point
x* x*

(a) (b)

δ δ

Figure 1. Pairwise invasibility plots (top) and the area of protected polymorphism

(bottom) for two parameter sets. Inside the dotted areas of the pairwise

invasibility plots the mutant allele (y) can invade the resident (x), whereas in the

clear areas the mutant dies out. The arrows indicate the replacement of the

original resident by its mutant. The region between the dashed lines along the

diagonal is feasible by small mutations (| y - x|≤ δ 2). In the bottom panels, dotted

areas denote the allele pairs (x
1
, x

2
) which form a protected polymorphism. (a)

d/σ=1, c
1
=0.5; x*=0 is a convergence stable ESS. (b) d/σ=3, c

1
=0.5; x*=0 is

convergence stable but evolutionarily unstable, i.e., it is a branching point.

Geritz et al. (1998) provide a full classification of possible types of evolutionary

singularities together with the dynamical characteristics of evolution taking place

nearby. For the present purposes we shall consider only two properties of the

singularities: (i) convergence stability, i.e., whether the singularity is an attractor
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of evolution proceeding by a series of allele replacements (Eshel, 1983; Taylor,

1989; Christiansen, 1991), and (ii) local evolutionary stability, i.e., whether a

population monomorphic for the singular allele is resistant to invasions by nearby

mutants.

The top panel of Fig. 1a shows a pairwise invasibility plot when the two patches

are similar in their respective optimal phenotypes (d/σ=1, c
1
=0.5). x*=0 is an

evolutionarily stable allele, since there is no mutant which could invade a

population that is monomorphic for x*. Notice that in the neighbourhood of x*

there are pairs of alleles which can form protected polymorphisms (Fig. 1a,

bottom panel), so that a population evolving towards x* may become

polymorphic before it reaches the singularity. This polymorphism, however, can

be invaded by alleles still nearer to x*, and therefore will eventually be resolved at

the evolutionarily stable allele (Eshel et al., 1997; Geritz et al., 1998).

If the optimal phenotypes within the two patches are more different, the

convergence stable singularity lacks evolutionary stability, i.e., it is a branching

point. In Fig. 1b (d/σ=3, c
1
=0.5), a population that is monomorphic for x*=0 can

be invaded by both smaller and larger mutants, and the mutant allele forms a

protected polymorphism with the original resident. The population therefore

necessarily becomes polymorphic in the neighbourhood of x*. In this

polymorphic population only mutants outside the two resident alleles can invade,

and invasion is followed by the elimination of the allele in the middle. Repeated

invasions of mutants thus give rise to a series of polymorphisms of two

increasingly distinct alleles (Eshel et al., 1997; Geritz et al., 1998). Simulated

evolutionary trees with branching are shown in Fig. 2.
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x1

x2

(a)

x1

x2

(b)

-3 0 3

-7 0 7 -7 0 7

1

2

1 2

x

x x

tim
e

tim
e

tim
e

-0.81 0.81

-1.43 4.35 -4.35 1.43

-3

0

3

-3 0 3-0.81

0.81

-1.43-4.35

4.35

1.43

x1

x2

(c)

-9

0

9

-9 0 9

1

3

2

-2.50

2.50

-9 0 9

x

tim
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0
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Fig. 2. Isocline plots and corresponding simulated evolutionary trees. In the

isocline plots, horizontal (vertical) arrows indicate in which direction the allele x
1

(x
2
) can evolve. At the x

1
- (x

2
-) isoclines, the direction of the horizontal (vertical)

arrows changes. Thick isoclines are evolutionarily stable, thin isoclines are

evolutionarily unstable. Filled circles denote convergence stable polymorphisms,

open circles are saddle points. The evolutionary trees show the alleles present in

direct simulations (time span of 300000 generations). c
1
=0.5; (a) d/σ=2.25, (b)

d/σ=3, (c) d/σ=5.
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Polymorphic Singularities

In order to model evolution after an evolutionary branching has taken place, we

need to generalize the analysis for polymorphic populations. Consider a

population with two distinctly different resident alleles, x
1
 and x

2
, in population

genetical equilibrium. Analogously to Eq. 2, the marginal fitness of a rare mutant

allele, y, is

1 2

1 2 1 2

x ,x 1
1

y+x
2 1

y+x
2

1
2

2
y+x

2 2
y+x

2

2

W (y) =  c
p f  +  q f

< f >
 +  c

p f  +  q f

< f >

























(3)

where p and q=1-p are the equilibrium allele frequencies of x
1
 and x

2
,

respectively, and < f >= p f ( x )+ 2pq f + q f ( x )i i 1 i
x +x

2 i 2
1 22 2



  is the average

survival probability during trait-dependent selection in patch i.

Evolution can be described solely in terms of alleles present only if the marginal

fitness of a mutant allele is unequivocally determined by the types of the resident

alleles, x
1
 and x

2
. In polymorphic populations this requires that there is a unique

stable equilibrium of allele frequencies, p and q, for each possible pair of resident

alleles. The diploid two-allele, two-patch Levene model with arbitrary genotypic

fitnesses may have up to three polymorphic population genetical equilibria, two

of which can be stable. In Appendix B we derive sufficient conditions under

which there is at most one polymorphic equilibrium, and show that this

condition is always fulfilled if the within-patch fitness is a Gaussian function of

an additively determined phenotypic trait. In the present version of the Levene

model, therefore, any complication arising from multiple population genetical

equilibria need not be considered. Models of adaptive dynamics with several

attractors of the resident population were considered by Rand et al. (1994),

Doebeli and Ruxton (1997), and Geritz et al. (in prep.).
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For each pair of resident alleles (x
1
, x

2
) inside the area of protected

polymorphisms, Eq. (3) determines whether a mutant of x
1
 or x

2
 can invade. Like

in the monomorphic case, the alleles undergo directional coevolution inside most

parts of the area of protected polymorphisms. Lines inside the area of protected

polymorphisms at which directional evolution of x
1
 (x

2
) ceases are called x

1
- (x

2
-)

isoclines (Fig. 2, left panels; Geritz et al., 1998). The points of an isocline are

analogous to monomorphic singularities: For example, if x
2
 were fixed and only

x
1
 could mutate, then on the isocline x

1
 may be evolutionarily stable or may

undergo branching. The intersections of isoclines are the polymorphic

evolutionary singularities where none of the two alleles undergo directional

evolution. Such a singularity is an evolutionarily stable polymorphism if both

isoclines are evolutionarily stable at their intersection. For convergence stability

in polymorphic populations see Matessi and Di Pascuale (1996).

The evolution of a polymorphic population can be envisaged as a stochastic

broken-line trajectory in the area of protected polymorphisms. When a larger

(smaller) mutant of x
1
 substitutes the original resident allele, the population

moves horizontally to the right (left); substitution of x
2
 by a larger (smaller)

mutant corresponds to a vertical step upwards (downwards). The length of each

step is random within some small mutation radius. Since only a finite number of

substitutional steps is needed to reach the close neighbourhood of a convergence

stable singularity, the evolutionary trajectory is subject to sampling stochasticity.

The left panels of Fig. 2 show the isoclines derived from Eq. 3 for three values of

d/σ, assuming equal patch sizes (c
1
=c

2
=0.5). The symmetry of the isocline plots in

the main diagonal (y=x) is due to the arbitrary order of labeling the resident

alleles. Symmetry in the second diagonal (y=-x) is a consequence of the patches

being of equal size.
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If the difference between the optimal phenotypes in the first and in the second

patch is moderate (Fig. 2a; d/σ=2.25), there is a single convergence stable and

evolutionarily stable polymorphism of two alleles (-0.81, 0.81). The alleles are

arranged symmetrically on either side of the branching point (x*=0). If the

difference between the optimal phenotypes is greater, then the isoclines intersect

three times (Fig. 2b; d/σ=3): There are two convergence stable and evolutionarily

stable singularities at (-1.43, 4.35) and (-4.35, 1.43), separated by an evolutionary

saddle at (-1.46, 1.46). Though the model is symmetric in terms of relative patch

size (c
1
=c

2
=0.5), the alleles of a convergence stable singularity are now

asymmetric relative to the branching point (x*=0). The population may evolve to

either convergence stable singularity, depending on the sampling stochasticity of

the broken-line trajectories. If the difference between the optimal phenotypes is

very large (Fig. 2c; d/σ=5), then three convergence stable and evolutionarily

stable singularities exist, one symmetrical (-2.5, 2.5) and two asymmetrical ((-2.5,

7.5) and (-7.5,2.5)).

The right panels of Fig. 2 show the corresponding simulated evolutionary trees

(see Appendix A for the details of the simulations). The evolutionary trees

confirm the predictions of evolutionary branching at x*=0 and of reaching a final

stop at one of the convergence stable and evolutionarily stable polymorphisms. In

contrast to the assumptions used for the analysis of the model, in the simulations

mutations occur rather frequently, and the population does not reach its

population genetical equilibrium before a new mutant comes along. Due to

recurrent mutations and incomplete allele substitution, there is always some

polymorphism within the branches of the evolutionary tree. However, this

apparently does not confound the predicted course of evolution. The predictions

turn out to be fairly robust with respect to the size of mutations as well.
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Bifurcation Analysis

In the next part of the paper we perform a bifurcation analysis of monomorphic

and polymorphic evolutionary singularities, in order to investigate the conditions

under which evolutionary branching occurs, and the characteristics of the

resulting evolutionarily stable polymorphisms.

Monomorphic singularities

The position of the monomorphic evolutionary singularity and its stability

properties can be determined analytically (see Appendix C). There is always a

single monomorphic singularity,

x*  =  c m  +  c m1 1 2 2 (4)

The singularity corresponds to a generalist phenotype, i.e., a type that is

intermediate between the optimal phenotypes in the two patches. If the relative

sizes of the patches are unequal, the singularity is nearer to the optimum of the

larger patch.

The monomorphic singularity is always convergence stable, i.e., a monomorphic

population first evolves to the generalist phenotype. However, the singularity is

evolutionarily stable only if

(d / )  <  
1

c c
2

1 2

σ (5)

If this condition is not satisfied, then the singularity is a branching point, giving

rise to the evolution of a polymorphism. The difference between the two optimal

phenotypes required for evolutionary branching is smallest if the patches are of

equal size; the more asymmetric the relative size of the patches is, the greater

difference between the optimal phenotypes is necessary in order to get

evolutionary branching (Fig. 3).
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Fig. 3. Bifurcation plot of evolutionary singularities. Inside the dotted area, the

monomorphic population has a branching point, outside this area the

monomorphic population has an evolutionarily stable allele. The population has

no polymorphic singularity in area A (left to the thick line), a single convergence

stable as well as evolutionarily stable polymorphism in area B (between the thick

line and the thin solid line), two convergence stable and evolutionarily stable

polymorphisms separated by an evolutionary saddle in area C (between the thin

solid line and the dashed line), and three convergence stable polymorphisms in

area D (right to the dashed line). The numbered dots illustrate an evolutionary

hysteresis effect (see the Discussion).

Polymorphic singularities

The number, position, and stability properties of polymorphic singularities were

determined numerically. Fig. 3 shows the parameter regions with respectively no,

one, two, or three convergence stable singularities; the position of the

polymorphic evolutionary singularities as a function of relative patch size are

shown in Fig. 4 for three values of d/σ. Except for a very narrow parameter range

(see below), all polymorphic convergence stable singularities with two alleles are

evolutionarily stable as well, i.e., there is no further branching to polymorphisms

of more than two alleles. Notice that evolutionarily stable polymorphisms may

exist even if the monomorphic population has an ESS: Such polymorphisms

cannot be reached by an initially monomorphic population, but could be

maintained indefinitely if the population was polymorphic from the onset.
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Fig. 4. The position of evolutionary singularities as a function of relative patch

size. Thick lines represent the evolutionarily stable alleles or, equivalently, the

homozygote phenotypes; thin dotted lines correspond to evolutionarily unstable

singular alleles; thin solid lines show the phenotype of the heterozygote in the

convergence stable polymorphisms. Different singularities are shown in separate

plots, vertical dotted lines indicate fold bifurcations. In the shaded parts the

singularity cannot be reached from the branching point. (a) d/σ=2.25; (b) d/σ=3;

(c) d/σ=5.
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For moderate values of the difference between the optimal phenotypes

(2<d/σ<2.41), there is a single convergence stable polymorphism for all values of

c
1
 (Fig. 4a). If the two patches have approximately the same size (c

1
≈0.5), then the

two homozygote phenotypes are near the within-patch optima, while the

intermediate heterozygote is suboptimal in both patches. This arrangement is,

however, not robust with respect to relative patch size. If the patches differ

substantially in size, then one homozygote is almost optimal in the large patch,

and the other homozygote has an extreme phenotype such that the intermediate

heterozygote is almost optimal in the small patch. For lower values of d/σ, the

’almost optimal’ phenotypes are closer to each other and differ more from m
1
 and

m
2
. This is so because a slight difference from the optimum does not decrease the

within-patch fitness noticeably (the fitness function is flat at its top), but it

increases fitness in the other patch.

If the difference between the optimal phenotypes is greater (2.41<d/σ<4.03),

there are two convergence stable polymorphic singularities, the position of which

remains approximately constant over a wide range of relative patch size (Fig. 4b).

At the first convergence stable singularity, one homozygote is almost optimal in

the first patch, and the heterozygote is almost optimal in the second patch; the

roles are reversed at the second convergence stable singularity. These

arrangements appear in the asymmetric evolutionary trees of the symmetric

model in Fig. 2b. At sufficiently unequal patch sizes, however, only one

polymorphic singularity exists, where a homozygote is almost optimal in the

large patch and the heterozygote is almost optimal in the small patch.

For very large values of the difference between the optimal phenotypes

(d/σ>4.03) there are three convergence stable singularities (Fg. 4c). Two of them

(the first and the third ones in Fig. 4c) are similar to those which appear in Fig.

4b, except that they exist for virtually the whole range of relative patch size. At
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the remaining convergence stable singularity in the middle (the second one in Fig.

4c), the two homozygotes are almost optimal in the two patches, and the

heterozygote has low fitness in both patches. This convergence stable singularity

lacks evolutionary stability for two very narrow ranges of relative patch size

(0.348<c
1
<0.352 and 0.648<c

1
<0.652 for d/σ=5, too narrow to be shown in Fig.

4c), just before it disappears through a fold bifurcation; all other convergence

stable polymorphic singularities are evolutionarily stable. Simulations of the

evolutionary tree show that in these narrow parameter ranges, the population

undergoes secondary branching at the polymorphic singularity resulting in three

alleles. Soon after secondary branching, however, one allele goes extinct, and the

population evolves to the first (0.648<c
1
<0.652) or to the third convergence stable

singularity (0.348<c
1
<0.352).

Evolution with multiple attractors

If there exist several convergence stable polymorphic singularities, the probability

of evolving to one or another can be markedly different. Recall that evolution in

our model proceeds by finite steps along broken-line trajectories subject to

sampling stochasticity, thus the course of evolution is not determined

unequivocally. Consider first the case of two convergence stable singularities. If

the patches have exactly the same size (c
1
=c

2
=0.5), and the population enters the

area of protected polymorphisms exactly at the branching point, then due to

symmetry, the population evolves with equal probabilities to the first or to the

second convergence stable singularity. However, if the population evolves to the

branching point from a distance, then it becomes polymorphic slightly before

reaching the branching point, i.e., as soon as a mutant is inside the area of

protected polymorphisms. The convergence stable singularity that is nearer to the

initial polymorphic population is reached with higher probability.
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Fig. 5. Asymmetric isocline plots for d/σ=3 (notations as in Fig. 2). (a) c
1
=0.63; (b)

c
1
=0.7.

Unequal patch size also changes the probability of reaching one or the other

convergence stable singularity. Moderate asymmetry in the relative patch size

(0.34<c
1
<0.66 for d/σ=3) moves the saddle point into an asymmetric position

relative to the branching point (compare Fig. 5a with the symmetric case shown

in Fig. 2b). The population is more likely to evolve to the convergence stable

singularity that is on the same side of the saddle where the branching point is. For

example, the second convergence stable singularity can be reached from the

branching point in Fig. 5a (c
1
=0.63) only if, by chance, more (or larger) mutations

occur in x
1
 than in x

2
. However, if mutations are small and many mutations are

necessary to reach a singularity, such a sampling error has only low probability.

If the asymmetry of patch sizes is more pronounced (0.22<c
1
<0.34 or

0.66<c
1
<0.79 for d/σ=3), then there are still two singularities which are locally

convergence stable, but one of them cannot be reached by a population that

enters the area of protected polymorphism near the branching point. In Fig. 5b

(c
1
=0.7), the evolutionary trajectory necessarily hits the x

1
-isocline, and thereafter

proceeds along this isocline upwards to the first convergence stable singularity. In

Fig. 4, shaded parts mark the convergence stable singularities that are isolated

from the branching point.
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Fig. 6. Percentage of simulations evolving to singularity ’1’ as a function of relative

patch size. Simulations starting below the branching point (x
ini

=-1) are shown by

the light columns, simulations starting above the branching point (x
ini

=1) are

represented by the dark columns. The error bars show the 95% confidence

intervals of the measured percentages. d/σ=3, mutation stepsize 0.1, 100

simulations for each column. Notice that the scale of the horizontal axis runs

only from 0.5 to 0.66.

In order to assess the actual probabilities of arriving at the first versus at the

second convergence stable singularity, we run a series of simulations starting with

a monomorphic population either above or below the branching point for a range

of relative patch sizes and d/σ=3 (Fig. 6). If the relative patch sizes are equal

(c
1
=0.5), then simulations starting above the branching point reach the first

singularity significantly more often than simulations starting below the branching

point (χ2
=6.52, d.f.=1, P<0.02), because a population approaching the branching

point from above (below) enters the area of protected polymorphisms slightly

nearer to the first (second) singularity. If the first patch is larger than the second

patch by just a few percent, the probability of evolving to the first convergence

stable singularity markedly increases, till the second singularity becomes

unreachable from the branching point (at c
1
=0.66 in Fig. 6). The difference

between simulations starting below and above the branching point quickly

disappears as the size of the patches becomes unequal, such that the direction of

evolution is governed by the asymmetry of the isocline plot.
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Fig. 7. Asymmetric isocline plots for d/σ=5 (notations as in Fig. 2). (a) c
1
=0.6; (b)

c
1
=0.75.

Three convergence stable singularities occur only for very large differences

between the optimal phenotypes in the first and in the second patch.

Unfortunately, in this case the simulations require much larger computational

capacity (see Appendix A), such that a statistical survey similar to the one shown

in Fig. 6 was not feasible. If the patches are of equal size (Fig. 2c), the population

entering the area of protected polymorphism at the branching point (x*=0)

proceeds by small evolutionary steps most probably in the vicinity of the second

diagonal (x
2
=-x

1
), and therefore arrives at the middle convergence stable

singularity (the second one in Fig. 2c). Since the two saddles direct the trajectories

from the branching point towards the middle convergence stable singularity, the

population will reach this singularity with highest probability even if the patch

sizes are not equal (Fig. 7a). If the patch sizes are so different that the second

singularity does not exist (Fig. 7b), then the population is more likely to stay on

the side of the remaining saddle where the branching point is. Compared to Fig.

7a, the probability of arriving at the first singularity thus markedly increases in

Fig. 7b. In case of strongly different patch sizes one convergence stable singularity

becomes isolated from the branching point (shaded parts in Fig. 4c).
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Discussion

Evolution of genetic polymorphism in heterogeneous

environments

The maintenance of genetic polymorphism in heterogeneous environments under

soft selection is a classical result of population genetics (Levene, 1953). In this

paper, we investigated how such a polymorphism may arise in the first place, and

how it will evolve, when mutations of only small phenotypic effect occur. To this

end, we studied the adaptive dynamics of a diploid panmictic population in a

two-patch environment with soft selection under the assumption of mutation-

limited evolution.

We found that a monomorphic population first always evolves to a generalist

phenotype. The generalist utilizes both patches, although in case of unequal patch

sizes its phenotype is nearer to the optimal phenotype in the larger patch. If the

difference between the optimal phenotypes in the two patches is small, then the

generalist is evolutionarily stable. However, if the difference is large enough, then

the population undergoes evolutionary branching, and gradually evolves to an

evolutionarily stable genetic polymorphism with two distinct alleles. For a wide

range of parameter values, one of the homozygotes and the heterozygote become

specialists for the two patches, while the other homozygote has low fitness in

both patches. Many models of multiple niche polymorphism assume that the two

homozygotes have the highest fitness in the first and in the second patch,

respectively. In the present model, however, such a polymorphism is reached by

gradual evolution only in two separate parameter ranges, i.e., if the difference

between the optimal phenotypes is moderate and the patches are not too different

in size, or if the difference between the optimal phenotypes is very large.
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Several authors have pointed out that the maintenance of genetic polymorphism

in heterogeneous environments is not robust when selection is weak: In order to

maintain two alleles, the ratio of patch sizes must lie within a narrow range

(Maynard Smith and Hoekstra, 1980; Hoekstra et al., 1985). Obviously, selection

is weak if different alleles determine similar phenotypes. In our model, two

similar alleles form a polymorphism at the beginning of evolutionary branching,

nevertheless no fine-tuning of the relative patch size is necessary.

These seemingly conflicting results can be reconciled, however. For any given

ratio of patch sizes, a polymorphism of similar alleles is possible only for some

particular alleles within the continuous set of potential alleles. These particular

alleles are in the neighbourhood of evolutionary singularities (Fig. 1). Since

directional evolution leads towards a singularity, i.e., to those particular alleles

which can be maintained by weak selection, protected polymorphism of similar

alleles will develop. On an evolutionary timescale, polymorphism near an ESS is

only temporary, and eventually the population will be monomorphic for the

evolutionarily stable allele. Near a branching point, however, the polymorphism

is preserved. As alleles diverge during evolutionary branching, the intensity of

selection increases.

Strong selection is involved in the evolution of genetic polymorphism by

evolutionary branching in two ways. First, within a patch, the ratio of the fitness

of the optimal phenotype and the fitness of a far from optimal phenotype has to

be sufficiently large in order to get branching (in case of Gaussian fitness

functions, this condition is satisfied since phenotypes far from the optimum have

vanishingly small fitness). Second, the difference between the optimal phenotypes

in the two patches has to exceed a threshold. The minimal difference that is

necessary for evolutionary branching depends on the shape of the fitness

functions (Eqs. 1). Assuming that the within-patch fitness functions are

symmetric and have identical shape, evolutionary branching is possible if the
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fitness functions are convex at their intersection (Appendix C). For Gaussian

fitness functions, the minimal difference thus is d/σ=2 (cf. Fig. 3); the minimal

difference would be smaller if the fitness functions were more peaked. Notice also

that in Fig. 3, the range of the relative patch size that permits evolutionary

branching expands fast with increasing the difference between the optimal

phenotypes: Once d/σ exceeds the threshold, the relative patch size is not very

restrictive for evolutionary branching (compare with the wedge-shaped

bifurcation diagrams of protected polymorphisms in Hoekstra et al., 1985).

Similarly to Levene (1953), we assumed that the number of adults recruited from

each patch is constant ("soft selection"). Constant recruitment from each patch

requires high fecundity, otherwise there may be not enough individuals left after

selection to fill the patch. If the number of recruited adults is not constant, then a

single specialist may be evolutionarily stable even if the unexploited patch is large

(Meszéna et al., 1997). The reason for this is that if the population is specialized

for one patch, then only a few individuals survive in the other patch. An allele

slightly better adapted to the second patch and less to the first patch does not

spread, because only a small fraction of adults is recruited from the patch where

it is favoured. However, if the number of recruited adults is independent of the

phenotype as in case of soft selection, then two specialists evolve via evolutionary

branching. Soft selection thus facilitates the exploitation of different

environments.

Evolutionarily stable genetic polymorphism can exist even if there is a

monomorphic ESS for the same parameter values (Fig. 3). Although an initially

monomorphic population cannot reach this polymorphism by small mutations, it

may evolve if the initial population is polymorphic, or if a sufficiently different

allele is introduced e.g. by occasional interspecific hybridization. The

simultaneous existence of an ESS and an evolutionarily stable polymorphism
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produces an evolutionary hysteresis effect. Assume that the initial population is

polymorphic (point 1 in Fig. 3), and that the relative patch size changes due to

some change in the environment such that the polymorphism is lost (point 2 in

Fig. 3). The population then evolves to the monomorphic ESS. Once the

population is monomorphic, the polymorphism cannot be regained by simply

restoring the original relative patch size, because the monomorphic population is

still at an ESS. A substantially greater change in the environment is needed in

order to make the evolution of polymorphism possible by small mutations (point

3 in Fig. 3). This phenomenon is not restricted to the present model, but appears

to be a generic feature (Geritz et al., in prep.).

Adaptive dynamics in diploid populations

Comparison between the present model and its haploid counterpart (Geritz and

Kisdi, in press) shows that the adaptive dynamics of a diploid population is much

richer. In case of monomorphic populations the haploid and diploid models are

similar; in particular, the conditions for evolutionary branching are identical.

However, there are qualitative differences between haploid and diploid adaptive

dynamics in polymorphic populations. After branching, the haploid population

always evolves to a single evolutionarily stable coalition made up by two

specialist phenotypes. In diploid populations, there can be up to three

convergence stable polymorphisms, often with markedly different probabilities of

reaching them.

A modelling approach related to ours was used by Christiansen and Loeschcke

(1980) to study the evolution of resource exploitation. They assumed only a

limited set of alleles covering a small range of phenotypes, and concluded that

only the outermost alleles remain when the population is near a phenotype which

we call branching point. However, they did not follow further the evolution of

polymorphic populations.
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In the model analysis we assumed that mutations are small and occur

infrequently; as shown by our simulations, however, the model is fairly robust

with respect to both the size and rate of mutations. A crucial assumption in our

approach is that of the finite mutational steps. If mutations were infinitesimally

small, we would recover the differential equation-based adaptive dynamics

models. The latter models, however, are unable to capture evolutionary

branching (Geritz et al., 1998). The probabilistic nature of arriving at one or the

other convergence stable polymorphism is also a consequence of finite mutations.

Another essential assumption is that the phenotype of the heterozygote is

intermediate between the two homozygotes. If the heterozygote exceeds both

homozygotes, then the marginal fitness W
x
(y) is a non-differentiable function of x

and y, and the evolutionary singularities cannot be determined in the way done in

Appendix C (Andrea Pugliese, pers. comm.). In case of complete dominance (e.g.,

an allele for larger phenotype is always dominant over an allele for smaller

phenotype), the evolutionary singularities are identical to those of a haploid

population.

The assumption of a single locus controlling a quantitative trait is but a first step

in modelling adaptive dynamics in diploid populations. Although by no means

common, a single locus may have major effect on a continuous trait. In the

African finch Pyrenestes o. ostrinus, Smith (1993) found that the width of the

lower mandible was effectively determined by a single locus with two alleles. The

two alleles correspond to two peaks of the estimated fitness function, i.e., they

appear to form an evolutionarily stable polymorphism.

Preliminary simulations of the present model with two unlinked loci resulted in

evolutionary branching in both loci, producing four gamete types. After

evolutionary branching, however, one allele went extinct and this locus remained

monomorphic, unless the difference between the optimal phenotypes was very
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large. At the evolutionarily attractor there were two gamete types phenotypically

equivalent to the two alleles of the convergence stable singularity in the one-locus

model. If the difference between the optimal phenotypes was very large, then

both loci remained polymorphic. But with an extremely large difference between

the optimal phenotypes, such a strong linkage disequilibrium developed between

the loci, that the population virtually contained only two gamete types, which

again were phenotypically equivalent to the convergence stable singularity of the

one-locus model. The final outcome of the two-locus simulations thus resembled

the one-locus model in a wide range of parameters. It is not yet known to what

extent the results of the two-locus simulations generalize to multilocus traits.

Notice that we assumed a more flexible type of genetic variation than the one

used in most multilocus population genetical models. The latter models usually

consider a given number of alleles (e.g., two) per locus, each allele with small

phenotypic effect only. In our model, however, a continuum of potential alleles

was assumed for each locus. Though the immediately available mutations were

near the current resident alleles at any time, there was no limit on how far a locus

may evolve by repeated allele substitutions. Thus the phenotypic effect of a single

locus was not constrained a priori to be small.

It is biologically plausible that a single allele may not have an arbitrarily large

effect on a continuous trait. When we sufficiently constrained the range of

available alleles in the two-locus simulations, then both loci stayed polymorpic.

Evolutionary branching thus gave rise to a genetic variation similar to the one

assumed in multilocus genetic models.

Evolutionary branching in haploid populations could be regarded as

morphological speciation. Evolutionary branching in allele space produces

protected polymorphism, but not phenotypically distinct lineages. Heterozygotes

and recombinants with intermediate phenotypes are selected against during
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evolutionary branching (see Udovic (1980) and Wilson and Turelli (1986) for

heterozygote disadvantage in protected polymorphisms). However, random

mating and recombination restore the intermediate types in each generation, and

thus prevent the evolution of a bimodal phenotypic distribution. Phenotypically

distinct lineages may evolve only if assortative mating develops, i.e., if the

population undergoes speciation. Though the evolution of assortative mating is

highly controversial, some recent theoretical studies (e.g., Diehl and Bush, 1989;

de Meeûs et al., 1993; Doebeli, 1996a; Johnson et al., 1996; Doebeli and

Dieckmann, in press) as well as empirical evidences (e.g., Coyne and Orr, 1989,

1997; Johannesson et al., 1995; Noor, 1995; Schluter and Nagel, 1995; Saetre et

al., 1997; Galis and Metz, 1998; Nagel and Schluter, 1998; Rundle and Schluter,

1998) seem to support the possibility.
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Appendix A

Simulated evolutionary trees

The simulation algorithm consisted of two modules, a deterministic iteration of

allele frequencies for sufficiently common allele types, and an individual-based

simulation to account for demographic stochasticity when an allele type is rare.

The latter module was included since the chance of loss of new mutant alleles by

demographic stochasticity influences the speed of evolution, and the relative

speed of evolution, in turn, determines the shape of the evolutionary trajectory in

polymorphic populations. The shape of the trajectories is important for the

results presented in Fig. 6.

The deterministic iteration was based on the equation

where pi  and ′pi  are the frequencies of allele type x
i
 in the present and in the

next generation, respectively.

In the individual-based module, each individual allele was paired with an allele

chosen randomly from the deterministic part (hence only heterozygotes with a

single rare allele were considered), and assigned randomly to patch 1 (patch 2)

with probability c
1
 (c

2
). Whether or not the heterozygote survived till

reproduction was decided randomly, the probability being determined by its

phenotype during the period of selection, and by the deterministic population

during the period of competition. The number of offspring was binomially

distributed, males did not differ from females in their number of offspring.
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Fecundity had to be sufficiently high such that enough offspring survive the

period of selection to recruit the fixed number of adults from each patch: The

expected number of offspring was 45 (with variance 4.5) for d/σ≤3 (Figs. 2a,b,

and 6) but the expected number had to be 4500 (with variance 450) for d/σ=5

(Fig. 2c). Each offspring inherited the rare allele at random with probability 0.5.

(The probability of assignment to patch 1 or 2 and fecundity cancel out in the

deterministic dynamics, but influence demographic stochasticity.)

The dynamics of an allele type was modelled by the individual-based module as

long as it was present in less than N
T
 zygotes. Because of potentially high

mortality rates, the threshold had to be set at high values, N
T
=1000 for d/σ≤3,

and N
T
=10

5
 for d/σ=5; unfortunately, this greatly increased the computational

capacity needed for the simulations. When the number of alleles exceeded N
T
, the

allele type was introduced into the deterministic iteration at a frequency

N
T
/N

total
=0.01 (implying a total population size of 10

5
 for N

T
=1000 and that of 10

7

for N
T
=10

5
). Conversely, if the frequency of an allele type dropped below 0.01 in

the deterministic module, the allele type was moved into the individual-based

module. An allele type was extinct if its number hit zero in the individual-based

simulation.

New alleles were introduced by mutations. Each allele in the deterministic

module mutated with a probability 10
-5
 per generation, such that the total number

of mutations was Poisson-distributed. The mutants differred from the original

allele by a small mutation stepsize δ=0.1 in random direction. The evolutionary

trees of Fig. 2 show the allele types present in the deterministic part (i.e., with a

frequency greater than 0.01).
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Appendix B

Unique equilibrium allele frequencies in two-allele

polymorphisms

In this appendix, we prove that under the present model assumptions, a

polymorphic population with two alleles always has a unique stable population

genetical equilibrium. In order to do so, first we derive a sufficient condition

under which the Levene model has at most one polymorphic equilibrium; then we

show that this condition is fulfilled whenever the alleles determine a trait

additively, and the within-patch fitness is a Gaussian function of this trait.

Consider two alleles, A
1
 and A

2
, with frequencies p and q=1-p, respectively, and

denote the fitness of genotype A
j
A

k
 in patch i by jk

(i)U . The frequency of allele A
1

changes according to

where 
(i) 2

11
(i)

12
(i) 2

22
(i)U  =  p U  +  2pqU  +  q U  is the average fitness within patch i. At a

polymorphic equilibrium, 1
(1)

2
(2)

c U  +  c Uln ln  must have an extremum. If both

ln (1)
U  and ln (2)

U  are concave at any p, then 1
(1)

2
(2)c U  +  c Uln ln  has at most one

extremum, so that there can be at most one polymorphic equilibrium.

The details of the following derivations have been performed using Mathematica

2.2.3. The second derivative 2 (i) 2
d U dpln  is of the form A/B

2
. A is a mountain

parabola as a function of p, with a maximal value of [ ]11
(i)

22
(i) 2

12
(i)U U  -  U . A is

therefore negative for any p if [ ]11
(i)

22
(i) 2

12
(i)U U  -  U  <  0 , in which case ln (i)

U  will be

concave. This proves the following

[ ]

∆p =  c
pq

2U

dU
dp

 +  c
pq

2U

dU
dp

    =  
pq

2
 

d

dp
 c U  +  c U

1 (1)

(1)

2 (2)

(2)

1
(1)

2
(2)ln ln
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Lemma: If the within-patch genotypic fitnesses of the Levene model satisfy

the conditions [ ] 1 < UUU (1)
22

(1)
11

2)1(
12  and [ ] 1 < UUU (2)

22
(2)
11

2)2(
12 , then there is

at most one polymorphic equilibrium of the two alleles.

Substituting

yields [ ] 










σ 2

2
21

4

)x-x((i)
22

(i)
11 - = UUU exp

2)1(
12 , which is smaller than 1 whenever x

1 
≠ x

2
. It

thus follows that in the present model, there is at most one polymorphic

equilibrium. In the area of protected polymorphism, where both trivial equilibria

(p=0 and p=1) are unstable, there is a unique stable equilibrium allele frequency;

moreover, if one trivial equilibrium is stable and the other is unstable, then there

cannot be any polymorphic equilibrium, i.e., nonprotected polymorphisms of

two alleles are not possible.

Notice that this proof does not exclude nonprotected polymorphisms of three

alleles, and therefore does not guarantee that during directional evolution in a

polymorphic population with two resident alleles, invasion of a third allele leads

indeed to the substitution of one resident allele. However, we can show that if

two alleles of the three are sufficiently similar (i.e., produced by a small

mutation), then generically three alleles may be present in equilibrium only near

an isocline (Kisdi, unpubl.).
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Appendix C

Monomorphic singularities

In order to determine the monomorphic singularities, recall that if the population

is monomorphic for the singular allele x*, then the marginal fitness W
x*
(y) of

small mutants must either be smaller than 1 for all y≠x* (ESS) or greater than 1

for all y≠x* (branching point) while W
x*
(x*)=1 (Fig. 1). At the monomorphic

singularity W
x*
(y) thus has an extremum, and x* is implicitely determined by

Substituting the Gaussian fitness functions from Eqs. 1, the above equation can

easily be solved in order to obtain Eq. 4.

The monomorphic singularity is convergence stable if and only if

 (Eshel, 1983). Notice that this condition is fulfilled if the fitness functions are

concave or moderately convex at x*. For Gaussian fitness functions, this

condition is equivalent to 1/σ2
>0, which is always satisfied.

The monomorphic singularity is an ESS if and only if

 (Maynard Smith, 1982). The monomorphic singularity is evolutionarily unstable,

and hence evolutionary branching is possible, if the fitness functions are convex
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at x*; strong convexity, however, makes the singularity convergence unstable (see

above). When the Gaussian fitness functions are substituted, and x* is replaced

from Eq. 4, this condition reduces to inequality (5).

In order to get some insight into the bifurcation patterns, assume that 1f  and 2f

have identical shape (i.e., )()( 12 dxfxf −= ), they are symmetric

( )()( 1111 xmfxmf −=+ ), and analytical. Since 1f  and 2f  must be concave near

their maxima, the singularity is an ESS if d is sufficiently small. By symmetry, if

evolutionary branching is possible with a certain value of d and cc =1 , then it is

also possible with cc −=11 ;  it follows that branching may occur with the

smallest between-patch difference if 5.01 =c . With 5.01 =c , the singular point

coincides with the point where 1f  and 2f  intersect, and branching becomes

possible when 1f  and 2f  are sufficiently apart such that they are convex at their

intersection. Convergence stability may be lost at large values of d , if the fitness

function is too convex far from its maximum; but this is not the case with

Gaussian fitness functions.


