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Abstract

This paper is as much about a certain modelling methodology, as it is about the constructive
definition of future population states from a description of individual behaviour and an initial
population state. The key idea is to build a nonlinear model in two steps, by explicitly introducing
the environmental condition via the requirement that individuals are independent from one another
(and hence equations are linear) when this condition is given (prescribed) as a function of time.

A linear physiologically structured population model is defined by two rules, one for repro-
duction and one for development and survival, both depending on the initial individual state and
the prevailing environmental condition. In Part | we showed how one can constructively define
future population state operators from these two ingredients.

A nonlinear model is a linear model together with a feedback law that describes how the
environmental condition at any particular time depends on the population size and composition at
that time. When applied to the solution of the linear problem, the feedback law yields a fixed point
problem. This we solve constructively by means of the contraction mapping principle, for any
given initial population state. Using subsequently this fixed point as input in the linear population
model, we obtain a population semiflow. We then say that we solved the nonlinear problem.

The paper is organized in a top-down spirit: We describe a general abstract setting first and
then specialise, while becoming more technical.

The results are not restricted to a single population but also cover the interaction (including
predation) of several structured (and unstructured) populations.
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1 Anintroductory example: a model involving cannibalistic behaviour

Consider a population of, say, fish and assume that the behaviour of individuals (notably repro-
duction, survival, food consumption) depends on tki&ez. Let birth sizebe fixed atz;, and let
growthbe deterministic with a ratgthat depends on sizeand thez-specificenergy intake rate
Likewise,reproductionis described by specifying how the ra@eof producing offspring depends
on sizer and ther-specific energy intake rate. Assuming that predation is the only cause of death,
we describesurvivalin terms of a death rate, which we call thex-specificpredation pressure

Next we have to describe how energy intake rate and predation pressure are thedetelves
mined. For the purpose of exposition we assume that, apart from effects due to cannibalism, both
food concentration and predation pressure are constant in time. In other words, cannibalism is the
only feedback loofpy which the individuals influence the environmental conditiohsach other.

If we neglect the effects of handling times, satiation etc., we can describe the predatiessproc
in terms of attack rates and concentrations (the rate of eating being by definition the product, in
this simple case of a linear functional response). Assume that individuals af benge access to
a food source with concentratidfz), which they attack at rat€'(x) and which has energetic
valueE'(z). Moreover, they attack conspecifics of sig@ith ratec(x, y) and these have energetic
valuee(y). Letm; be the measure describing the population size and composition at {soe
my¢(w) is the number (or rather spatial concentration) of individuals with sizedhtimet). Then
the energy intake rate of an individual of sizés given by

Li(t,x) = F1(01(t,x),z) = E(z)C(x)Z(z) + O1(t, ) (1.1)

with
O1(t,x) = / e(y)e(z, y)my(dy) 1.2)

[5,00)
while the predation pressure exerted on individuals of giegiven by

Iy(t,x) = F5(O2(t, x),z) = o(z) + Os(t, ) (1.3)

with
Os(ti)= [ ely,m)mudy) (1.4)

[z5,00)



whereo denotes the-specific non-cannibalistic predation pressure.

Once we now also specify and 3, we obtain a nonlinear structured population model, all
interactions being due to cannibalism. We want to show constructively that one can associate in
a meaningful way a dynamical system with such a model description. In other words, we want
a construction that for givem yieldsm;, at least fort sufficiently small, and then we want to
establish uniqueness in order to conclude thatjualifies as the populatistate(p-state) at time
t.

To do so, we first cut the feedback loop and then re-establish it as a fixed point equation.
More precisely, we pretend that the energy intake fatg ) and the predation pressufgt, z)
are known functions. In this manner we obtain a non-autonomous (i.e., time dependdimt) but
ear model to which we can apply the constructive procedure of Part | (Diekraaah 1998),
culminating in solution operators that assign tp-astatem the p-statem, for ¢ > 0 in a well-
defined and unique manner. If we insert now thgstates in the formulas (1.2) and (1.4) we
obtain a (nonlinear) input-output map. The biology expressed in (1.1) and (1.3) then requires that
I = F(O) which, sinceD depends od, is a fixed point problem. Our aim in this paper is to show
that for large classes of models one can derive Lipschitz estimates, apply the contraction mapping
theorem to the fixed point problem to obtain a unique solution for any given ipiséhte, and
then use the fixed point to define a nonlinear autonomous dynamical system.

It is enticing to restrict the generality ofby putting

C(.CC,y) = ¢($)¢(y), (15)

where ) describes the degree of cannibalistic activity anthe vulnerability to cannibalistic
predation and where we have in mind that the suppodt isfstrictly to the left of the support of

1 (so big ones eat small ones but the precise size of potential predator and potential victim do
influence what happens upon encounter in an independent manner; this is an example of making a
model less parameter rich). The advantage is that we may now define outputs

Out) = [ ewommidy) (16)
[p,00)
and
Oa(t) = [ w(wymidy) a7
[p,00)

which are only functions of time, and analyse how these depend on input when we take as the
z-specific energy intake rate

Li(t, ) = B(z)C(2)Z(x) + 4 (2)O(1) (1.8)
and thex-specific predation pressure
L(t,z) = o(z) + ¢(z)Oa(t). (1.9)

However, to actually take advantage of this we must adapt the notion of input. We do so by
noting that thec-specific energy intake rate is of the form

E(2)C(2)Z(x) + () 11(t) (1.10)
and thex-specific predation pressure of the form

o(z) + ()12 (t) (1.11)



and by now callingl; and I, the input. In this setting the feedback becomes simply the identity.
We say that the environmental interaction variables are two-dimensional and we fornhelate t
fixed point problem foiR2-valued functions of time.

Although the framework we develop is of a more general nature, the class of examples we have
in mind so far involves onlfR*-valued functions of time and we postpone a thorough analysis of
inputs which are general functions of batandz to some later time.

To reduce the parameter richness even further, we may choose

0, z<zxa

v ={y 230 (112)

for some givenr 4. This expressesat individuals lkecome cannibalistiopon eaching sizer 4

(here A stands for “adult”) and that there is no variation in the degree of cannibalistic tendency.
The price we pay for such an “idealized” description is that individual behaviour changgslsbr

as a function of individual state-6tate)x. When analysing the input-output-input map such

a discontinuity needs special attention and in particular we need to make sure that the state of
individuals always crosses the discontinuity transversally (in the present case of one dimensional
i-state space this just means “with positive speed”, but wheirdtate space is higher dimensional

the requirement is more easily interpreted as transversality (Dieketaain2000)). In section 8

we return to this point.

The classical Holling time scale argument (see e.g. Metz and Diekmann (1986) and the ref-
erences given therein) yields a saturating functional response reflecting a limited time budget and
the effect of handling time. In the present situation involving size structure, we need to introduce
a third interaction variable

Is(t,x) =14 H(z)C(x)Z(z) + Os(t, z), (1.13)
with
Osltse) = [ h(e,y)ew,y)mildy) (114)
[24,00)

where H and h are the respective handling times. The size-specific fraction of the time spent

searching is then the inverse Bf(¢, ). This fraction has to be incorporated in (1.1) and (1.3) as

a multiplication factor, taccount for the effect of handling time, thus letting us replace (1.1) and

(1.4) by, respectively,

E(x)C(z)Z(x) + O1(t, x)
Ig(t, .CC)

Ii(t,x) = (1.15)

and

Ost,r) = | I;gftz)) m(dy), (1.16)

[Ib,OO)

and thus introducing a dependence of the output on the instantaneous input while keeping the
linearity of output in thep-state. We will show in Section 8 that a certain hierarchical structure
makes the dependence of output on input rather harmless.

As a side-remark we mention that one can give another derivation of such expressions by
invoking digestion as the limiting fast time scale process (Metz and Diekmann 1986).

11 Trait d’'union

We hope these modelling considerations have provided our readers with enough motivation, as
well as enough understanding of the underlying general model structure, to dive into an abstract



setting. Our approach will be top down. We start abstract and general andriwal, in the sense

that we simply assume everything we need. We work our way downwardsrlwydy in each step
sufficient conditions for the assumptions in the preceding step. Thageome in various forms

and so we develop a theory with pyramid structure. The hope is that in this manner we may in the
future incorporate new and essentially different examples with minimal effort, changinghenly
arguments in one (or a few) step(s).

2 Some terminology, definitions and hypotheses
Our basic thought experiment is that we

(i) pretend to know the state of the system at some initial time, which we take as the origin of
the time axis;

(ii) pretend to know the input to the system for a lengthf time;

(iii) determine the state of the system at time

Here aninputis a function of time taking on values in a Banach spateln the structured
population context we call an element Bfan “environmental condition” and the time argument
of the input tells us at what time this condition is supposed to hold. An ihpsidefined on the
interval[0, £(I)) and we calk(I) thelengthof the input!.

It turns out to be convenient to introduce tempty inputdenoted byl. It is defined as an
input of zero length?(I) = 0. According to the definition of an input, it is a-valued function
defined on the empty intervéll, 0) and thus it is nothing but the empty set. We have chosen the
symbol I which resembles the symbflfor the empty set to remind us of this fact. The empty
input I should not be confused with tlzero input, which is the function which has the constant
value0 € FE for all t in its interval of definition, which can have any length.

To inputs we can apply three basic operations, namegyriction, shiftand concatenation.
They are defined as follows:

Restrictionp: For0 < s < ¢(I), p(s)I is the restriction of to the subintervalo, s), that
is,
(p(s)I)(t)=1(t) for 0<t<s.

Shift@: The shiftd(—s)I is for0 < s < ¢(I) defined on the intervald, £(I) — s) by
O(=s))(t)=I(t+s), 0<t<l(I)—s.
Concatenatiom: The concatenatiohh®; of I; andl; is defined on the intervdd, (1) + £(12))
by

(L) for0 <t < (),
(o 5I)(t) = {Ig(t —{(Iy)) foré(ly) <t < (1) + {(I2).

We collect some useful elementary properties into the following lemma:

Lemma 2.1
(i) p(0)I = Iforallinputs’;

(i) p(¢(I))I = I forallinputs;



(ii)) p(s)I = p(s)p(t+ s)Iforalls>0,t > 0suchthat + s < ¢(1);

(
(iv) 6(—0)I = I forall inputsI;
(v) 0(—£(I))I = I for all inputsI;
(vi) 0(—s)8(—t)I = 6(—(s+t))I forall s >0, t > 0suchthat + s < ¢(]);
(vii) O(=s)p(t+ s)I = p(t)0(—s)I forall s > 0, t > 0 such that + s < £(1);
(

(viii)y I3 ® (12 @Il) (Ig@IQ)QIL
(ix) IoI=]16e1=Iforallinputs’;
X) I=0(—s)Iop(s)I, 0<s<LI).

There will be certain properties, like boundedness, measurability and integrability, that we
require inputs to have. These properties should be such that they are preserved unctermestr
shift and concatenation. Observe that, for instance, continuitgtipreserved under concatena-
tion. We also may want to identify inputs that differ only on sets of Lebesgue measnare/ss
this identification commutes with the three basic operations, they extend to equivalence classes
that are obtained by the identification.

To formalize the setting, we have to postulate certain propertiéseofpaces to which the
inputs belong. Bcause the inputs may havéirary lengths we have to introduce a whole family
{Bs}s>0 of spaces. Here and in the folling hypothesishie parametes should be interpreted as
the length of an input.

Hypothesis 2.2

(@) By = {I} and for a given but arbitrary > 0, B, is a set of (equivalence classes of)
functions defined on the intervdl, s) with values inE such that
(1) for0 < o < s the restrictiorp(o) mapsB; onto B,,
(2) for0 < o < sthe shiftd(—o) mapsB; onto B,_,
(3) fors; >0, s > 0 concatenation is a one-to-one mappingXf x Bs, onto By, s, ,
(4) the constant functions defined i s) belong toB;.

(b) For eachs > 0, B, is a Banach space with noriit || (note that the norm depends eibut
that we do not express this in the notation) such that

(1) for0 < o < s, p(0) andé(—o) are bounded linear operators of norm one (the same
is true forp(s) andf(0), butp(0) andd(—s) have norm zero),
@) [[To0] = [[|[= oo I
B) Leoo+0o0hLh=LohL
In assertion (b3) above, the lengths of the zero inputs are of course assumed to be such that

the sum makes sense, that is, such that both terms on the left hand side have the same length. |
follows from (b2) and (b3) that

12 © Ll <[] + ]| (2.1)

Despite a slight abuse of the symbglit seems natural to denote the input defined®i)
taking the constant valuk € E by p(s)I. With this convention assertion (a4) can be written as
p(s)I € Bs.



We useB to denotd J,~, Bs. Note that for/ € B we havel/(I) = sif and only if I € B;.
Moreover, it follows from Lemma 2.1 (viii) and (ix) thdt is a monoid (that is, a semigroup with
a unit element) under concatenation, with the empty iff@ag unit.

In Hypotheses 2.2 (a) we formalized the requirement that certain technical constraints on the
inputs are preserved under restriction, shift, and concatenation. But usually the biological inter-
pretation also puts constraints on the inputs and in most cases these take the form of a condition
on the range of the inputs. A typical example is when the interpretation requires the input to take
on only nonnegative values. We shall therefore from now onassume that the inputs take on values
in a subsetZ of the Banach spacE. Obviously this range condition is invariant under the three
basic operations.

We denote the subset &f; consisting of functions with values ii by B;(Z). Likewise we
useB(Z) to denotd J,~, Bs(Z).

LetY be a set. The sét figures as the state space of the dynamical system that we want
to construct. We now formulate the assumption that faiveninput we have a well-defined
dynamical system.

Hypothesis 2.3 (The semigroup propertyjor everyl € B(Z) there exists a mafp; from Y to
Y such that
Ty = idy, (2.2)

T[2 TIl - T[2®[1 (23)
In (2.2)idy is the identity mapping of. Note that (2.3) can equivalently be stated as
Tr = T@(—o‘)[ Tp(o‘)[a 0<o< K(I) (24)

Note that the information about how much we go forward in time is contained in the length of
the input. Whenever there is a need to consider, for givehe population states for timeésvith
0 <t < {(I), we do so by means of the restriction operator, that is, by consid&pipgy.

The name “semigroup” derives from the fact that (2.3) states that thelmap 77 from
B(Z) to the set of maps df into itself (which is a semigroup under composition) is a semigroup
homomorphism. As a matter of fact it is even a monoid homomorphism as (2.2) says that the unit
of B(Z) is mapped tady .

For constant inputs we obtain semigroups of map¥ @fito Y parametrized by positive real
numbers. Indeed, fdf € Z, defineT(s) = T, 7. Then

T(s1)T(s2) = Tp(Sl)TTP(@)7 - Tﬁ’(‘91)7®p(‘92)7 - Tp(Sl-f—82)7 =T(s1+ s2). (2.5)

3 Construction of a dynamical system (closing the feedback loop)

To define the output, we introduce a mAp: Y — Z. In the setting of Hypothesis 2.3, lgtc Y
andI € B(Z) be given. Theoutputis then the function

t H (Tp(m y) (3.1)

defined on[0, /(1)) and with values irZ. We are here, for the sake of mathematical simplicity,
thinking of a feedback map which is the identity, such that the distinction between the input-
output-input map and the input-output map introduced in Definition 3.2 below becomes irrelevant.
Relative to the formulation which corresponds most closely to the biological mechanism this may
entail a mathematical transformation, as, e.g., the step fign) to (¢) in Section 1.



Hypothesis 3.1 The output defined by (3.1) is an elementi)f;) (Z).

Next we introduce the map that transforms input into output, given the populatiornystate

Definition 3.2 For eachy € Y theinput-output mapP, : B(Z) — B(Z) is defined by
Py(I) = H (Ty(y1 ).

By Hypothesis 3.1, mapsB;(Z) into B;(Z) for eachs > 0. Moreover,P, commutes wittp(o)
forall o > 0.

A shift in the input should be reflected in a corresponding shift in the output, provided the
population state is updatextcordingly. That this is indeedéhcase is shown in the following
lemma.

Lemma 3.3 Forall I € B(Z) andall0 < s < ¢(I) one has
0(—s)Py(I) = Pr,,, y (0(=s)I). (3.2)

Proof. If s = £(I), then (3.2) reduces to the identity= 1. For0 < s < ¢(I), 0 <t < {(I)—s

the left hand side of (3.2) evaluatedtatqualsH (Tp(t+8)1 y) whereas the right hand side equals
H (Tp(t)g(_s)[ Tos)1 y). It follows from Lemma 2.1 and the semigroup property of Hypothesis
2.3 that the two sides are indeed equal. o

The distinction between input and output is, in our context, a mental construction and the two
should in fact be identical. In other words, our task is to find a fixed point of the Rydpr
arbitraryy € Y. Atthis level in our top down approach we state this as a hypothesis:

Hypothesis 3.4 For ally € Y there exists as(y) > 0 such thatP, \BS(Z) has auniquefixed
point, to be called, for everys < s(y).

Strictly speaking the fixed point not only dependspbut also on thes that we choose.
However, the fixed point on a smaller interval is simply the restriction of the fixed point on a
larger interval (because of uniqueness and the fact that the restrictiocomaputes withP,) and
therefore we may safely suppresi the composite symbol denoting the fixed point.

Lemma3.5Forally €Y, s € [0,s(y)) one has
0(—8)Iy = ITP

()Iy Y*

Proof. One ha¥)(—s)I, = 6(—s)Fy (1) = Pr,,), 4(0(—s)Iy) by Lemma3.3. Sé(-s)I, isa
fixed point OfPTp(s),y y and by uniqueness it must therefore be equafjp;gg)ly Y- o

Definition 3.6 Fort¢ > 0 we put
S(t,y) =Ty, v (3.3)

whenever the right hand side is defined.
Note that it follows from (3.3) that
S0,y) =Tpoy, y=Try =idyy =y (3.4)

forally €Y.



Theorem 3.7 Lety € Y. Thens < s(y), t < s(S(s,y)) impliest + s < s(y) and
S(t+s,y) =5t 5(s,y)). (3.5)
Proof.

S(t,S5(s,y)) = Tp(t)IS(s,y) S(s,y) = Tp(t)ITp(s),y y S(s:y)

= Tpyo(—s)1, S(8:Y) = To(—s)p(t+s)1, Lp(s)1, Y
= To(—s)p(t+s)1,00(s)I, Y = Tp(t+s)1, Y
= S(t+sy).

]

Theorem 3.7 together with the identity (3.4) says thias a semiflow. Usually one requires
that a semiflow is continuous both with respect to time and initial state.

Whenever we verify Hypothesis 3.4 we say that we renleeda nonlinear problem, meaning,
of course, that we can combifig¢ andl,, into a semiflow via (3.3)

4 Kernels and convolutions

As in Part | (Diekmanret al. 1998) we consider individual states as elements of a measurable
spacef) with a countably generateg-algebra¥. Our use of the word “kernel” is somewhat
different from that of Part I. Here kernelk is a map from2 x ¥ into R which is bounded and
measurable with respect to the first variable and countably additive with respect to the second
variable. (So for fixedv € ¥ the functionz — k(z,w) is bounded and measurable, while for
fixed z € Q2 the mapw — k(z,w) defines a finite signed measure @) We call a kernepositive
if it assumes non-negative values only.

Theproductk! x k2 of two kernelsk! andk? is the kernel defined by

(k' > ) (2, ) = /le(f,w)kQ(x,df). (4.1)

Likewise we define theroductf x k of a bounded measurable functign 2 — Z and a kernel
k as the function

(f x k) ( / FOk(x, de). 4.2)
The product of a kernét and a measurg is defined analogously as the measure
(k x 1) / k(& w 4.3)

Finally we agree that the produgtx u of a function and a measure is

fxu= [ f@pnld) € 2. (4.4)

The x-product is associative in the following sense: If in the case of three obfektand,
say, both the producty x k) x pandf x (k x u) are well-defined, then they are equal. In this
case we leave out the parentheses and write sifhplyc x .

We shall use inputé € B to parametrize kernels and functions. For two parametrized families
k} andk? of kernels we define the@onvolution productk! « k%), by

kL« k2 :/ K} X k2, 4.5
( )I [0,6(1)) 0(—o)I p(do)I (4.5)



whenever the integral exists. In particular, this is the case i ké(_a)l(é,w) is bounded,
uniformly in ¢ andw, and measurable, white — kz(a)l(x, w) is of bounded variation uniformly
in z andw.

The convolution product of a parametrized famjlyof functions and a parametrized family
kr of kernels is defined analogously:

(f*k)l = /[0 o) f@(—a)[ X kp(da)[' (46)

Note that the convolution of two parametrized families of kernels is again a paragdetainily

of kernels, while the convolution of a family of functions and kernels yields a family of functions.
When deriving Lipschitz estimates for the input-output nigpwe need sup-norm estimates

for convolution products. To prepare the way, first note that

[(f x k) (2)|g < sup |f(&)] g [K|(x, ), (4.7)
=

where| - | g denotes the norm in the Banach sp&tek|(z, -) denotes the total variation measure

of k(x, -) and accordinglyk|(z, Q) is the total variation ok (z, -). We also need the total variation

of a real valued functiow defined on an intervgD, s). This will be denoted by (¢). As the

length of the interval will always be clear from the context it need not be included in the symbol.
We now lift the inequality (4.7) to the convolution product. The rationale for the introduction

of the subsef;, of 2 will be explained in the next section.

Lemma 4.1 Let f; and k; be parametrized families of functions and kernels, respectively. If
k(z,-) is concentrated of, for all z € €2, then

b @lp s swn oo @),V (o . 0) (4.8)

Proof. One has

and hence, by (4.7)

G emy@lp< [ s |fa o ©) [Foaot] (2, 00).

[0,£(1)) €€

From here the inequality (4.8) follows directly. o

5 Linear structured population models with input

When modelling structured populations one starts by describing individual behaviour. A first task
of the mathematician is then to show that this description leads to a well-defined dghsysiem

at the population level, that is, a dynamical system that for any given initial population state gives
the population state for future instants of time.

Usually individual behaviour is described in terms of rates of development, death and repro-
duction. In (Diekmanret al. 1998) we argued at length that a certain pre-processing of such basic
ingredients, leading to composite ingredients at a somewhat higher level of aggregation, has con-
ceptual and technical advantages. In this section we take this pre-processing grapted, but
in Section 8 we return to this point.



Let Q be a measurable space with a countably generatglgebra>. Individuals are char-
acterized by theii-state, which is represented by an elemerdf Q. 2 is therefore called the
i-state space. The twiogredientsof a linear structured population model with input are two
parametrized families; andA; of kernels which have the following interpretations:

e u;(z,w) is the probability that, given the inpidf an individual which has-statexr € Q ata
certain time, is still alive/(I) time units later and then hasstate inw € X.

e Aj(z,w) is the expected number of offspring, with state-at-birthvire 3, produced by
an individual, withi-statez € Q at a certain time, within the time interval of lengtt)
following that time, given the input.

The interpretation of the ingredienis and A ; requires that certain consistency relations and
monotonicity conditions hold. We collect these into the following assumption:

Assumption 5.1
() uy andA; are parameterized families of positive kernels.
(i) For everyIl; andl, in B(Z) one has
UL,ol, = UL, X U, -
(ii) ForeveryI; andl, in B(Z) one has
Anon = A + A, X uyp,.

(iv) Foranyr € Q, w € ¥, I € B(Z) the functiono — A ,,);(z,w) is non-decreasing and

E%Ap(”)l(x’ w) = Ag(z,w) = 0.

(v) Foranyz € Q, w € X, I € Bthe functiono — u,,(z, ) is non-increasing and

Liﬁ)lup(a)l(xa w) = u}(xa w) = 5I(w)a

In particular,
ur(z, Q) < 1.

Relation (ii) is nothing but the Chapman—Kolmogorov equation, while relation (iii) is a similar
consistency relation tying reproduction, survival and individual development together (see Diek-
mannet al. 1998 for more motivation). Sometimes we require in addition to (v) that

Li 0) = A
Z({;I_I}l@?ﬁz(% )=0 (5.1)

uniformly for z € Q or the somewhat stronger condition of a uniformly bounded life expectancy:
There exists ad/ < oo such that

A1z, Q)do < M 5.2
oy et Q) (5.2)
for everyz € Q and everyl € B(Z). The limitin (5.1) is of the general tydémy ), f1 = g,

which in an arbitrary metric space is defined¥sy > 0 3M > 0 such thatl € B(Z2), ¢(I) >
M = d(f[,g) <e.
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The population statep{state) is by definition the distribution éfstates and can therefore be
represented by a measure on thei-state spacé€). A natural choice for the-state space is
therefore a closed subconé of M (Q2), the cone of all (finite) positive measures 8n The
dynamical systerfi’; describing the dynamics at the population level should therefore be such that
given the initialp-statem, and the inputl, 77 my is thep-state at time(I). The population at
time £(I) consists of those individuals present in the initial population that are still alive and all
living descendants of the initial population. Suppose that we have somehow been able to construct
ameasure(z, -) on with the interpretation that$ (z, w) is ur(z, w) plus the expected number
of descendants (i.e. children, grand-children, great grand-children, etc) of an individual initially
of i-statex, which are still alive and havéstate inw, ¢(I) time units later. Here the superscript
c refers to “clan”. Summing up over all individuals present initially we obtain the composifion o
the population at timé(I) as follows:

(1 mo) (@) = [ (e, wmo(do). (5.3)

Suppose furthermore that we have construdtgaith the same interpretation ds, but now
referring to the whole clan. Because every member of the clan is either a chiiid ahtestor or
a child of a member of the clan, or alternatively, either a child of tiheeator or a member of the
clan of a child of the ancestor, we obtain the following consistency relation:

A =Ar+(AxA°); =Ar+ (A% A);. (5.4)

We now notice that we only have to construct because once this has been done, the verbal
description ofu$ can be formalized as

uf =ur+ (uxA;. (5.5)
The general linear structured population problem with input can now be formulated as follows:

Linear structured population problem with input. Given the ingredients; andA 7, construct
Af such that (5.4) holds for every € B(Z) and show that the famil{77} .z 5 of linear
operators on (the span df) defined by (5.3) and (5.5) is a semigroup.

The state-at-birth is really state that is, it summarizes all information that is relevant for
predicting the future. Hence the expected number of grand-children is obtained asvbletton
product ofA ; with itself, the expected number of great-grand-children as the threefold convolution
product ofA; with itself, etc.. The clan is obtained by summing up over all generations:

k=1

In (5.6) Al* = A; andAk* = (AUf—l)* % A)I fork > 2.

The positivity of the familyA ; guarantees that (5.6) has a meaning in any case, but additional
conditions onA; (e.g. a reproduction delay preventing newborns to give birth) guarantee that the
sum converges to something finite (Diekmagtral. 1998). Another important feature that often
simplifies the analysis is that; may be concentrated on a $it C €2 which may be considerably
smaller that? itself (indeed {2, may consist of just one poinf2, = {x;} as in the introductory
example of Section 1). We formalize these ideas in the following definition (cf. Diekragaln
1998, Definitions 2.5 and 2.7).

Definition 5.2 (i) A set(, € X is called aset representing the birth statésthe measure
Ar(z,-) is concentrated of¥;, for all z € Q and alll € B(Z).

11



(i) x € Qis called astate with reproduction delay at leastf A ;(x,Q) = 0forall I € B;(2)
with s < e.

Obviously we would like to choos@, as small as possible. But as we already pointed out in
(Diekmannet al. 1998) there is, in general, no unique way of achieving this goal. To see this,
notice that if(2; is a set representing the birth states one can removefpany setv such that
Ar(z,w) = 0forall z € Q and allI € B(Z) without destroying property (i) of Definition 5.2.
But one can certainly not remove an uncountable union of such sétshdé a natural topology,
then one can use the ideasafpportof a measure and defiri®, to be the smallestlosedset such
thatA;(xz, ~) = 0forallz € Qand alll € B(Z) (here— denotes the complement of a set).

The interpretation o&$ andA¢ given above requires tha§ andA¢, too, satisfy the Chapman-
Kolmogorov equation and the reproduction-surviiatate-development consistency relation. That
this is indeed the case was proved (in a slightly different setting) in Part | (Diekptaainl1998),
where we also showed thaf is the (uniquejesolvenf A;. We collect these facts into a propo-
sition:

Proposition 5.3
(i) Foreveryl; andI,in B(Z) one has
ul,on = U, X uj,.
(i) Foreveryl; andI,in B(Z) one has
Al o = Af, + AF, xuf,.
(iii) A defined by5.6)is the unique solution of Equatiqb.4)and
uf =ur+ (uxA);. (5.7)
The maplt : Y — Y is now defined byl mo = u§ x my, thatis, by (5.3). By Proposition

5.3 (i) T is indeed a semigroup, that is, it satisfies Hypothesis 2.3. By the uniqueness result (jii)

of Proposition 5.3 this is the only semigroup describing the dynamics at the population level. We
can thus summarize the contents of (Diekmanal. 1998) as follows:

Theorem 5.4 Under AssumptioB.l, the linear structured population problem with input has a
unigue solution.

6 Nonlinear structured population models

In the previous section we showed that under Assumption 5.1 the model ingrediesmsl A ;
uniquely determine a linear semigro{[ﬁl}leg(z) on (the span of) thg-state space. In this sec-
tion we shall formulate nonlinear population problems, where the ifjmihot given beforehand
but fed back into the system from an output.

When the output is obtained by applyindiear map from thep-state spac& C M, (Q) to
Z we speak aboutjpure mass action problenn this case we shall actually assume slightly more,
viz. that the output ma@/ : Y — 7 is represented by

H(m)=~vxm= /Q’y(x)m(dx) (6.1)

12



for someboundedand measurable : 2 — Z. So, in the pure mass action case the specification
of the nonlinear problem requires only one new ingredient:
The x-product allows us to give a nice representation of the input-output-inputfiprap

Ppo(I) = x uz(.)l X myg. (6.2)
We are now ready to formulate our first nonlinear structured population problem.

Pure mass action problem.Given the ingredients;, A; and~ and the initialp-statemg € Y,
show that the input-output-input mag),, defined by (6.2) has a unique fixed poipt, in some
spaceB;(Z). The dynamical system describing the time-evolution oftstate is then given by

S(t,mo) = Ty(t)1,,, M0

and we say that the problem has been solved.

Remark 6.1 Preferably there should be a uniform i) lower bound fors = s(my), since such

a bound guarantees global existence. As the reasons for the existence of such a bound (and hence
the techniques for deriving the bound) are quite problem specific, we do not deal with the issue in
the current paper. Whenever a model is based on energy budget considerations (Kooijman 2000)
we expect that global existence is guaranteed.

To solve the pure mass action problem one has to verify ygtmapsB,(Z) into Bs(Z)
and is, fors sufficiently (depending om) small, a contraction mapping oné& (2) is equipped
with a suitable norm.

As we have seen in Section 1, time scale arguments applied to mass action model formulations
may lead to more complicated outputs, which either can be represented bijreeaomapH on
Y or by alinear map ol depending on the inputitself. In such cases there seems to be (always,
as far as we know) hierarchical structuren the sensethal = 7, x Zs x --- x Zy and, in self
explaining notation,

Hi(y) = Li(y),
Hy(y) = Lao(l,y) = L2(L1(y), ), (6.3)

Hk(y) = Lk(Ila [2a ceey Ik—la y)

We call the resulting nonlinear structured population problegeeralized mass action prob-
lem. We shall concentrate on the case= 2 and formulate our results in such a way that an
induction argument settles the case of a general

For the time being, let us restrict ourselves to the case of linear output. Defiresfoior ¢,

o) = ~ x . (6.4)
Multiplying (in the sense ok) equation (5.7) from the left by one obtains
of =or+ (0°*A); (6.5)

and this is the equation we are going to analyse in the next section. What we shall do is formulate
assumptions on the mags— oy andI — A; and derive conclusions about the map- o
which take the form of a Lipschitz estimate with a constant that tends to zé(d )as 0.

13



7 Lipschitz estimates

In our top down spirit we now start working downwards to derive sufficient conditions for the
assumptions concerning, to hold. We start by a lemma.

Lemma 7.1 Suppose there exists a bounded and measurable fur€tiorf2 x R, — R such
that for 0§ defined by(6.4) one has

051 (@) = oy s(@)]| < Caa,s) 1T = T1], weQ (7.1)
forall I and.J in B,(Z) and such that
Ci(z,s) L0 (7.2)
forall z € Q. Then Hypothesi8.4is verified forY” = M (2) and P defined by6.2).

The idea of the proof of Lemma 7.1 is simple. Evidently (7.2) implies that

lsiigl/gzcl(x,s)mg(dx) =0 (7.3)

for all mg € M (Q2). Then, because by (6.2) and (6.4) one has

Pino(I) = 051 X Mo, (7.4)
we can apply the contraction mapping principle and conclude that Hypothesis 3.4 is indeed satis-
fied.

In this section we shall provide assumptions\grando;, which together with (6.5) imply the
estimate (7.1) and hence yield existence and uniqueness of solutions of the population problem.

So far the spaceB;(Z) and, in particular, the norm on them, have not been specified. But
gradually we need to become more specific. In the remainder of this section the norm is either
the Ly-norm || - ||1, in which caseBs(Z) = {I € L1 ([0,s); E): I(t) € Z for almost allt} or
the sup-nornj| - ||, in Which caseB,(Z) is either the space of bounded measurable functions
on [0, s) with values inZ or the space of regulated functions with this domain and range (we
define regulated functions as the uniform limits of step functions, see (Dieed@89, p. 145)).
To understand why we restrict ourselves tedé choices,ecall that we need wariarce under
concatenation.

When deriving estimates below, the following lemma will come in helpful. We start by intro-
ducing some notation.

Let 2, C Q. For a functionf : B(Z) x Q2 — R we definef : B(Z) — R, by

()= sup |f(O(—a)L,8)|, Ie€B(Z). (7.5)
€€y, acl0,U(1))

When the argument € B(Z) of f is written as a subscript, the same convention is used for
Thus, for instance, we writg;. If f has a third argument, which is kept constant when taking the
supremum in (7.5), thefi gets an additional argument: for instance

AI(Qb) = sup A@(—a)[(éa Qb) .
£y, a€0,4(1))
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Lemma 7.2 Let ¢, h and K be functions defined oB(Z) x Q with values inR ;. and assume
that
¢(I,x) < h(I, )+ (1)K (I, ) (7.6)

and
K(I) < 1. (7.7)

Then, for{(I) sufficiently small,

(I,2) < h(I,z)+ (1-K(I))  RDEU, ). (7.8)
Proof. Replacingl by #(—a)I in (7.6) and noting thab(6(—a)I) < ¢(I) we obtain
$(O(—a) I, z) < h(0(—a) I, z) + ¢(I) K(0(—a) 1, x).
So taking the supremum overe Q, anda € [0, £(I)) we find
o(I) < h(I) + (1) K(I),
which, under the assumption (7.7), implies
$(1) < (1-F(ID)) h(I). (7.9)
Inserting (7.9) into (7.6) we find (7.8). o
Our first estimate gives a bound ofiin terms of bounds on; andA;.

Lemma 7.3 Assume that there are positive constahits and K5 and a nondecreasing function
Ci(s), withlimgo Ci(s) = 0, such that one has forall € Q and allI € B(Z)

‘0[($)‘E S Kl (7.10)
A[(.CC, Qb) S Kg (711)
and forallz €
Az, Q) < C1(U(D)). (7.12)
Then, provided™;, (¢(I)) < 1,
0§ (@)]p < K1 (14 (1= Cr(e(D)) " Ka) . (7.13)

Proof. If we take the E-norm of both sides of the convolution equation (6.5) we find by virtue of
Lemma 4.1 the inequality (7.6) with

o(I,z) = l|oj(2)|g
MI,z) = |or(z)|p
K(I,x) = Ar(z,$)

and so the conclusion of Lemma 7.2 yields the estimate

05 (@) < lor(@)|p + (1~ K1) orAs(e, ) (7.14)

provided (7.7) is true. Note that (7.12) guarantees that (7.7) is trug forsufficiently small.
Inserting the bounds (7.10), (7.11), and (7.12) into the estimate (7.14) we arrive at (7.135
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When estimating differences of outputs we are led to consideblyparametrized families.
For inputsl; andI, of equal length (i.e4(I;) = ¢(I2)) we define the&Z x Z valued function/ by
I = (I, I,). We then define the convolution product as before; cf. (4.5) and (4.6). Starting from
the two equations

0% = o + (oic *Ai)l, i=1,2,
whereo’ = oy, etc., we arrive by subtraction and rearrangement at
0¥ — 02 = 0} — 07 + (olc * (Al — AQ))I + ((olc — 02‘3) * Az)l

> 0¥ — 0% = g1 + ((01C — 02‘3) * A2)1 (7.15)

with
gr :=o0F — 0¥ + (olc * (Al — AQ))I. (7.16)

So the difference$ — of, satisfies a convolution equation with forcing functign We proceed
by deriving an estimate fay;.

Lemma 7.4 One has

l91(@)| < lon, (2) = o, (@) 5 + 5,V (|Aprry = Apy| (@ %)) . (7.27)

Proof. This is nothing but Lemma 4.1 applied to the particular situation. o

Lemma 7.5 Assumé7.11)and(7.12) ProvidedC,(¢(I)) < 1, the estimate

|0, (2) — 0f, ()] 5 < lgr(@)| + (1 = C1L((D))) " Kagy (7.18)
holds.
Proof. Take theE-norm at both sides of (7.15) and note that this yields (7.6) with, and
K replaced by, respectivelf,(;f,1 (r) — of, (:c)‘E, lg1(2)| 5, and Ay, (x, Q). As (7.18) is nothing
but (7.8) written out for this choice af, h and K, we are done (Strictly speaking we cannot
apply Lemma 7.2 as formulated, since in that lemmartaegument is the same for all functions,

whereas now it differs. However, it should be clear that exactly the same seqfargements
can be applied to yield (7.18)). o

It remains to combine the lemmas into a more informative statement.

Proposition 7.6 Assume that there are positive constalitsand K> such that for alle € Q and
all I € B(2)
lor(z)|p < K1, (7.19)

A[($,Qb) < K. (720)

Assume, furthermore, that there are nondecreasing (as functiof)sfofictionsC'1 (s), Ca(z, s)
andCs(z, s) which tend to zero as | 0, in the case of inde® and3 uniformly forz € Q (but
not necessarily uniformly far € 2) such that

Ar(e, ) < CL(U(T)), (7.21)

lor(z) — 05 (z)| g < Ca(z, O[T = J]| (7.22)
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V (|Aprr = Bpya| (@) < Ca(w, O = J| (7.23)
forallz € Qandalll, J € B(Z) of equal lengttl = ¢(I) = ¢(J). Then
|07 (2) — 05 ()| p < (C2(€) + Cu(z, ) [T = I, (7.24)

whereCs(s) and C4(z, s) are nondecreasing is and tend to zero fos | 0 (in the case of”y
pointwise forz € 2 but uniformly forz € Q).

Proof. By Lemma 7.3 and Lemma 7.4 we have
l91(2)| g < Calz, O[T = J|, (7.25)

where
Cul, ) i= C(,8) + K1 (1+ (1= Cu(s)) " K3) Cs(a, s).

If we insert (7.25) into (7.18) we obtain (7.24) with

Ca(s) = (1= Ci(s)) ™" K3 sup Cu(&, 5).
£e

As a straightforward corollary we obtain the following theorem.

Theorem 7.7 Let B;(Z) be equipped with the supremum norm. Under the assumptions of Propo-
sition 7.6the pure mass action problem has a unique solution.

Proof. It follows from the proposition that the inequality (7.1) holds, and this, as we have already
shown, implies that the pure mass action problem has a unique solution. o

The derivation of the appropriate estimate for flyenorm proceeds along exactly the same
lines. We start with the analogue of Lemma 7.3.

Lemma 7.8 Assume that there are positive constahits and K> and a nondecreasing function
Ci(s), withlimgo Ci(s) = 0, such that for allz € Q and allI € B(2)

dt < K, 7.26
/[o,e(l)) ‘Op(t)l(x)‘E = (7.26)
Aq(z, ) < Ko (7.27)

andforallz € Q, andalll € B(Z)
Ar(z, Q) < CL(L(T)). (7.28)

Then
/[0 «1) 951, At < Ko (14 (1= Cu(eD) ™" Ka) (7.29)

forallz € Qandalll € B(Z) withCy(¢(1)) < 1.
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Proof. Consider again the convolution equation (6.5), but now in the form

Oty = Op(tyr + (0° A)p(t)l.

Taking theE-norm and integrating with respect t@ver [0, (1)) we obtain the inequality (7.6)

with
¢ Ia xr)= /
() [0,£(1))

h(I, :/ dt,
(L) = [ o0r@)]
K(I,xz)= Ar(z, Q).

To see this, interchange the order of the two integrations in the convolution term. The inequality
(7.29) is then obtained from (7.8) by using (7.26) — (7.28). o

oz(t)l(x) ‘E dt,

In completely the same manner we can prove the analogue of Lemma 7.5.

Lemma 7.9 Assumég7.27)and(7.28) Thenforalll, J € B(Z) of equal lengtlt = ¢(1) = ¢(J)
with C1(¢) < 1 one has

p — 0§ dt < / dtr
/[0,@ ‘Op(t)l(-l') Op(t)J(x)‘E = Joen) ‘gp(t)l(x)‘E

1-Ci(e(D) 'K sup / _or(z)|  dt. (7.30)
e ) N L BRI

Combining the lemmas 7.8 and 7.9 with Lemma 7.4 we obtain the following proposition and
its more fundamental corollary.

Proposition 7.10 Assumé€7.26) — (7.28)as well as
/[o,e) ‘Op(t)l(x) B Oﬂ(t)J(x)‘E dt < Ca(x, £(I))[[I = J|| (7.31)
and(7.23)for all I, J € B(Z) of equal lengti. Then
/[o,e) 950y1(2) = 050(3)| , dt < (Ca() + Cu(, 0) |1 = 7], (7.32)

whereCs(s) and, for everyr € Q, Cy4(x, s) are nondecreasing functions ethat tend to zero as
s 0.

Theorem 7.11 Let B;(Z) be equipped with th&;-norm. Under the assumptions of Proposition
7.10the pure mass action problem has a unigue solution.

In conclusion of this section we shall present the arguments that prepare the way for an appli-
cation of the contraction mapping principle in the case of the generalized mass action problem.

Lemma 7.12 Let A; and A, be Banach spaces and let for all = (a1,a2), b = (b1,b2) €
A x Ay, H = (Hl,Hg) A1 x Ay — A X Ay Satisfy

[Hi(a) = Hi(b)[[a, < Alla—b]],
[Hz(a) — Ha(b)[|4, < Alla = bl| + Kllag — by]|a,
for some positive constanksand K. Here || - || is thel;-norm onA; x As. Then
|H?(a) — H2(b)]| < (47* + 3AK ) la — b] (7.33)

foralla, b € Ay x Ay, whereH? = H o H.
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Proof. One has

1H7 (a) — HE(b)]] M H(a) — H(b)]|
A2\l = b]| + Kl — bal|.a,) (7.34)

< (24 KN fla—b|

and
|H3(a) = HF ()| < A|H(a)— HO)|| + K| Hi(a) — Hi(b)|la,
< (204 KA [la— bl + KA|la - b| (7.35)
= (224 2K)) [la—b].
Adding (7.34) and (7.35) one obtains (7.33). o

Within our frameworkA; = Bs(Z;) andH is the output map, cf. (6.3). Thethen depends
on s and tends to zero as | 0, while K stays bounded away from zero and infinity (so may
be chosen independent gf. For s sufficiently small,4\? + 3AK < 1 and we can apply the
contraction mapping theorem #@2. The conclusion is thakf? has a unique fixed point, say
But asH (a) is a fixed point of {2, too, uniqueness implies that actuailynust be a fixed point
of H itself.

In Lemma 7.12 we have chosen thenorm on the product spack, x A,, but, as all norms
onR? are equivalent, any other choice would have done equally well. Of course the expression
for the Lipschitz constant foH 2 in terms of\ and K depends on the choice, but in all cases this
Lipschitz constant tends to zero ag 0.

8 Estimating individual output

Let us assume that the interaction variable takes values in a finite siomeh space, salR”.
Moreover, let us specialise to the situation whereithate spacf is a (connected) subsetRf*
for somen with piecewise smooth boundary. We now concentratdeterministicdevelopment
of individuals, which we calgrowth We refer to (Diekmanret al. 1998, Section 8.3) for an
example involving random movement$h

Let X1(zo) denote the-state of an individual at timéI), given that

e it hadi-staterq at time zero,
e it experienced inpuf,
e it survived.

Similarly, let F;(x¢) denote the survival probability at timtéI) of an individual which had
i-Statex at time zero and experienced ingut

Concerning reproduction, let us assume that the state-at-birth has a distribution described by
a probability measuren, (concentrated on a subset of ), irrespectively of the state of the
mother at the moment of giving birth. The particular case of a fixed statethtaicorresponds
to the choicem;, = J,,. Let L;(x¢)denote the expected number of offspring produced by an
individual with i-statez, at time zero in the time interva, ¢(I)) while experiencing inpuf.

The assumptions made above mean that the ingredig@sd A ; take the forms

u[(.CC,W) - 5X1(;r)(w)fl(x)’ (81)
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Ar(w,w) = Li(z)my(w), (8.2)
for z € Q andw a measurable subset@f As a consequence
or(z) = (v x ur) (z) = /Q V) F1(x)dx, (2)(dE) = v(X1(x)) Fi(x), (8.3)

where~ is the individual output function.
We shall need the following hypotheses.

Hypothesis 8.1 There exists a constahi, and a nondecreasing functiéh : R, — R tending
to0 ass | 0 suchthatforall € B(Z) and allz € Q one has

Li(z) < K> (8.4)
and for alll € B(Z) and allx € 2, one has
Li(z) < Ci(¢(1)). (8.5)

Hypothesis 8.2 Let I and.J be two inputs of equal lengthé(l) = ¢(J) =: £. There exist finite
positive number€'x (¢), Cx(¢), C(¢), depending only od, such that for each € 2

[ X1(20) — Xy(20)| < Cx(f) /OZ [1(s) = J(s)|ds, (8.6)
[Fr(wo) = Fi(xo)| < Cr(¢) /OZ [1(s) = J(s)|ds, (8.7)
| L1(x0) — Ly(wo)| < CL(¢) /OZ [1(s) = J(s)|ds. (8.8)

Hypothesis 8.1 expresses the natural requirement that no-one begets an infinite number of
children and that newborns cannot get a positive number of offspring immediately upon birth.
This latter requirement is of course automatically satisfied if ewety(2; is a state with positive
reproduction delay (cf. Definition 5.2).

Hypothesis 8.2 contains natural Lipschitz-type conditions, which, as we show below, can eas-
ily be verified if individual behaviour is described in terms of rates satisfying corresponding Lips-
chitz estimates.

Theorem 8.3 Let B,(Z) be equipped with the supremum norm andyletQ2 — Z be bounded
and globally Lipschitz continuous. Then, under Hypothésgésand 8.2, the pure mass action
problem has a unique solution.

Proof. According to Proposition 7.7 we have to verify that the inequalities (7.19) —(7.23) hold
true. The estimate (7.19) holds because by (8.3) one has

lor(@)|g = Iy (X1(2)) F1(2)|g < V]l -

It follows from (8.2), the fact thain,, is a probability measure, and Hypothesis 8.1 that (7.20) and
(7.21) hold. One has

Y (X1(2)) Fi(z) = v(Xs(2)) Fi(2)|

lor(z) = os(2) g

< K[Xi(z) = Xy(2)|p + [Vl [Fr(z) — Fs(2)]
< cW) /M 11(s) — J(s)|ds
< COYI - Jl|o,
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which shows that (7.22) holds.
To prove (7.23), recall that for a functi@ndefined on an intervad, b] the total variatior/ (¢)

is defined as "
V(¢) =sup > [d(t;) — o(tj-1)],
j=1

where the supremum is taken over all partitigas= to, t1, .. ., tn—1, t, = b} Of [a, b]. One gets
1% (‘L (z) — Lp(.)J(x)D
= sup) ‘Lp(t] Loty = Lop(t;_yr + Lp(tj_w‘
- SUPZ ‘Lp(tj—tj—l)é’(—tj—l)f - Lp(tj—tj—l)é’(—tj—l)nf‘
< sup Y Culty — i) /[0) 10(~tj-1)I(s) — 0(~t;-1)J(s)] ds

= sup Y Culty — i 1) / I(s) — J(s)|ds

[ti—1:t5)

< Qo) [ 116) - I(s)lds,
[0,6)
from which it follows that (7.23) is satisfied. o

The L'-case is proven in a completely analogous manner by verifying that the assumptions of
Proposition 7.10 hold. The assumption of a uniformly bounded life-expectancy is needed to verify
(7.26). Therefore we formulate the following hypothesis.

Hypothesis 8.4 There exists all/ < oo such that
Uy (2, Q)do < M 8.9

for everyx € Q and everyl € B(Z).
We state the result in the'-case without proof.

Theorem 8.5 Let B,(Z) be equipped with thé!-norm and lety : Q — Z be bounded and
globally Lipschitz continuous. Then, under Hypothésés— 8.4,the pure mass action problem
has a unique solution.

Hypothesis 8.2 is easily verified if growth, survival and reproduction are modelled by instan-
taneous rates depending on thstate and the environmental condition and if these rates are,
for instance, globally Lipschitz continuous in both their variables. SgletQ? x Z — R,
w:2x7Z—Ry,0:0xZ— R, bethe growth, death and fecundity rate, respectively. This
means that — X ,;)7(o) is the unique solution of the initial value problem

%) = g(z(t), 1(1)), (8.10)
z(0) = o, (8.11)
that
Frzo) = e Sy (X 1(5)) ds (8.12)
and that o
Li(wo) = [ B(Xp1(a0). 1)) F 1 (ao) ds. 8.13)
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Proposition 8.6 Assume thak ;(zg), Fr(xo) and L;(xo) are defined by8.10) — (8.13)where
the functiong;, p andg are globally Lipschitz continuous in both variables afids bounded.
Then the Hypotheses1 and 8.2 hold true. Ifu(z,z) > ¢ > 0 for all (z,2z) € Q x Z, then
Hypothesis3.4 holds true.

Proof. That Hypothesis 8.1 is satisfied follows under the given assumptions immediately from
(8.13). By (8.1) and (8.12) one has

/ up(a)[(xaQ)dO':/ fo ( p(s)1(x),1(s ))dst'
[0,£(1))

[0,((1))

from which Hypothesis 8.4 follows via the assumption made.on
To verify Hypothesis 8.2, first note that by (8.10) and (8.11) one has

(1)

X1(z0) = 20 +/0 g (Xp(S)I’I(s)) ds

and hence, by the global Lipschitz continuitygf
‘Xp(t)l(xo) - Xp(t)J(xO)‘ <
K/ 1I(s) — J(s)| ds + K/ ‘Xp( (20) — X p(s )J(xo)‘ ds (8.14)
for some finite constart’. Applying Gronwall's lemma to (8.14) one obtains
ey
| Xr(ao) = Xs(ao) [ K [ XD 1(9) = J(s)] ds
from which (8.6) follows immediately.

Becausde™ — e7Y| < |z —y| forxz > 0, y > 0, it follows from (8.12) and the global
Lipschitz continuity ofu that

|Fr(zo) — Fr(zo)| < /OZ(I) ‘u (Xp(s)l, [(s)) — (XP(S)J, J(S))‘ ds

(1) o
<K /0 X0 1(0) = X 05 (0)| ds + K /0 11(s) — J(s)| ds. (8.15)

(8.7) now follows from (8.6) and (8.15).
Finally, using the fact that;(x¢) < 1 for all I, and the assumptions abg®itone finds from
(8.13) that
|Li(wo) — Ly(20)| <

/z(I ‘5( p(s)1> L (s )) ﬁ(Xp(S)J, J(s))‘ ‘j—“p() (960)‘ ds

o(1)
/ ‘ﬁ( p(s)J> (s))‘ ‘fp(s)l(%) _:Fp(s)J(xO)‘ ds <

o(I) (1)
K/ X, 91(z0) - Xp(S)J(xO)‘ ds + K/O I(s) = J(s)| ds
o(I)
+K/ ‘ p( VJ (.CC())‘ ds. (8.16)
(8.8) follows from (8.6), (8.7), and (8.16). m]
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As we have argued in Section 1, certain idealisations, which are made to keetlel pa-
rameter scarce, yield functionghat have jumps (and so are only piecewise Lipschitz continuous).
The aim of the remaining part of this section is to derive the estimate (7.31) for a simple prototype
example of ay with jumps.

Let us assume that thestate space is one-dimensional, that{is,Cc R. We ignore the
possibility of death and assume that the individual growth gatebounded away from zero, that
is, there exists an > 0, such thay(z, z) > e for all (z, z) € Q x Z (see Remark 8.8 if you find
this assumption overly restrictive). Finally, let there be a jump poiat(2 such that

(2) = 0 ifz<z,
M= ifz <,
the value ofy at7 being irrelevant.
For a given inputl and given initiali-statexy we can ask when an individual will reach the
jump pointz. The answer is obtained by solving the equation

Xp(s)[(.iv()) =T (8.17)

for s as a function ofeg andI. There may be no solution, but if there is one, it is unique by the
strict monotonicity of the map — X ,);(wo). We denote the solution (defined on a subset of
2 x B(Z) and taking values ilR ) by § = 5(x, I).

Alternatively we may solve (8.17) fary as a function ok andI. The solution (defined on a
subset olR ; x B(Z) and taking values if2) is denoted byt = z(s, I).

Now let I and.J be inputs of equal lengtf(I) = ¢(J) = ¢£. Then we define

Smin(x0) = min{3(zo, I), 5(x0, J)},
Smax(zo) = max{5(zo,I),3(xo,J)}

with the conventions thai,,.x(z¢) = ¢ if at least one of the elemen(s, I), (xo, J) is not in
the domain ofs and thats,,i, (z9) = £ if both these elements are not in the domairs.ofVe need
these quantities to describe the function

(@0, t) = |7 (Xp(0y1(20)) =7 (Xpa1s(20))| (8.18)
which is at the centre of our interest because
‘Op(t)l(xﬂ) - Op(t)J(xO)‘ = (o, 1). (8.19)
Clearly,
0 ifo<t< §(.CC()),
¢($0, t) = { 1 if Emin(.iv()) <t< §max($()), (820)
0 if Emax(.iv()) <t
and consequently
Y
/ WD (0, ) dt < umae (20) — Frmin (0). (8.21)
We now claim that
Y
Smax(%0) — Smin (o) < C(f)) / |I(t) — J(¢)|dt. (8.22)
0

To substantiate this claim we assume that,(z9) = §(xo, I). The lower bound of the growth
rate implies that fot > 5(x, I') we have

X,y1(w0) > T +e(t — 3(xo, I)).
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On the other hand, we have the Lipschitz estimate (8.6) which implies that

¢
Xpr(@0) = Xpaao)| <€ [ 11() = I()] ds.
With § = Spax(z0) = 5(o, J) for brevity, we have

T = X,5(20) = Xp3)1(w0) + Xy (20) — Xp(s)1(0)

> T +e(8§— 5(zo, 1) C’/ |1(s) s)| ds,
which implies that
C 4
(@0, 7) = (w0, 1) < < [ 11(5) = I(5)] ds,
e Jo

that is, the estimate (8.22) holds.

In the estimate (8.22), however, we lose a lot of information. Ind&gd,(xo) — Smin (o) = 0
when boths,,ax (z¢) andsmin (zo) are equal td, so in particularwhemy < min{z(¢, ), z(¢, J)}.
If we combine this observation with the estimate (8.22) we can deduce from (8.21) the estimate

/()€¢(x0,t)dt< / 11(5) = J(3)| dsx(o oo (w0 — min{F(6, T), 3(6,1)}),  (8.23)

wherex|o,«) is the characteristic function d6, co), that is, the Heaviside function. Recalling
(8.19) we note that this is exactly of the form (7.31) with(zo, £) being, for fixedzx(, < Z, equal
to zero for/ sufficiently (depending omy) small.

Proposition 8.7 LetQ? ¢ R andZ c RF and lety : Q — Z be piecewise globally Lipschitz
continuous. Assume that> 0 exists such that for all € B(Z) and allz o € Q2 the inequality

X[(.CC()) — X Z Ef([)

holds. Moreover, let the Lipschitz estima(8%)and(8.7) hold. Then, ifl andJ are two inputs
of equal lengtt?, we have the inequality

4
¥ (Xp(t)z(xo)) Foyr(wo) — (Xp(t)J(xO)) Fotya(wo)| dt <
0

C(wo, ¢ / \I() — J(8)| dt

for a functionC' for whichlim o C(xo, ¢) = 0 for everyzy € Q.

This proposition can easily be proven by using the estimate (8.23) and the fact that a piecewise
Lipschitz continuous function can be written as the sum of a truly Lipschitz continuous function
and a finite number of multiples of Heaviside functions.

Remark 8.8 Note that in a similar manner one can relax the lower bound on the growth rate: it
need only hold near to the jump pointsf

To conclude, we stress the two points that are essential for dealing successfully with discon-
tinuous functionsgy (‘successfully’ meaning that we can use a contraction mapping argument to
prove well-posedness). The first is that we uselth@orm to measure inputs and outputs (indeed,
(8.20) shows that the supremum norm of the difference in output cannot be bounded by a multiple
of the sup-norm of the difference in input). The second is that it is sufficient that the Lipschitz
constants tend to zero pointwise, but not necessarily uniformly, in-ghatex,, when the time
window shrinks to zero.
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9 Back to the cannibalism example

In this section we show how the general theory applies to a nontrivial example, viz. a model
involving cannibalistic behaviour. In Section 1 we introduced various ingredients of such a model,
but we did not provide a full specification. So before embarking upon the application of our results,
we first give a more precise description.

Individuals are characterized by their size> x;,, wherez;, is the size at which they are born.
They grow, die and reproduce with ratgsu andg, respectively. These rates depend onithtate
as well as on the environmental condition.

The pde formulation of the model is

on —|—£( n) = —pn
ot 9z T T THT
g = Ondzx,

r=x}, r>x)

with g, u, and as specified below. In our view, this is only a convenient short-hand notation.
In a preprocessing step we form and A; via (8.1) and (8.2) withX;, F;, and L; given by

(8.10) — (8.13). Next we apply the machinery developed in Part | (Diekneaah 1998) and the
present paper. The main result is that a population semiflow is constructively defined;eyitan
assumptions o, u, andg. In our elaboration below we do not strive for the utmost generality.
Yet, on the other hand, we want to demonstrate the flexibility of our approach by including a case
in which the behaviour of individuals changes abruptly upon passing a critical size.

The environmental condition has three components corresponding to, respectively, the reduc-
tion factor(I3(¢,z)) " of search time due to handling of prey, the rate of food ingestion =)
expressed in energy units, and the death fatg =) partly due to cannibalism. With slight abuse
of notation we now formulate an assumption concerning the specific form of these quantities as
follows:

It ) = 1+ H(@)O(@)Z(x) + hi (2)0(2)Os(0), ©0.)
(t.0) = ZEADZO LN, 0.2)
b(t,) = o(z) + 6()0a(t). ©03)

The meaning off (z), C(z), Z(z), ¥(z), E(z), o(z) and ¢(z) as well as that oD;(t) and
Os(t) has already been explained in Section 1. The additional assumption underlying (9.1) — (9.3)
is that

h(z,y) = hi(z)ha(y) (9.4)

and that
@@—Amﬁmwmmm» (9.5)

There are two more parameters entering the model description. One is the maintenarme-rate ¢
stant¢. The second is the size specific allocation rk(e) which describes how much of the
ingested energy goes to growth and how much to reproduction.

We are now ready to give the formulas faru, 6 and the three-vector in terms ofr and the
three-vectod (¢), that together fully specify the model:

E(z)C(x)Z(2) + $(x) (1)
L+ H(2)C(x)Z(2) + hi(2)y(x)I3(t)

p(z, 1(t) = o(z) + ¢(z) Ia(1), (9.7)

g9(x, I(t)) = (1 — K(x)) —(x, (9.6)
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B L0) = M) T S e T ©9)
() = e(2) (), 0.9)

) b(@)
20 10) = T H 6@ 2) + @ e @ B0 (5-10)
13(2) = hale)é(a) (9.11)

All functions featuring in this description take nonnegative values. We assume that for sethe
and for allz > xp (£)C(@)2(2)
E(x)C(x)Z(x
1—

A=~ )o@ zm)
which tells us that growth will never stop (in fact, this assumption is debatable andatives
like von Bertalanfy growth and/or a reserve compartment have been considered, afim@o
2000; Metz and Diekmann 1986); however, here we do not want to complicate the formolation
the results by having a size upper bound and the possibility of shrinking when maintenance cannot
be covered by food). We also assume that all functionsarie bounded.

—(x > ¢, (9.12)

Theorem 9.1 Let({ > 0 and let bounded, nonnegative functidiisC, Z, e, ¢, ¥, o, H, hy, hs,

and x, ddined on[z;, co), be given. Assume th&.12) holds. Also assume that all functions

are globally Lipschitz continuous, with exceptiory/gfwhich is only piecewise globally Lipschitz
continuous. Then there exists a population semiflow corresponding to the individual behaviour as
embodied in9.6) — (9.11).

Sketch of proofWhenh, (z) = 0 (that is, when cannibalistic predation has negligible influence
on search time) and all functions ofare globally Lipschitz continuous, we can apply Theorem
8.3. Retaining the Lipschitz condition but allowing(x) to be nontrivial, we have to extend the
underlying lemmas and theorems by means of Lemma 7.12. If we choose, for ingtanges
X[0,00) (T — x4) we need Theorem 7.11 in combination with Proposition 8.7. m|

10 Concluding remarks

In this paper we have proven existence and uniqueness of solutions of a general nonlinear struc-
tured population model and applied the result to a concrete model involving cannibalistic be-
haviour. We trust that our approach is such that it applies directly, or with only slight modifications,
to a large class of structured population models.

A characteristic feature of structured population models is that the nonlinearity enters the
model via feedback through the environment. This fact gives a clue to the existence and uniqueness
proof: One first pretends that the environmental condition (the input) is known during a time-
interval, then one calculates the corresponding output and iterates. The solutionis thus constructed
by successive approximations. In the context of structured population models this idea goes back
(in the case of age-structured models) at least as far as Gurtin and MacCamy. (Vardus
extensions and generalizations of the Gurtin-MacCamy model have been treatediitjedly the
same method in a number of papers; see the book by Webb (1985) and the references therein.

Age-dependent problems are very special in the sense that aging is not affedtedenvi-
ronment: chronological age always advances at the same rate as time. Nonlinear agesdtruc
models are thusemi-lineamproblems, which are rather innocent nonlinear perturbations of a well-
understood linear problem. When the individual development rate is allowed to depend on the
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environmental input, the problem becomes quasi-linear and thus essentially more difficult. Conse-
guently there are only a few papers with existence and unigqueness proofs for such models, the most
important being (Tucker and Zimmermann 1988; Thieme 1988; Calsina ancha4dl@a5, 1997).

Tucker and Zimmermann (1988) assumed that the state-at-birth is distributed and traiule

tion can be described by a density function; Thieme (1988) concentrated on the Kooijman-Metz
Daphniamodel and related certain model assumptions concerning individual energy allocation to
unigueness of solutions; Calsina and Saldafa (1995, 1997) did restrict to one-dimeistatel

space, in other words, to gstructureghopulations.

All the authors mentioned above formulated their models analogously with the age-structured
model as a hyperbolic partial differential equation supplemented by a nonlocal boundary condition
describing the birth process. Diekmaeanal. (2000) gave examples of how uniqueness can falil
for such equations and pointed out that the problems leading to nonuniqueness are completely
hidden in the pde formulation (see also Diekmagiral. 1993a, 1995). Therefore we have in
this paper chosen the “cumulative” formulation of structured population models (Dieketahn
1993b, 1998), which takes as model ingredients not the individual vital rates, but the kernels
andA;. An additional bonus of this approach is that stochasticity at the individual level can be
incorporated at no extra cost.

Next on our agenda is the writing of a paper showing how to determine in an efficient manner
steadyp-states from the ingredients, A; and~. This is essentially an elaboration of Theorem
6.1 in (Diekmannet al. 1998) together with a feedback fixed point problem. A formulation
of a linearized stability test in terms of the position of the roots of a characteristic equation in
the complex plane relative to the imaginary axis seems within reach (see ekjjioMis et al,,
preprint). A rigorous justification of this test, however, is still a daunting task.

Finally we emphasize that our approach is not restricted to single-species models. As for-
mulated in this paper our model actually includes the multi-species case: If thetardaeract-
ing species with individual state spacés,, (2., ..., Q, respectively, then one simply defines
Q=0U20U...UQ. The species interactions are modelled in terms of the environmental
inputs.
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