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Abstract

This paper is as much about a certain modelling methodology, as it is about the constructive
definition of future population states from a description of individual behaviour and an initial
population state. The key idea is to build a nonlinear model in two steps, by explicitly introducing
the environmental condition via the requirement that individualsare independent from one another
(and hence equations are linear) when this condition is given (prescribed) as a function of time.

A linear physiologically structured population model is defined by two rules, one for repro-
duction and one for development and survival, both depending on the initial individual state and
the prevailing environmental condition. In Part I we showed how one can constructively define
future population state operators from these two ingredients.

A nonlinear model is a linear model together with a feedback law that describes how the
environmental condition at any particular time depends on the population size and composition at
that time. When applied to the solution of the linear problem, the feedback law yields a fixed point
problem. This we solve constructively by means of the contraction mapping principle, for any
given initial population state. Using subsequently this fixed point as input in the linear population
model, we obtain a population semiflow. We then say that we solved the nonlinear problem.

The paper is organized in a top-down spirit: We describe a general abstract setting first and
then specialise, while becoming more technical.

The results are not restricted to a single population but also cover the interaction (including
predation) of several structured (and unstructured) populations.
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1 An introductory example: a model involving cannibalistic behaviour

Consider a population of, say, fish and assume that the behaviour of individuals (notably repro-
duction, survival, food consumption) depends on theirsizex. Let birth sizebe fixed atxb and let
growthbe deterministic with a rateg that depends on sizex and thex-specificenergy intake rate.
Likewise,reproductionis described by specifying how the rateβ of producing offspring depends
on sizex and thex-specific energy intake rate. Assuming that predation is the only cause of death,
we describesurvivalin terms of a death rateµ, which we call thex-specificpredation pressure.

Next we have to describe how energy intake rate and predation pressure are themselvesdeter-
mined. For the purpose of exposition we assume that, apart from effects due to cannibalism, both
food concentration and predation pressure are constant in time. In other words, cannibalism is the
only feedback loopby which the individuals influence the environmental conditionsof each other.

If we neglect the effects of handling times, satiation etc., we can describe the predation process
in terms of attack rates and concentrations (the rate of eating being by definition the product, in
this simple case of a linear functional response). Assume that individuals of sizex have access to
a food source with concentrationZ(x), which they attack at rateC(x) and which has energetic
valueE(x). Moreover, they attack conspecifics of sizey with ratec(x, y) and these have energetic
valuee(y). Letmt be the measure describing the population size and composition at timet (so
mt(ω) is the number (or rather spatial concentration) of individuals with size inω at timet). Then
the energy intake rate of an individual of sizex is given by

I1(t, x) = F1(O1(t, x), x) = E(x)C(x)Z(x) + O1(t, x) (1.1)

with
O1(t, x) =

∫

[xb,∞)

e(y)c(x, y)mt(dy) (1.2)

while the predation pressure exerted on individuals of sizex is given by

I2(t, x) = F2(O2(t, x), x) = σ(x) +O2(t, x) (1.3)

with
O2(t, x) =

∫

[xb ,∞)

c(y, x)mt(dy) (1.4)
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whereσ denotes thex-specific non-cannibalistic predation pressure.
Once we now also specifyg andβ, we obtain a nonlinear structured population model, all

interactions being due to cannibalism. We want to show constructively that one can associate in
a meaningful way a dynamical system with such a model description. In other words, we want
a construction that for givenm0 yieldsmt, at least fort sufficiently small, and then we want to
establish uniqueness in order to conclude thatmt qualifies as the populationstate(p-state) at time
t.

To do so, we first cut the feedback loop and then re-establish it as a fixed point equation.
More precisely, we pretend that the energy intake rateI1(t, x) and the predation pressureI2(t, x)
are known functions. In this manner we obtain a non-autonomous (i.e., time dependent) butlin-
ear model to which we can apply the constructive procedure of Part I (Diekmannet al. 1998),
culminating in solution operators that assign to ap-statem0 thep-statemt for t > 0 in a well-
defined and unique manner. If we insert now thesep-states in the formulas (1.2) and (1.4) we
obtain a (nonlinear) input-output map. The biology expressed in (1.1) and (1.3) then requires that
I = F (O) which, sinceO depends onI , is a fixed point problem. Our aim in this paper is to show
that for large classes of models one can derive Lipschitz estimates, apply the contraction mapping
theorem to the fixed point problem to obtain a unique solution for any given initialp-state, and
then use the fixed point to define a nonlinear autonomous dynamical system.

It is enticing to restrict the generality ofc by putting

c(x, y) = ψ(x)φ(y), (1.5)

whereψ describes the degree of cannibalistic activity andφ the vulnerability to cannibalistic
predation and where we have in mind that the support ofφ is strictly to the left of the support of
ψ (so big ones eat small ones but the precise size of potential predator and potential victim do
influence what happens upon encounter in an independent manner; this is an example of making a
model less parameter rich). The advantage is that we may now define outputs

Õ1(t) =
∫

[xb ,∞)

e(y)φ(y)mt(dy) (1.6)

and
Õ2(t) =

∫

[xb,∞)

ψ(y)mt(dy), (1.7)

which are only functions of time, and analyse how these depend on input when we take as the
x-specific energy intake rate

I1(t, x) = E(x)C(x)Z(x) + ψ(x)Õ1(t) (1.8)

and thex-specific predation pressure

I2(t, x) = σ(x) + φ(x)Õ2(t). (1.9)

However, to actually take advantage of this we must adapt the notion of input. We do so by
noting that thex-specific energy intake rate is of the form

E(x)C(x)Z(x) + ψ(x)Ĩ1(t) (1.10)

and thex-specific predation pressure of the form

σ(x) + φ(x)Ĩ2(t) (1.11)
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and by now calling̃I1 andĨ2 the input. In this setting the feedback becomes simply the identity.
We say that the environmental interaction variables are two-dimensional and we formulate the
fixed point problem forR2-valued functions of time.

Although the framework we develop is of a more general nature, the class of examples we have
in mind so far involves onlyRk-valued functions of time and we postpone a thorough analysis of
inputs which are general functions of botht andx to some later time.

To reduce the parameter richness even further, we may choose

ψ(x) =

{

0, x < xA
1, x ≥ xA

(1.12)

for some givenxA. This expresses that individuals become cannibalisticupon reaching sizexA
(hereA stands for “adult”) and that there is no variation in the degree of cannibalistic tendency.
The price we pay for such an “idealized” description is that individual behaviour changes abruptly
as a function of individual state (i-state)x. When analysing the input-output-input map such
a discontinuity needs special attention and in particular we need to make sure that the state of
individuals always crosses the discontinuity transversally (in the present case of one dimensional
i-state space this just means “with positive speed”, but when thei-state space is higher dimensional
the requirement is more easily interpreted as transversality (Diekmannet al. 2000)). In section 8
we return to this point.

The classical Holling time scale argument (see e.g. Metz and Diekmann (1986) and the ref-
erences given therein) yields a saturating functional response reflecting a limited time budget and
the effect of handling time. In the present situation involving size structure, we need to introduce
a third interaction variable

I3(t, x) = 1 +H(x)C(x)Z(x) +O3(t, x), (1.13)

with
O3(t, x) =

∫

[xb,∞)

h(x, y)c(x, y)mt(dy), (1.14)

whereH andh are the respective handling times. The size-specific fraction of the time spent
searching is then the inverse ofI3(t, x). This fraction has to be incorporated in (1.1) and (1.3) as
a multiplication factor, toaccount for the effect of handling time, thus letting us replace (1.1) and
(1.4) by, respectively,

I1(t, x) =
E(x)C(x)Z(x) +O1(t, x)

I3(t, x)
(1.15)

and

O2(t, x) =

∫

[xb,∞)

c(y, x)

I3(t, y)
mt(dy), (1.16)

and thus introducing a dependence of the output on the instantaneous input while keeping the
linearity of output in thep-state. We will show in Section 8 that a certain hierarchical structure
makes the dependence of output on input rather harmless.

As a side-remark we mention that one can give another derivation of such expressions by
invoking digestion as the limiting fast time scale process (Metz and Diekmann 1986).

1 1

2
Trait d’union

We hope these modelling considerations have provided our readers with enough motivation, as
well as enough understanding of the underlying general model structure, to dive into an abstract
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setting. Our approach will be top down. We start abstract and general and even trivial, in the sense
that we simply assume everything we need. We work our way downwards by deriving in each step
sufficient conditions for the assumptions in the preceding step. Thesemay come in various forms
and so we develop a theory with pyramid structure. The hope is that in this manner we may in the
future incorporate new and essentially different examples with minimal effort, changing onlythe
arguments in one (or a few) step(s).

2 Some terminology, definitions and hypotheses

Our basic thought experiment is that we

(i) pretend to know the state of the system at some initial time, which we take as the origin of
the time axis;

(ii) pretend to know the input to the system for a lengths of time;

(iii) determine the state of the system at times.

Here aninput is a function of time taking on values in a Banach spaceE. In the structured
population context we call an element ofE an “environmental condition” and the time argument
of the input tells us at what time this condition is supposed to hold. An inputI is defined on the
interval[0, ℓ(I)) and we callℓ(I) the lengthof the inputI .

It turns out to be convenient to introduce theempty inputdenoted by/I. It is defined as an
input of zero length:ℓ(/I) = 0. According to the definition of an input, it is anE-valued function
defined on the empty interval[0, 0) and thus it is nothing but the empty set. We have chosen the
symbol/I which resembles the symbol∅ for the empty set to remind us of this fact. The empty
input/I should not be confused with thezero input0, which is the function which has the constant
value0 ∈ E for all t in its interval of definition, which can have any length.

To inputs we can apply three basic operations, namelyrestriction, shiftandconcatenation.
They are defined as follows:

Restrictionρ: For 0 ≤ s ≤ ℓ(I), ρ(s)I is the restriction ofI to the subinterval[0, s), that
is,

(ρ(s)I)(t) = I(t) for 0 ≤ t < s.

Shift θ: The shiftθ(−s)I is for 0 ≤ s ≤ ℓ(I) defined on the interval[0, ℓ(I)− s) by

(θ(−s)I)(t) = I(t+ s), 0 ≤ t < ℓ(I)− s.

Concatenation⊙: The concatenationI2⊙I1 of I1 andI2 is defined on the interval[0, ℓ(I1) + ℓ(I2))
by

(I2 ⊙ I1) (t) =

{

I1(t) for 0 ≤ t < ℓ(I1),
I2(t− ℓ(I1)) for ℓ(I1) ≤ t < ℓ(I1) + ℓ(I2).

We collect some useful elementary properties into the following lemma:

Lemma 2.1

(i) ρ(0)I = /I for all inputsI ;

(ii) ρ(ℓ(I))I = I for all inputsI ;
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(iii) ρ(s)I = ρ(s)ρ(t+ s)I for all s≥ 0, t ≥ 0 such thatt+ s ≤ ℓ(I);

(iv) θ(−0)I = I for all inputsI ;

(v) θ(−ℓ(I))I = /I for all inputsI ;

(vi) θ(−s)θ(−t)I = θ(−(s+ t))I for all s ≥ 0, t ≥ 0 such thatt+ s ≤ ℓ(I);

(vii) θ(−s)ρ(t+ s)I = ρ(t)θ(−s)I for all s ≥ 0, t ≥ 0 such thatt+ s ≤ ℓ(I);

(viii) I3 ⊙ (I2 ⊙ I1) = (I3 ⊙ I2)⊙ I1;

(ix) I ⊙ /I = /I⊙ I = I for all inputsI ;

(x) I = θ(−s)I ⊙ ρ(s)I, 0 ≤ s ≤ ℓ(I).

There will be certain properties, like boundedness, measurability and integrability, that we
require inputs to have. These properties should be such that they are preserved under restriction,
shift and concatenation. Observe that, for instance, continuity isnot preserved under concatena-
tion. We also may want to identify inputs that differ only on sets of Lebesgue measure zero. As
this identification commutes with the three basic operations, they extend to equivalence classes
that are obtained by the identification.

To formalize the setting, we have to postulate certain properties ofthe spaces to which the
inputs belong. Because the inputs may have arbitrary lengths we have to introduce a whole family
{Bs}s≥0 of spaces. Here and in the following hypothesis the parameters should be interpreted as
the length of an input.

Hypothesis 2.2

(a) B0 = {/I} and for a given but arbitrarys > 0, Bs is a set of (equivalence classes of)
functions defined on the interval[0, s)with values inE such that

(1) for 0 ≤ σ ≤ s the restrictionρ(σ)mapsBs ontoBσ,

(2) for 0 ≤ σ ≤ s the shiftθ(−σ)mapsBs ontoBs−σ,

(3) for s1 ≥ 0, s2 ≥ 0 concatenation is a one-to-one mapping ofBs1 ×Bs2 ontoBs1+s2 ,

(4) the constant functions defined on[0, s) belong toBs.

(b) For eachs ≥ 0,Bs is a Banach space with norm|| · || (note that the norm depends ons but
that we do not express this in the notation) such that

(1) for 0 < σ < s, ρ(σ) andθ(−σ) are bounded linear operators of norm one (the same
is true forρ(s) andθ(0), butρ(0) andθ(−s) have norm zero),

(2) ||I ⊙ 0|| = ||I || = ||0⊙ I ||

(3) I2 ⊙ 0 + 0⊙ I1 = I2 ⊙ I1

In assertion (b3) above, the lengths of the zero inputs are of course assumed to be such that
the sum makes sense, that is, such that both terms on the left hand side have the same length. It
follows from (b2) and (b3) that

||I2 ⊙ I1|| ≤ ||I2||+ ||I1||. (2.1)

Despite a slight abuse of the symbolρ, it seems natural to denote the input defined on[0, s)
taking the constant valueI ∈ E by ρ(s)I. With this convention assertion (a4) can be written as
ρ(s)I ∈ Bs.
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We useB to denote
⋃

s≥0Bs. Note that forI ∈ B we haveℓ(I) = s if and only if I ∈ Bs.
Moreover, it follows from Lemma 2.1 (viii) and (ix) thatB is a monoid (that is, a semigroup with
a unit element) under concatenation, with the empty input/I as unit.

In Hypotheses 2.2 (a) we formalized the requirement that certain technical constraints on the
inputs are preserved under restriction, shift, and concatenation. But usually the biological inter-
pretation also puts constraints on the inputs and in most cases these take the form of a condition
on the range of the inputs. A typical example is when the interpretation requires the input to take
on only nonnegative values. We shall therefore from now onassume that the inputs take on values
in a subsetZ of the Banach spaceE. Obviously this range condition is invariant under the three
basic operations.

We denote the subset ofBs consisting of functions with values inZ byBs(Z). Likewise we
useB(Z) to denote

⋃

s≥0Bs(Z).

Let Y be a set. The setY figures as the state space of the dynamical system that we want
to construct. We now formulate the assumption that for agiven input we have a well-defined
dynamical system.

Hypothesis 2.3 (The semigroup property)For everyI ∈ B(Z) there exists a mapTI from Y to
Y such that

T/I = idY , (2.2)

TI2 TI1 = TI2⊙I1 . (2.3)

In (2.2) idY is the identity mapping onY . Note that (2.3) can equivalently be stated as

TI = Tθ(−σ)I Tρ(σ)I, 0 ≤ σ ≤ ℓ(I). (2.4)

Note that the information about how much we go forward in time is contained in the length of
the input. Whenever there is a need to consider, for givenI , the population states for timest with
0 ≤ t < ℓ(I), we do so by means of the restriction operator, that is, by consideringTρ(t)Iy.

The name “semigroup” derives from the fact that (2.3) states that the mapI �→ TI from
B(Z) to the set of maps ofY into itself (which is a semigroup under composition) is a semigroup
homomorphism. As a matter of fact it is even a monoid homomorphism as (2.2) says that the unit
of B(Z) is mapped toidY .

For constant inputs we obtain semigroups of maps ofY into Y parametrized by positive real
numbers. Indeed, forI ∈ Z, defineT (s) = Tρ(s)I. Then

T (s1)T (s2) = Tρ(s1)ITρ(s2)I = Tρ(s1)I⊙ρ(s2)I = Tρ(s1+s2)I = T (s1 + s2). (2.5)

3 Construction of a dynamical system (closing the feedback loop)

To define the output, we introduce a mapH : Y → Z. In the setting of Hypothesis 2.3, lety ∈ Y
andI ∈ B(Z) be given. Theoutputis then the function

t �→ H
(

Tρ(t)I y
)

(3.1)

defined on[0, ℓ(I)) and with values inZ. We are here, for the sake of mathematical simplicity,
thinking of a feedback map which is the identity, such that the distinction between the input-
output-input map and the input-output map introduced in Definition 3.2 below becomes irrelevant.
Relative to the formulation which corresponds most closely to the biological mechanism this may
entail a mathematical transformation, as, e.g., the step fromI(t, x) to Ĩ(t) in Section 1.
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Hypothesis 3.1 The output defined by (3.1) is an element ofBℓ(I)(Z).

Next we introduce the map that transforms input into output, given the population statey.

Definition 3.2 For eachy ∈ Y the input-output mapPy : B(Z)→ B(Z) is defined by

Py(I) = H
(

Tρ(·)I y
)

.

By Hypothesis 3.1Py mapsBs(Z) intoBs(Z) for eachs ≥ 0. Moreover,Py commutes withρ(σ)
for all σ ≥ 0.

A shift in the input should be reflected in a corresponding shift in the output, provided the
population state is updatedaccordingly. That this is indeed the case is shown in the following
lemma.

Lemma 3.3 For all I ∈ B(Z) and all0 ≤ s ≤ ℓ(I) one has

θ(−s)Py(I) = PTρ(s)I y (θ(−s)I) . (3.2)

Proof. If s = ℓ(I), then (3.2) reduces to the identity/I = /I. For0 ≤ s < ℓ(I), 0 ≤ t < ℓ(I)− s

the left hand side of (3.2) evaluated att equalsH
(

Tρ(t+s)I y
)

whereas the right hand side equals

H
(

Tρ(t)θ(−s)I Tρ(s)I y
)

. It follows from Lemma 2.1 and the semigroup property of Hypothesis
2.3 that the two sides are indeed equal.

The distinction between input and output is, in our context, a mental construction and the two
should in fact be identical. In other words, our task is to find a fixed point of the mapPy for
arbitraryy ∈ Y . At this level in our top down approach we state this as a hypothesis:

Hypothesis 3.4 For all y ∈ Y there exists ans(y) > 0 such thatPy |Bs(Z) has auniquefixed
point, to be calledIy, for everys ≤ s(y).

Strictly speaking the fixed point not only depends ony but also on thes that we choose.
However, the fixed point on a smaller interval is simply the restriction of the fixed point on a
larger interval (because of uniqueness and the fact that the restriction mapcommutes withPy) and
therefore we may safely suppresss in the composite symbol denoting the fixed point.

Lemma 3.5 For all y ∈ Y, s ∈ [0, s(y)) one has

θ(−s)Iy = ITρ(s)Iy y.

Proof. One hasθ(−s)Iy = θ(−s)Py (Iy) = PTρ(s)Iy y (θ(−s)Iy) by Lemma 3.3. Soθ(−s)Iy is a
fixed point ofPTρ(s)Iy y and by uniqueness it must therefore be equal toITρ(s)Iy y.

Definition 3.6 For t ≥ 0 we put
S(t, y) = Tρ(t)Iy y (3.3)

whenever the right hand side is defined.

Note that it follows from (3.3) that

S(0, y) = Tρ(0)Iy y = T/I y = idY y = y (3.4)

for all y ∈ Y .
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Theorem 3.7 Let y ∈ Y . Thens < s(y), t < s(S(s, y)) impliest+ s < s(y) and

S(t+ s, y) = S(t, S(s, y)). (3.5)

Proof.

S(t, S(s, y)) = Tρ(t)IS(s,y) S(s, y) = Tρ(t)ITρ(s)Iy y
S(s, y)

= Tρ(t)θ(−s)Iy S(s, y) = Tθ(−s)ρ(t+s)Iy Tρ(s)Iy y

= Tθ(−s)ρ(t+s)Iy⊙ρ(s)Iy y = Tρ(t+s)Iy y

= S(t+ s, y).

Theorem 3.7 together with the identity (3.4) says thatS is a semiflow. Usually one requires
that a semiflow is continuous both with respect to time and initial state.

Whenever we verify Hypothesis 3.4 we say that we havesolveda nonlinear problem, meaning,
of course, that we can combineTI andIy into a semiflow via (3.3)

4 Kernels and convolutions

As in Part I (Diekmannet al. 1998) we consider individual states as elements of a measurable
spaceΩ with a countably generatedσ-algebraΣ. Our use of the word “kernel” is somewhat
different from that of Part I. Here akernelk is a map fromΩ × Σ intoR which is bounded and
measurable with respect to the first variable and countably additive with respect to the second
variable. (So for fixedω ∈ Σ the functionx �→ k(x, ω) is bounded and measurable, while for
fixedx ∈ Ω the mapω �→ k(x, ω) defines a finite signed measure onΩ). We call a kernelpositive
if it assumes non-negative values only.

Theproductk1 × k2 of two kernelsk1 andk2 is the kernel defined by
(

k1 × k2
)

(x, ω) =
∫

Ω
k1(ξ, ω)k2(x, dξ). (4.1)

Likewise we define theproductf × k of a bounded measurable functionf : Ω→ Z and a kernel
k as the function

(f × k) (x) =
∫

Ω
f(ξ)k(x, dξ). (4.2)

The product of a kernelk and a measureµ is defined analogously as the measure

(k × µ) (ω) =
∫

Ω
k(ξ, ω)µ(dξ). (4.3)

Finally we agree that the productf × µ of a function and a measure is

f × µ =
∫

Ω
f(x)µ(dx) ∈ Z. (4.4)

The×-product is associative in the following sense: If in the case of three objectsf, k andµ,
say, both the products(f × k)× µ andf × (k × µ) are well-defined, then they are equal. In this
case we leave out the parentheses and write simplyf × k × µ.

We shall use inputsI ∈ B to parametrize kernels and functions. For two parametrized families
k1I andk2I of kernels we define theirconvolution product

(

k1 ∗ k2
)

I by

(

k1 ∗ k2
)

I
=

∫

[0,ℓ(I))
k1θ(−σ)I × k

2
ρ(dσ)I , (4.5)
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whenever the integral exists. In particular, this is the case ifσ �→ k1θ(−σ)I(ξ, ω) is bounded,

uniformly in ξ andω, and measurable, whileσ �→ k2ρ(σ)I(x, ω) is of bounded variation uniformly
in x andω.

The convolution product of a parametrized familyfI of functions and a parametrized family
kI of kernels is defined analogously:

(f ∗ k)I =
∫

[0,ℓ(I))
fθ(−σ)I × kρ(dσ)I. (4.6)

Note that the convolution of two parametrized families of kernels is again a parametrized family
of kernels, while the convolution of a family of functions and kernels yields a family of functions.

When deriving Lipschitz estimates for the input-output mapPy, we need sup-norm estimates
for convolution products. To prepare the way, first note that

|(f × k) (x)|E ≤ sup
ξ∈Ω
|f(ξ)|E |k|(x,Ω), (4.7)

where| · |E denotes the norm in the Banach spaceE, |k|(x, ·) denotes the total variation measure
of k(x, ·) and accordingly|k|(x,Ω) is the total variation ofk(x, ·). We also need the total variation
of a real valued functionφ defined on an interval[0, s). This will be denoted byV (φ). As the
length of the interval will always be clear from the context it need not be included in the symbol.

We now lift the inequality (4.7) to the convolution product. The rationale for the introduction
of the subsetΩb of Ω will be explained in the next section.

Lemma 4.1 Let fI and kI be parametrized families of functions and kernels, respectively. If
k(x, ·) is concentrated onΩb for all x ∈ Ω, then

|(f ∗ k)I (x)|E ≤ sup
ξ∈Ωb, σ∈[0,ℓ(I))

∣

∣

∣fθ(−σ)I (ξ)
∣

∣

∣

E
V
(∣

∣

∣kρ(·)I

∣

∣

∣ (x,Ωb)
)

. (4.8)

Proof. One has

(f ∗ k)I =
∫

[0,ℓ(I))
fθ(−σ)I × kρ(dσ)I

and hence, by (4.7)

|(f ∗ k)I (x)|E ≤
∫

[0,ℓ(I))
sup
ξ∈Ωb

∣

∣

∣fθ(−σ)I(ξ)
∣

∣

∣

∣

∣

∣kρ(dσ)I

∣

∣

∣ (x,Ωb).

From here the inequality (4.8) follows directly.

5 Linear structured population models with input

When modelling structured populations one starts by describing individual behaviour. A first task
of the mathematician is then to show that this description leads to a well-defined dynamical system
at the population level, that is, a dynamical system that for any given initial population state gives
the population state for future instants of time.

Usually individual behaviour is described in terms of rates of development, death and repro-
duction. In (Diekmannet al. 1998) we argued at length that a certain pre-processing of such basic
ingredients, leading to composite ingredients at a somewhat higher level of aggregation, has con-
ceptual and technical advantages. In this section we take this pre-processing step for granted, but
in Section 8 we return to this point.

9



Let Ω be a measurable space with a countably generatedσ-algebraΣ. Individuals are char-
acterized by theiri-state, which is represented by an elementx of Ω. Ω is therefore called the
i-state space. The twoingredientsof a linear structured population model with input are two
parametrized familiesuI andΛI of kernels which have the following interpretations:

• uI(x, ω) is the probability that, given the inputI , an individual which hasi-statex ∈ Ω at a
certain time, is still aliveℓ(I) time units later and then hasi-state inω ∈ Σ.

• ΛI(x, ω) is the expected number of offspring, with state-at-birth inω ∈ Σ, produced by
an individual, withi-statex ∈ Ω at a certain time, within the time interval of lengthℓ(I)
following that time, given the inputI .

The interpretation of the ingredientsuI andΛI requires that certain consistency relations and
monotonicity conditions hold. We collect these into the following assumption:

Assumption 5.1

(i) uI andΛI are parameterized families of positive kernels.

(ii) For everyI1 andI2 in B(Z) one has

uI2⊙I1 = uI2 × uI1 .

(iii) For everyI1 andI2 in B(Z) one has

ΛI2⊙I1 = ΛI1 + ΛI2 × uI1.

(iv) For anyx ∈ Ω, ω ∈ Σ, I ∈ B(Z) the functionσ �→ Λρ(σ)I(x, ω) is non-decreasing and

lim
σ↓0
Λρ(σ)I(x, ω) = Λ/I(x, ω) = 0.

(v) For anyx ∈ Ω, ω ∈ Σ, I ∈ B the functionσ �→ uρ(σ)I(x,Ω) is non-increasing and

lim
σ↓0
uρ(σ)I(x, ω) = u/I(x, ω) = δx(ω),

In particular,
uI(x,Ω) ≤ 1.

Relation (ii) is nothing but the Chapman–Kolmogorov equation, while relation (iii) is a similar
consistency relation tying reproduction, survival and individual development together (see Diek-
mannet al. 1998 for more motivation). Sometimes we require in addition to (v) that

lim
ℓ(I)→∞

uI(x,Ω) = 0 (5.1)

uniformly for x ∈ Ω or the somewhat stronger condition of a uniformly bounded life expectancy:
There exists anM <∞ such that

∫

[0,ℓ(I))
uρ(σ)I(x,Ω)dσ ≤M (5.2)

for everyx ∈ Ω and everyI ∈ B(Z). The limit in (5.1) is of the general typelimℓ(I)→∞ fI = g,
which in an arbitrary metric space is defined by∀ε > 0 ∃M > 0 such thatI ∈ B(Z), ℓ(I) >
M ⇒ d(fI , g)< ε.
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The population state (p-state) is by definition the distribution ofi-states and can therefore be
represented by a measurem on thei-state spaceΩ. A natural choice for thep-state space is
therefore a closed subconeY of M+(Ω), the cone of all (finite) positive measures onΩ. The
dynamical systemTI describing the dynamics at the population level should therefore be such that
given the initialp-statem0 and the inputI , TI m0 is thep-state at timeℓ(I). The population at
time ℓ(I) consists of those individuals present in the initial population that are still alive and all
living descendants of the initial population. Suppose that we have somehow been able to construct
a measureucI(x, ·) onΩ with the interpretation thatucI(x, ω) isuI(x, ω) plus the expected number
of descendants (i.e. children, grand-children, great grand-children, etc) of an individual initially
of i-statex, which are still alive and havei-state inω, ℓ(I) time units later. Here the superscript
c refers to “clan”. Summing up over all individuals present initially we obtain the composition of
the population at timeℓ(I) as follows:

(TI m0) (ω) =

∫

Ω
ucI(x, ω)m0(dx). (5.3)

Suppose furthermore that we have constructedΛcI with the same interpretation asΛI, but now
referring to the whole clan. Because every member of the clan is either a child of the ancestor or
a child of a member of the clan, or alternatively, either a child of the ancestor or a member of the
clan of a child of the ancestor, we obtain the following consistency relation:

ΛcI = ΛI + (Λ ∗ Λ
c)I = ΛI + (Λ

c ∗ Λ)I . (5.4)

We now notice that we only have to constructΛcI because once this has been done, the verbal
description ofucI can be formalized as

ucI = uI + (u ∗ Λ
c)I . (5.5)

The general linear structured population problem with input can now be formulated as follows:

Linear structured population problem with input. Given the ingredientsuI andΛI, construct
ΛcI such that (5.4) holds for everyI ∈ B(Z) and show that the family{TI}I∈B(Z) of linear
operators on (the span of)Y defined by (5.3) and (5.5) is a semigroup.

The state-at-birth is really astate, that is, it summarizes all information that is relevant for
predicting the future. Hence the expected number of grand-children is obtained as the convolution
product ofΛI with itself, the expected number of great-grand-children as the threefold convolution
product ofΛI with itself, etc.. The clan is obtained by summing up over all generations:

ΛcI =
∞
∑

k=1

Λk∗I , (5.6)

In (5.6)Λ1∗I = ΛI andΛk∗I =
(

Λ(k−1)∗ ∗Λ
)

I
for k ≥ 2.

The positivity of the familyΛI guarantees that (5.6) has a meaning in any case, but additional
conditions onΛI (e.g. a reproduction delay preventing newborns to give birth) guarantee that the
sum converges to something finite (Diekmannet al. 1998). Another important feature that often
simplifies the analysis is thatΛI may be concentrated on a setΩb ⊂ Ω which may be considerably
smaller thatΩ itself (indeed,Ωb may consist of just one point:Ωb = {xb} as in the introductory
example of Section 1). We formalize these ideas in the following definition (cf. Diekmannet al.
1998, Definitions 2.5 and 2.7).

Definition 5.2 (i) A set Ωb ∈ Σ is called aset representing the birth statesif the measure
ΛI(x, ·) is concentrated onΩb for all x ∈ Ω and allI ∈ B(Z).
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(ii) x ∈ Ω is called astate with reproduction delay at leastε if Λ I(x,Ω) = 0 for all I ∈ Bs(Z)
with s < ε.

Obviously we would like to chooseΩb as small as possible. But as we already pointed out in
(Diekmannet al. 1998) there is, in general, no unique way of achieving this goal. To see this,
notice that ifΩb is a set representing the birth states one can remove fromΩb any setω such that
ΛI(x, ω) = 0 for all x ∈ Ω and allI ∈ B(Z) without destroying property (i) of Definition 5.2.
But one can certainly not remove an uncountable union of such sets. IfΩ has a natural topology,
then one can use the idea ofsupportof a measure and defineΩb to be the smallestclosedset such
thatΛI(x,¬Ωb) = 0 for all x ∈ Ω and allI ∈ B(Z) (here¬ denotes the complement of a set).

The interpretation ofucI andΛcI given above requires thatucI andΛcI, too, satisfy the Chapman-
Kolmogorov equation and the reproduction-survival-i-state-developmentconsistency relation. That
this is indeed the case was proved (in a slightly different setting) in Part I (Diekmannet al. 1998),
where we also showed thatΛcI is the (unique)resolventof ΛI . We collect these facts into a propo-
sition:

Proposition 5.3

(i) For everyI1 andI2 in B(Z) one has

ucI2⊙I1 = u
c
I2 × u

c
I1 .

(ii) For everyI1 andI2 in B(Z) one has

ΛcI2⊙I1 = Λ
c
I1 + Λ

c
I2 × u

c
I1.

(iii) ΛcI defined by(5.6) is the unique solution of Equation(5.4)and

ucI = uI + (u
c ∗Λ)I . (5.7)

The mapTI : Y → Y is now defined byTI m0 = ucI ×m0, that is, by (5.3). By Proposition
5.3 (i)TI is indeed a semigroup, that is, it satisfies Hypothesis 2.3. By the uniqueness result (iii)
of Proposition 5.3 this is the only semigroup describing the dynamics at the population level. We
can thus summarize the contents of (Diekmannet al. 1998) as follows:

Theorem 5.4 Under Assumption5.1, the linear structured population problem with input has a
unique solution.

6 Nonlinear structured population models

In the previous section we showed that under Assumption 5.1 the model ingredientsuI andΛI
uniquely determine a linear semigroup{TI}I∈B(Z) on (the span of) thep-state space. In this sec-
tion we shall formulate nonlinear population problems, where the inputI is not given beforehand
but fed back into the system from an output.

When the output is obtained by applying alinear map from thep-state spaceY ⊂ M+(Ω) to
Z we speak about apure mass action problem. In this case we shall actually assume slightly more,
viz. that the output mapH : Y → Z is represented by

H(m) = γ ×m =
∫

Ω
γ(x)m(dx) (6.1)
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for someboundedand measurableγ : Ω → Z. So, in the pure mass action case the specification
of the nonlinear problem requires only one new ingredient:γ.

The×-product allows us to give a nice representation of the input-output-input mapPy:

Pm0(I) = γ × u
c
ρ(·)I ×m0. (6.2)

We are now ready to formulate our first nonlinear structured population problem.

Pure mass action problem.Given the ingredientsuI , ΛI andγ and the initialp-statem0 ∈ Y ,
show that the input-output-input mapPm0 defined by (6.2) has a unique fixed pointIm0 in some
spaceBs(Z). The dynamical system describing the time-evolution of thep-state is then given by

S(t, m0) = Tρ(t)Im0m0

and we say that the problem has been solved.

Remark 6.1 Preferably there should be a uniform (inm0) lower bound fors = s(m0), since such
a bound guarantees global existence. As the reasons for the existence of such a bound (and hence
the techniques for deriving the bound) are quite problem specific, we do not deal with the issue in
the current paper. Whenever a model is based on energy budget considerations (Kooijman 2000)
we expect that global existence is guaranteed.

To solve the pure mass action problem one has to verify thatPm0 mapsBs(Z) into Bs(Z)
and is, fors sufficiently (depending onm0) small, a contraction mapping onceBs(Z) is equipped
with a suitable norm.

As we have seen in Section 1, time scale arguments applied to mass action model formulations
may lead to more complicated outputs, which either can be represented by a nonlinear mapH on
Y or by a linear map onY depending on the input itself. In such cases there seems to be (always,
as far as we know) ahierarchical structurein the sense thatZ = Z1 × Z2 × · · · × Zk and, in self
explaining notation,

H1(y) = L1(y),

H2(y) = L2(I1, y) = L2(L1(y), y), (6.3)
...

Hk(y) = Lk(I1, I2, . . . , Ik−1, y).

We call the resulting nonlinear structured population problem ageneralized mass action prob-
lem. We shall concentrate on the casek = 2 and formulate our results in such a way that an
induction argument settles the case of a generalk.

For the time being, let us restrict ourselves to the case of linear output. Define, fori = 1 or c,

oiI = γ × u
i
I . (6.4)

Multiplying (in the sense of×) equation (5.7) from the left byγ one obtains

ocI = oI + (o
c ∗ Λ)I (6.5)

and this is the equation we are going to analyse in the next section. What we shall do is formulate
assumptions on the mapsI �→ oI andI �→ ΛI and derive conclusions about the mapI �→ ocI
which take the form of a Lipschitz estimate with a constant that tends to zero asℓ(I) ↓ 0.
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7 Lipschitz estimates

In our top down spirit we now start working downwards to derive sufficient conditions for the
assumptions concerningPy to hold. We start by a lemma.

Lemma 7.1 Suppose there exists a bounded and measurable functionC1 : Ω ×R+ → R+ such
that forocI defined by(6.4)one has

∣

∣

∣

∣

∣

∣ocρ(·)I(x)− o
c
ρ(·)J(x)

∣

∣

∣

∣

∣

∣ ≤ C1(x, s) ||I − J|| , x ∈ Ω, (7.1)

for all I andJ in Bs(Z) and such that

C1(x, s) ↓ 0 (7.2)

for all x ∈ Ω. Then Hypothesis3.4 is verified forY =M+(Ω) andP defined by(6.2).

The idea of the proof of Lemma 7.1 is simple. Evidently (7.2) implies that

lim
s↓0

∫

Ω
C1(x, s)m0(dx) = 0 (7.3)

for allm0 ∈M+(Ω). Then, because by (6.2) and (6.4) one has

Pm0(I) = o
c
ρ(·)I ×m0, (7.4)

we can apply the contraction mapping principle and conclude that Hypothesis 3.4 is indeed satis-
fied.

In this section we shall provide assumptions onΛI andoI , which together with (6.5) imply the
estimate (7.1) and hence yield existence and uniqueness of solutions of the population problem.

So far the spacesBs(Z) and, in particular, the norm on them, have not been specified. But
gradually we need to become more specific. In the remainder of this section the norm is either
theL1-norm ‖ · ‖1, in which caseBs(Z) = {I ∈ L1 ([0, s);E) : I(t) ∈ Z for almost allt} or
the sup-norm‖ · ‖∞, in which caseBs(Z) is either the space of bounded measurable functions
on [0, s) with values inZ or the space of regulated functions with this domain and range (we
define regulated functions as the uniform limits of step functions, see (Dieudonn´e 1969, p. 145)).
To understand why we restrict ourselves to these choices, recall that we need invariance under
concatenation.

When deriving estimates below, the following lemma will come in helpful. We start by intro-
ducing some notation.

LetΩb ⊂ Ω. For a functionf : B(Z)×Ω→ R we definef : B(Z)→ R+ by

f(I) = sup
ξ∈Ωb, α∈[0,ℓ(I))

|f(θ(−α)I, ξ)| , I ∈ B(Z). (7.5)

When the argumentI ∈ B(Z) of f is written as a subscript, the same convention is used forf .
Thus, for instance, we writeocI . If f has a third argument, which is kept constant when taking the
supremum in (7.5), thenf gets an additional argument: for instance

ΛI(Ωb) = sup
ξ∈Ωb, α∈[0,ℓ(I))

Λθ(−α)I(ξ,Ωb).
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Lemma 7.2 Let φ, h andK be functions defined onB(Z) × Ω with values inR+ and assume
that

φ(I, x) ≤ h(I, x) + φ(I)K(I, x) (7.6)

and
K(I) < 1. (7.7)

Then, forℓ(I) sufficiently small,

φ(I, x) ≤ h(I, x) +
(

1−K(I)
)−1
h(I)K(I, x). (7.8)

Proof. ReplacingI by θ(−α)I in (7.6) and noting thatφ(θ(−α)I) ≤ φ(I) we obtain

φ(θ(−α)I, x) ≤ h(θ(−α)I, x) + φ(I)K(θ(−α)I, x).

So taking the supremum overx ∈ Ωb andα ∈ [0, ℓ(I))we find

φ(I) ≤ h(I) + φ(I)K(I),

which, under the assumption (7.7), implies

φ(I) ≤
(

1−K(I)
)−1
h(I). (7.9)

Inserting (7.9) into (7.6) we find (7.8).

Our first estimate gives a bound onocI in terms of bounds onoI andΛI .

Lemma 7.3 Assume that there are positive constantsK1 andK2 and a nondecreasing function
C1(s), with lims↓0C1(s) = 0, such that one has for allx ∈ Ω and allI ∈ B(Z)

|oI(x)|E ≤K1 (7.10)

ΛI(x,Ωb) ≤ K2 (7.11)

and for allx ∈ Ωb
ΛI(x,Ωb) ≤ C1(ℓ(I)). (7.12)

Then, providedC1(ℓ(I))< 1,

|ocI(x)|E ≤ K1
(

1 + (1− C1(ℓ(I)))
−1K2

)

. (7.13)

Proof. If we take the E-norm of both sides of the convolution equation (6.5) we find by virtue of
Lemma 4.1 the inequality (7.6) with

φ(I, x) = |ocI(x)|E
h(I, x) = |oI(x)|E
K(I, x) = ΛI(x,Ωb)

and so the conclusion of Lemma 7.2 yields the estimate

|ocI(x)|E ≤ |oI(x)|E +
(

1− ΛI(Ωb)
)−1
oIΛI(x,Ωb) (7.14)

provided (7.7) is true. Note that (7.12) guarantees that (7.7) is true forℓ(I) sufficiently small.
Inserting the bounds (7.10), (7.11), and (7.12) into the estimate (7.14) we arrive at (7.13).
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When estimating differences of outputs we are led to considerdoublyparametrized families.
For inputsI1 andI2 of equal length (i.e.,ℓ(I1) = ℓ(I2)) we define theZ ×Z valued functionI by
I = (I1, I2). We then define the convolution product as before; cf. (4.5) and (4.6). Starting from
the two equations

oicI = o
i
I +
(

oic ∗Λi
)

I
, i = 1, 2,

whereoiI = oIi , etc., we arrive by subtraction and rearrangement at

o1cI − o
2c
I = o

1
I − o

2
I +
(

o1c ∗
(

Λ1 − Λ2
))

I
+
((

o1c − o2c
)

∗ Λ2
)

I

or
o1cI − o

2c
I = gI +

((

o1c − o2c
)

∗ Λ2
)

I
(7.15)

with
gI := o

1
I − o

2
I +
(

o1c ∗
(

Λ1 − Λ2
))

I
. (7.16)

So the differenceocI1 − o
c
I2

satisfies a convolution equation with forcing functiongI. We proceed
by deriving an estimate forgI .

Lemma 7.4 One has

|gI(x)|E ≤ |oI1(x)− oI2(x)|E + o
c
I1
V
(∣

∣

∣Λρ(·)I1 − Λρ(·)I2

∣

∣

∣ (x,Ωb)
)

. (7.17)

Proof. This is nothing but Lemma 4.1 applied to the particular situation.

Lemma 7.5 Assume(7.11)and(7.12). ProvidedC1(ℓ(I)) < 1, the estimate

∣

∣ocI1(x)− o
c
I2
(x)
∣

∣

E
≤ |gI(x)|E + (1−C1(ℓ(I)))

−1K2gI (7.18)

holds.

Proof. Take theE-norm at both sides of (7.15) and note that this yields (7.6) withφ, h, and
K replaced by, respectively,

∣

∣

∣ocI1(x)− o
c
I2
(x)
∣

∣

∣

E
, |gI(x)|E , andΛI2(x,Ωb). As (7.18) is nothing

but (7.8) written out for this choice ofφ, h andK, we are done (Strictly speaking we cannot
apply Lemma 7.2 as formulated, since in that lemma theI-argument is the same for all functions,
whereas now it differs. However, it should be clear that exactly the same sequenceof arguments
can be applied to yield (7.18)).

It remains to combine the lemmas into a more informative statement.

Proposition 7.6 Assume that there are positive constantsK 1 andK2 such that for allx ∈ Ω and
all I ∈ B(Z)

|oI(x)|E ≤ K1, (7.19)

ΛI(x,Ωb) ≤ K2. (7.20)

Assume, furthermore, that there are nondecreasing (as functions ofs) functionsC 1(s), C2(x, s)
andC3(x, s) which tend to zero ass ↓ 0, in the case of index2 and3 uniformly forx ∈ Ω b (but
not necessarily uniformly forx ∈ Ω) such that

ΛI(x,Ωb) ≤ C1(ℓ(I)), (7.21)

|oI(x)− oJ (x)|E ≤ C2(x, ℓ)‖I − J‖ (7.22)
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V
(
∣

∣

∣Λρ(·)I − Λρ(·)J
∣

∣

∣ (x,Ωb)
)

≤ C3(x, ℓ)‖I − J‖ (7.23)

for all x ∈ Ω and allI, J ∈ B(Z) of equal lengthℓ = ℓ(I) = ℓ(J). Then

|ocI(x)− o
c
J (x)|E ≤ (C2(ℓ) + C4(x, ℓ))‖I − J‖, (7.24)

whereC2(s) andC4(x, s) are nondecreasing ins and tend to zero fors ↓ 0 (in the case ofC4
pointwise forx ∈ Ω but uniformly forx ∈ Ω b).

Proof. By Lemma 7.3 and Lemma 7.4 we have

|gI(x)|E ≤ C4(x, ℓ)‖I − J‖, (7.25)

where
C4(x, s) := C2(x, s) +K1

(

1 + (1−C1(s))
−1K2

)

C3(x, s).

If we insert (7.25) into (7.18) we obtain (7.24) with

C2(s) = (1− C1(s))
−1K2 sup

ξ∈Ωb

C4(ξ, s).

As a straightforward corollary we obtain the following theorem.

Theorem 7.7 LetBs(Z) be equipped with the supremum norm. Under the assumptions of Propo-
sition7.6 the pure mass action problem has a unique solution.

Proof. It follows from the proposition that the inequality (7.1) holds, and this, as we have already
shown, implies that the pure mass action problem has a unique solution.

The derivation of the appropriate estimate for theL1-norm proceeds along exactly the same
lines. We start with the analogue of Lemma 7.3.

Lemma 7.8 Assume that there are positive constantsK1 andK2 and a nondecreasing function
C1(s), with lims↓0C1(s) = 0, such that for allx ∈ Ω and allI ∈ B(Z)

∫

[0,ℓ(I))

∣

∣

∣oρ(t)I(x)
∣

∣

∣

E
dt ≤ K1, (7.26)

ΛI(x,Ωb) ≤ K2 (7.27)

and for allx ∈ Ωb and allI ∈ B(Z)

ΛI(x,Ωb) ≤ C1(ℓ(I)). (7.28)

Then
∫

[0,ℓ(I))

∣

∣

∣ocρ(t)I

∣

∣

∣

E
dt ≤ K1

(

1 + (1− C1(ℓ(I)))
−1K2

)

(7.29)

for all x ∈ Ω and allI ∈ B(Z) withC1(ℓ(I)) < 1.
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Proof. Consider again the convolution equation (6.5), but now in the form

ocρ(t)I = oρ(t)I + (o
c ∗ Λ)ρ(t)I .

Taking theE-norm and integrating with respect tot over [0, ℓ(I)) we obtain the inequality (7.6)
with

φ(I, x) =
∫

[0,ℓ(I))

∣

∣

∣ocρ(t)I(x)
∣

∣

∣

E
dt,

h(I, x) =
∫

[0,ℓ(I))

∣

∣

∣oρ(t)I(x)
∣

∣

∣

E
dt,

K(I, x) = ΛI(x,Ωb).

To see this, interchange the order of the two integrations in the convolution term. The inequality
(7.29) is then obtained from (7.8) by using (7.26) – (7.28).

In completely the same manner we can prove the analogue of Lemma 7.5.

Lemma 7.9 Assume(7.27)and(7.28). Then for allI, J ∈ B(Z) of equal lengthℓ = ℓ(I) = ℓ(J)
withC1(ℓ) < 1 one has

∫

[0,ℓ)

∣

∣

∣ocρ(t)I(x)− o
c
ρ(t)J(x)

∣

∣

∣

E
dt ≤

∫

[0,ℓ(I))

∣

∣

∣gρ(t)I(x)
∣

∣

∣

E
dt+

(1−C1(ℓ(I)))
−1K2 sup

ξ∈Ωb, α∈[0,ℓ)

∫

[0,ℓ−α)

∣

∣

∣gρ(t)θ(−α)I(x)
∣

∣

∣

E
dt. (7.30)

Combining the lemmas 7.8 and 7.9 with Lemma 7.4 we obtain the following proposition and
its more fundamental corollary.

Proposition 7.10 Assume(7.26) – (7.28)as well as
∫

[0,ℓ)

∣

∣

∣oρ(t)I(x)− oρ(t)J(x)
∣

∣

∣

E
dt ≤ C2(x, ℓ(I))‖I − J‖ (7.31)

and(7.23)for all I, J ∈ B(Z) of equal lengthℓ. Then
∫

[0,ℓ)

∣

∣

∣
ocρ(t)I(x)− o

c
ρ(t)J(x)

∣

∣

∣

E
dt ≤ (C2(ℓ) +C4(x, ℓ))‖I − J‖, (7.32)

whereC2(s) and, for everyx ∈ Ω, C4(x, s) are nondecreasing functions ofs that tend to zero as
s ↓ 0.

Theorem 7.11 LetBs(Z) be equipped with theL1-norm. Under the assumptions of Proposition
7.10the pure mass action problem has a unique solution.

In conclusion of this section we shall present the arguments that prepare the way for an appli-
cation of the contraction mapping principle in the case of the generalized mass action problem.

Lemma 7.12 Let A1 andA2 be Banach spaces and let for alla = (a1, a2), b = (b1, b2) ∈
A1 × A2,H = (H1, H2) : A1 ×A2 → A1 ×A2 satisfy

‖H1(a)−H1(b)‖A1 ≤ λ‖a− b‖,

‖H2(a)−H2(b)‖A2 ≤ λ‖a− b‖+K‖a1 − b1‖A1

for some positive constantsλ andK. Here‖ · ‖ is thel1-norm onA1 × A2. Then

‖H2(a)−H2(b)‖ ≤
(

4λ2 + 3λK
)

‖a− b‖ (7.33)

for all a, b ∈ A1 ×A2, whereH2 = H ◦H .
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Proof. One has

‖H21(a)−H
2
1(b)‖ ≤ λ‖H(a)−H(b)‖

≤ λ (2λ‖a− b‖+K‖a1 − b1‖A1) (7.34)

≤
(

2λ2 +Kλ
)

‖a− b‖

and

‖H22(a)−H
2
2(b)‖ ≤ λ‖H(a)−H(b)‖+K‖H1(a)−H1(b)‖A1

≤
(

2λ2 +Kλ
)

‖a− b‖+Kλ‖a− b‖ (7.35)

=
(

2λ2 + 2Kλ
)

‖a− b‖.

Adding (7.34) and (7.35) one obtains (7.33).

Within our frameworkAi = Bs(Zi) andH is the output map, cf. (6.3). Theλ then depends
on s and tends to zero ass ↓ 0, whileK stays bounded away from zero and infinity (so may
be chosen independent ofs). For s sufficiently small,4λ2 + 3λK < 1 and we can apply the
contraction mapping theorem toH2. The conclusion is thatH2 has a unique fixed point, saya.
But asH(a) is a fixed point ofH2, too, uniqueness implies that actuallya must be a fixed point
of H itself.

In Lemma 7.12 we have chosen thel1-norm on the product spaceA1 × A2, but, as all norms
onR2 are equivalent, any other choice would have done equally well. Of course the expression
for the Lipschitz constant forH2 in terms ofλ andK depends on the choice, but in all cases this
Lipschitz constant tends to zero asλ ↓ 0.

8 Estimating individual output

Let us assume that the interaction variable takes values in a finite dimensional space, sayRk.
Moreover, let us specialise to the situation where thei-state spaceΩ is a (connected) subset ofRn

for somen with piecewise smooth boundary. We now concentrate ondeterministicdevelopment
of individuals, which we callgrowth. We refer to (Diekmannet al. 1998, Section 8.3) for an
example involving random movement inΩ.

LetXI(x0) denote thei-state of an individual at timeℓ(I), given that

• it hadi-statex0 at time zero,

• it experienced inputI ,

• it survived.

Similarly, letFI(x0) denote the survival probability at timeℓ(I) of an individual which had
i-statex0 at time zero and experienced inputI .

Concerning reproduction, let us assume that the state-at-birth has a distribution described by
a probability measuremb (concentrated on a subsetΩb of Ω), irrespectively of the state of the
mother at the moment of giving birth. The particular case of a fixed state-at-birth xb corresponds
to the choicemb = δxb . Let LI(x0)denote the expected number of offspring produced by an
individual with i-statex0 at time zero in the time interval[0, ℓ(I))while experiencing inputI .

The assumptions made above mean that the ingredientsuI andΛI take the forms

uI(x, ω) = δXI (x)(ω)FI(x), (8.1)
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ΛI(x, ω) = LI(x)mb(ω), (8.2)

for x ∈ Ω andω a measurable subset ofΩ. As a consequence

oI(x) = (γ × uI) (x) =
∫

Ω
γ(ξ)FI(x)δXI (x)(dξ) = γ(XI(x))FI(x), (8.3)

whereγ is the individual output function.
We shall need the following hypotheses.

Hypothesis 8.1 There exists a constantK2 and a nondecreasing functionC1 : R+ → R+ tending
to 0 ass ↓ 0 such that for allI ∈ B(Z) and allx ∈ Ω one has

LI(x) ≤ K2 (8.4)

and for allI ∈ B(Z) and allx ∈ Ωb one has

LI(x) ≤ C1(ℓ(I)). (8.5)

Hypothesis 8.2 Let I andJ be two inputs of equal lengths:ℓ(I) = ℓ(J) =: ℓ. There exist finite
positive numbersCX(ℓ), CF (ℓ), CL(ℓ), depending only onℓ, such that for eachx0 ∈ Ω

|XI(x0)−XJ(x0)| ≤ CX(ℓ)
∫ ℓ

0
|I(s)− J(s)|ds, (8.6)

|FI(x0)− FJ(x0)| ≤ CF (ℓ)
∫ ℓ

0
|I(s)− J(s)|ds, (8.7)

|LI(x0)− LJ(x0)| ≤ CL(ℓ)
∫ ℓ

0
|I(s)− J(s)|ds. (8.8)

Hypothesis 8.1 expresses the natural requirement that no-one begets an infinite number of
children and that newborns cannot get a positive number of offspring immediately upon birth.
This latter requirement is of course automatically satisfied if everyx ∈ Ωb is a state with positive
reproduction delay (cf. Definition 5.2).

Hypothesis 8.2 contains natural Lipschitz-type conditions, which, as we show below, can eas-
ily be verified if individual behaviour is described in terms of rates satisfying corresponding Lips-
chitz estimates.

Theorem 8.3 LetBs(Z) be equipped with the supremum norm and letγ : Ω → Z be bounded
and globally Lipschitz continuous. Then, under Hypotheses8.1 and 8.2, the pure mass action
problem has a unique solution.

Proof. According to Proposition 7.7 we have to verify that the inequalities (7.19) –(7.23) hold
true. The estimate (7.19) holds because by (8.3) one has

|oI(x)|E = |γ (XI(x))FI(x)|E ≤ ‖γ‖∞ .

It follows from (8.2), the fact thatmb is a probability measure, and Hypothesis 8.1 that (7.20) and
(7.21) hold. One has

|oI(x)− oJ(x)|E = |γ(XI(x))FI(x)− γ(XJ(x))FJ(x)|E
≤ K |XI(x)−XJ(x)|E + ‖γ‖∞ |FI(x)−FJ(x)|

≤ C(ℓ)
∫

[0,ℓ)
|I(s)− J(s)|ds

≤ C(ℓ)ℓ‖I − J‖∞,
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which shows that (7.22) holds.
To prove (7.23), recall that for a functionφ defined on an interval[a, b] the total variationV (φ)

is defined as

V (φ) = sup
n
∑

j=1

[φ(tj)− φ(tj−1)| ,

where the supremum is taken over all partitions{a = t0, t1, . . . , tn−1, tn = b} of [a, b]. One gets

V
(∣

∣

∣Lρ(·)I(x)− Lρ(·)J(x)
∣

∣

∣

)

= sup
∑

∣

∣

∣Lρ(tj)I − Lρ(tj)J − Lρ(tj−1)I + Lρ(tj−1)J
∣

∣

∣

= sup
∑

∣

∣

∣Lρ(tj−tj−1)θ(−tj−1)I − Lρ(tj−tj−1)θ(−tj−1)J
∣

∣

∣

≤ sup
∑

CL(tj − tj−1)
∫

[0,tj−tj−1)
|θ(−tj−1)I(s)− θ(−tj−1)J(s)| ds

= sup
∑

CL(tj − tj−1)
∫

[tj−1,tj)
|I(s)− J(s)|ds

≤ CL(ℓ)

∫

[0,ℓ)
|I(s)− J(s)|ds,

from which it follows that (7.23) is satisfied.

TheL1-case is proven in a completely analogous manner by verifying that the assumptions of
Proposition 7.10 hold. The assumption of a uniformly bounded life-expectancy is needed to verify
(7.26). Therefore we formulate the following hypothesis.

Hypothesis 8.4 There exists anM <∞ such that
∫

[0,ℓ(I))
uρ(σ)I(x,Ω)dσ ≤M (8.9)

for everyx ∈ Ω and everyI ∈ B(Z).

We state the result in theL1-case without proof.

Theorem 8.5 Let Bs(Z) be equipped with theL1-norm and letγ : Ω → Z be bounded and
globally Lipschitz continuous. Then, under Hypotheses8.1 — 8.4,the pure mass action problem
has a unique solution.

Hypothesis 8.2 is easily verified if growth, survival and reproduction are modelled by instan-
taneous rates depending on thei-state and the environmental condition and if these rates are,
for instance, globally Lipschitz continuous in both their variables. So letg : Ω × Z → R+,
µ : Ω× Z → R+ , β : Ω× Z → R+ be the growth, death and fecundity rate, respectively. This
means thatt �→ Xρ(t)I(x0) is the unique solution of the initial value problem

d

dt
x(t) = g(x(t), I(t)), (8.10)

x(0) = x0, (8.11)

that

FI(x0) = e
−
∫ ℓ(I)

0
µ(Xρ(s)I ,I(s))ds, (8.12)

and that

LI(x0) =
∫ ℓ(I)

0
β
(

Xρ(s)I(x0), I(s)
)

Fρ(s)I(x0) ds. (8.13)
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Proposition 8.6 Assume thatXI(x0), FI(x0) andLI(x0) are defined by(8.10) – (8.13),where
the functionsg, µ andβ are globally Lipschitz continuous in both variables andβ is bounded.
Then the Hypotheses8.1 and 8.2 hold true. Ifµ(x, z) ≥ ε > 0 for all (x, z) ∈ Ω × Z, then
Hypothesis8.4holds true.

Proof. That Hypothesis 8.1 is satisfied follows under the given assumptions immediately from
(8.13). By (8.1) and (8.12) one has

∫

[0,ℓ(I))
uρ(σ)I(x,Ω)dσ =

∫

[0,ℓ(I))
e−
∫ σ

0
µ(Xρ(s)I(x),I(s))dsdσ

from which Hypothesis 8.4 follows via the assumption made onµ.
To verify Hypothesis 8.2, first note that by (8.10) and (8.11) one has

XI(x0) = x0 +
∫ ℓ(I)

0
g
(

Xρ(s)I , I(s)
)

ds

and hence, by the global Lipschitz continuity ofg,
∣

∣

∣Xρ(t)I(x0)−Xρ(t)J(x0)
∣

∣

∣ ≤

K

∫ t

0
|I(s)− J(s)| ds+K

∫ t

0

∣

∣

∣Xρ(s)I(x0)−Xρ(s)J(x0)
∣

∣

∣ ds (8.14)

for some finite constantK. Applying Gronwall’s lemma to (8.14) one obtains

| XI(x0)−XJ (x0) |≤ K
∫ ℓ(I)

0
eK(ℓ(I)−s)|I(s)− J(s)| ds

from which (8.6) follows immediately.
Because|e−x − e−y| ≤ |x − y| for x ≥ 0, y ≥ 0, it follows from (8.12) and the global

Lipschitz continuity ofµ that

|FI(x0)− FJ(x0)| ≤
∫ ℓ(I)

0

∣

∣

∣µ
(

Xρ(s)I, I(s)
)

− µ
(

Xρ(s)J , J(s)
)∣

∣

∣ ds

≤ K
∫ ℓ(I)

0

∣

∣

∣Xρ(s)I(x0)−Xρ(s)J(x0)
∣

∣

∣ ds+K
∫ ℓ(I)

0
|I(s)− J(s)| ds. (8.15)

(8.7) now follows from (8.6) and (8.15).
Finally, using the fact thatFI(x0) ≤ 1 for all I , and the assumptions aboutβ, one finds from

(8.13) that
|LI(x0)− LJ(x0)| ≤

∫ ℓ(I)

0

∣

∣

∣β
(

Xρ(s)I, I(s)
)

− β
(

Xρ(s)J , J(s)
)∣

∣

∣

∣

∣

∣Fρ(s)I(x0)
∣

∣

∣ ds

+
∫ ℓ(I)

0

∣

∣

∣
β
(

Xρ(s)J , J(s)
)∣

∣

∣

∣

∣

∣
Fρ(s)I(x0)− Fρ(s)J(x0)

∣

∣

∣
ds ≤

K

∫ ℓ(I)

0

∣

∣

∣Xρ(s)I(x0)−Xρ(s)J(x0)
∣

∣

∣ ds+K

∫ ℓ(I)

0
|I(s)− J(s)| ds

+K

∫ ℓ(I)

0

∣

∣

∣Fρ(s)I(x0)−Fρ(s)J(x0)
∣

∣

∣ ds. (8.16)

(8.8) follows from (8.6), (8.7), and (8.16).

22



As we have argued in Section 1, certain idealisations, which are made to keep the model pa-
rameter scarce, yield functionsγ that have jumps (and so are only piecewise Lipschitz continuous).
The aim of the remaining part of this section is to derive the estimate (7.31) for a simple prototype
example of aγ with jumps.

Let us assume that thei-state space is one-dimensional, that is,Ω ⊂ R. We ignore the
possibility of death and assume that the individual growth rateg is bounded away from zero, that
is, there exists anε > 0, such thatg(x, z) ≥ ε for all (x, z) ∈ Ω × Z (see Remark 8.8 if you find
this assumption overly restrictive). Finally, let there be a jump pointx ∈ Ω such that

γ(x) =

{

0 if x < x,
1 if x < x,

the value ofγ atx being irrelevant.
For a given inputI and given initiali-statex0 we can ask when an individual will reach the

jump pointx. The answer is obtained by solving the equation

Xρ(s)I(x0) = x (8.17)

for s as a function ofx0 andI . There may be no solution, but if there is one, it is unique by the
strict monotonicity of the maps �→ Xρ(s)I(x0). We denote the solution (defined on a subset of
Ω× B(Z) and taking values inR+) by s̃ = s̃(x0, I).

Alternatively we may solve (8.17) forx0 as a function ofs andI . The solution (defined on a
subset ofR+ × B(Z) and taking values inΩ) is denoted bỹx = x̃(s, I).

Now let I andJ be inputs of equal lengthℓ(I) = ℓ(J) = ℓ. Then we define

s̃min(x0) = min{s̃(x0, I), s̃(x0, J)},

s̃max(x0) = max{s̃(x0, I), s̃(x0, J)}

with the conventions that̃smax(x0) = ℓ if at least one of the elements(x0, I), (x0, J) is not in
the domain of̃s and that̃smin(x0) = ℓ if both these elements are not in the domain ofs̃. We need
these quantities to describe the function

ψ(x0, t) =
∣

∣

∣γ
(

Xρ(t)I(x0)
)

− γ
(

Xρ(t)J(x0)
)
∣

∣

∣ (8.18)

which is at the centre of our interest because
∣

∣

∣oρ(t)I(x0)− oρ(t)J(x0)
∣

∣

∣ = ψ(x0, t). (8.19)

Clearly,

ψ(x0, t) =







0 if 0 ≤ t < s̃(x0),
1 if s̃min(x0) < t < s̃max(x0),
0 if s̃max(x0) < t

(8.20)

and consequently
∫ ℓ

o
ψ(x0, t) dt ≤ s̃max(x0)− s̃min(x0). (8.21)

We now claim that

s̃max(x0)− s̃min(x0) ≤
C(ℓ))

ε

∫ ℓ

0
|I(t)− J(t)| dt. (8.22)

To substantiate this claim we assume thats̃min(x0) = s̃(x0, I). The lower bound of the growth
rate implies that fort ≥ s̃(x0, I)we have

Xρ(t)I(x0) ≥ x+ ε(t− s̃(x0, I)).
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On the other hand, we have the Lipschitz estimate (8.6) which implies that

∣

∣

∣
Xρ(t)I(x0)−Xρ(t)J(x0)

∣

∣

∣
≤ C

∫ ℓ

0
|I(s)− J(s)| ds.

With s̃ = s̃max(x0) = s̃(x0, J) for brevity, we have

x = Xρ(s̃)J(x0) = Xρ(s̃)I(x0) +Xρ(s̃)J(x0)−Xρ(s̃)I(x0)

≥ x+ ε(s̃− s̃(x0, I))− C
∫ ℓ

0
|I(s)− J(s)| ds,

which implies that

s̃(x0, J)− s̃(x0, I) ≤
C

ε

∫ ℓ

0
|I(s)− J(s)| ds,

that is, the estimate (8.22) holds.
In the estimate (8.22), however, we lose a lot of information. Indeed,s̃max(x0)−s̃min(x0) = 0

when both̃smax(x0) ands̃min(x0) are equal toℓ, so in particular whenx0 ≤ min{x̃(ℓ, I), x̃(ℓ, J)}.
If we combine this observation with the estimate (8.22) we can deduce from (8.21) the estimate

∫ ℓ

0
ψ(x0, t) dt≤

C(ℓ)

ε

∫ ℓ

0
|I(s)− J(s)| dsχ[0,∞)(x0 −min{x̃(ℓ, I), x̃(ℓ, J)}), (8.23)

whereχ[0,∞) is the characteristic function of[0,∞), that is, the Heaviside function. Recalling
(8.19) we note that this is exactly of the form (7.31) withC2(x0, ℓ) being, for fixedx0 < x, equal
to zero forℓ sufficiently (depending onx0) small.

Proposition 8.7 LetΩ ⊂ R andZ ⊂ Rk and letγ : Ω → Z be piecewise globally Lipschitz
continuous. Assume thatε > 0 exists such that for allI ∈ B(Z) and allx 0 ∈ Ω the inequality

XI(x0)− x0 ≥ εℓ(I)

holds. Moreover, let the Lipschitz estimates(8.6)and(8.7) hold. Then, ifI andJ are two inputs
of equal lengthℓ, we have the inequality

∫ ℓ

0

∣

∣

∣γ
(

Xρ(t)I(x0)
)

Fρ(t)I(x0)− γ
(

Xρ(t)J(x0)
)

Fρ(t)J(x0)
∣

∣

∣ dt ≤

C(x0, ℓ)
∫ ℓ

0
|I(t)− J(t)| dt

for a functionC for whichlimℓ↓0C(x0, ℓ) = 0 for everyx0 ∈ Ω.

This proposition can easily be proven by using the estimate (8.23) and the fact that a piecewise
Lipschitz continuous function can be written as the sum of a truly Lipschitz continuous function
and a finite number of multiples of Heaviside functions.

Remark 8.8 Note that in a similar manner one can relax the lower bound on the growth rate: it
need only hold near to the jump points ofγ.

To conclude, we stress the two points that are essential for dealing successfully with discon-
tinuous functionsγ (‘successfully’ meaning that we can use a contraction mapping argument to
prove well-posedness). The first is that we use theL1-norm to measure inputs and outputs (indeed,
(8.20) shows that the supremum norm of the difference in output cannot be bounded by a multiple
of the sup-norm of the difference in input). The second is that it is sufficient that the Lipschitz
constants tend to zero pointwise, but not necessarily uniformly, in thei-statex0, when the time
window shrinks to zero.
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9 Back to the cannibalism example

In this section we show how the general theory applies to a nontrivial example, viz. a model
involving cannibalistic behaviour. In Section 1 we introduced various ingredients of such a model,
but we did not provide a full specification. So before embarking upon the application of our results,
we first give a more precise description.

Individuals are characterized by their sizex ≥ xb, wherexb is the size at which they are born.
They grow, die and reproduce with ratesg, µ andβ, respectively. These rates depend on thei-state
as well as on the environmental condition.

The pde formulation of the model is

∂n

∂t
+
∂

∂x
(gn) = −µn,

gn|
x=xb

=

∫

x≥xb

βndx,

with g, µ, andβ as specified below. In our view, this is only a convenient short-hand notation.
In a preprocessing step we formuI andΛI via (8.1) and (8.2) withXI, FI , andLI given by
(8.10) — (8.13). Next we apply the machinery developed in Part I (Diekmannet al. 1998) and the
present paper. The main result is that a population semiflow is constructively defined, givencertain
assumptions ong, µ, andβ. In our elaboration below we do not strive for the utmost generality.
Yet, on the other hand, we want to demonstrate the flexibility of our approach by including a case
in which the behaviour of individuals changes abruptly upon passing a critical size.

The environmental condition has three components corresponding to, respectively, the reduc-
tion factor(I3(t, x))

−1 of search time due to handling of prey, the rate of food ingestionI1(t, x)
expressed in energy units, and the death rateI2(t, x) partly due to cannibalism. With slight abuse
of notation we now formulate an assumption concerning the specific form of these quantities as
follows:

I3(t, x) = 1 +H(x)C(x)Z(x) + h1(x)ψ(x)Õ3(t), (9.1)

I1(t, x) =
E(x)C(x)Z(x) + ψ(x)Õ1(t)

I3(t, x)
, (9.2)

I2(t, x) = σ(x) + φ(x)Õ2(t). (9.3)

The meaning ofH(x), C(x), Z(x), ψ(x), E(x), σ(x) andφ(x) as well as that ofÕ1(t) and
Õ2(t) has already been explained in Section 1. The additional assumption underlying (9.1) – (9.3)
is that

h(x, y) = h1(x)h2(y) (9.4)

and that
Õ3(t) =

∫

[xb,∞)
h2(y)φ(y)mt(dy). (9.5)

There are two more parameters entering the model description. One is the maintenance rate con-
stantζ. The second is the size specific allocation ruleκ(x) which describes how much of the
ingested energy goes to growth and how much to reproduction.

We are now ready to give the formulas forg, µ, β and the three-vectorγ in terms ofx and the
three-vectorI(t), that together fully specify the model:

g(x, I(t)) = (1− κ(x))
E(x)C(x)Z(x) + ψ(x)I1(t)

1 +H(x)C(x)Z(x) + h1(x)ψ(x)I3(t)
− ζx, (9.6)

µ(x, I(t)) = σ(x) + φ(x)I2(t), (9.7)
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β(x, I(t)) = κ(x)
E(x)C(x)Z(x) + ψ(x)I1(t)

1 +H(x)C(x)Z(x) + h1(x)ψ(x)I3(t)
, (9.8)

γ1(x) = e(x)φ(x), (9.9)

γ2(x, I(t)) =
ψ(x)

1 +H(x)C(x)Z(x) + h1(x)ψ(x)I3(t)
, (9.10)

γ3(x) = h2(x)φ(x) (9.11)

All functions featuring in this description take nonnegative values. We assume that for someε > 0
and for allx ≥ xb

(1− κ(x))
E(x)C(x)Z(x)

1 +H(x)C(x)Z(x)
− ζx ≥ ε, (9.12)

which tells us that growth will never stop (in fact, this assumption is debatable and alternatives
like von Bertalanfy growth and/or a reserve compartment have been considered, cf. (Kooijman
2000; Metz and Diekmann 1986); however, here we do not want to complicate the formulationof
the results by having a size upper bound and the possibility of shrinking when maintenance cannot
be covered by food). We also assume that all functions ofx are bounded.

Theorem 9.1 Let ζ > 0 and let bounded, nonnegative functionsE, C, Z, e, φ, ψ, σ, H, h1, h2,
andκ, defined on[xb,∞), be given. Assume that(9.12) holds. Also assume that all functions
are globally Lipschitz continuous, with exception ofψ, which is only piecewise globally Lipschitz
continuous. Then there exists a population semiflow corresponding to the individual behaviour as
embodied in(9.6) — (9.11).

Sketch of proof.Whenh1(x) = 0 (that is, when cannibalistic predation has negligible influence
on search time) and all functions ofx are globally Lipschitz continuous, we can apply Theorem
8.3. Retaining the Lipschitz condition but allowingh1(x) to be nontrivial, we have to extend the
underlying lemmas and theorems by means of Lemma 7.12. If we choose, for instance,ψ(x) =
χ[0,∞)(x− xA) we need Theorem 7.11 in combination with Proposition 8.7.

10 Concluding remarks

In this paper we have proven existence and uniqueness of solutions of a general nonlinear struc-
tured population model and applied the result to a concrete model involving cannibalistic be-
haviour. We trust that our approach is such that it applies directly, or with only slight modifications,
to a large class of structured population models.

A characteristic feature of structured population models is that the nonlinearity enters the
model via feedback through the environment. This fact gives a clue to the existence and uniqueness
proof: One first pretends that the environmental condition (the input) is known during a time-
interval, then one calculates the corresponding output and iterates. The solution is thus constructed
by successive approximations. In the context of structured population models this idea goes back
(in the case of age-structured models) at least as far as Gurtin and MacCamy (1974). Various
extensions and generalizations of the Gurtin-MacCamy model have been treated by essentially the
same method in a number of papers; see the book by Webb (1985) and the references therein.

Age-dependent problems are very special in the sense that aging is not affectedby the envi-
ronment: chronological age always advances at the same rate as time. Nonlinear age-structured
models are thussemi-linearproblems, which are rather innocent nonlinear perturbations of a well-
understood linear problem. When the individual development rate is allowed to depend on the
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environmental input, the problem becomes quasi-linear and thus essentially more difficult. Conse-
quently there are only a few papers with existence and uniqueness proofs for such models, the most
important being (Tucker and Zimmermann 1988; Thieme 1988; Calsina and Salda˜na 1995, 1997).
Tucker and Zimmermann (1988) assumed that the state-at-birth is distributed and that thepopula-
tion can be described by a density function; Thieme (1988) concentrated on the Kooijman-Metz
Daphniamodel and related certain model assumptions concerning individual energy allocation to
uniqueness of solutions; Calsina and Saldaña (1995, 1997) did restrict to one-dimensionali-state
space, in other words, to size structuredpopulations.

All the authors mentioned above formulated their models analogously with the age-structured
model as a hyperbolic partial differential equation supplemented by a nonlocal boundary condition
describing the birth process. Diekmannet al. (2000) gave examples of how uniqueness can fail
for such equations and pointed out that the problems leading to nonuniqueness are completely
hidden in the pde formulation (see also Diekmannet al. 1993a, 1995). Therefore we have in
this paper chosen the “cumulative” formulation of structured population models (Diekmannet al.
1993b, 1998), which takes as model ingredients not the individual vital rates, but the kernelsuI
andΛI . An additional bonus of this approach is that stochasticity at the individual level can be
incorporated at no extra cost.

Next on our agenda is the writing of a paper showing how to determine in an efficient manner
steadyp-states from the ingredientsuI , ΛI andγ. This is essentially an elaboration of Theorem
6.1 in (Diekmannet al. 1998) together with a feedback fixed point problem. A formulation
of a linearized stability test in terms of the position of the roots of a characteristic equation in
the complex plane relative to the imaginary axis seems within reach (see e.g. Kirkilionis et al.,
preprint). A rigorous justification of this test, however, is still a daunting task.

Finally we emphasize that our approach is not restricted to single-species models. As for-
mulated in this paper our model actually includes the multi-species case: If there arek interact-
ing species with individual state spaces,Ω1,Ω2, . . . ,Ωk, respectively, then one simply defines
Ω = Ω1

⋃

Ω2
⋃

. . .
⋃

Ωk. The species interactions are modelled in terms of the environmental
inputs.
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