
Dimensional Consistency Analysis
in Complex Algebraic Models

Nastase, V., Makowski, M. and Michalowski, W.

IIASA Interim Report
2007

Nastase, V., Makowski, M. and Michalowski, W. (2007) Dimensional Consistency Analysis in Complex Algebraic Models.

IIASA Interim Report. IIASA, Laxenburg, Austria, IR-07-029 Copyright © 2007 by the author(s).

http://pure.iiasa.ac.at/8428/

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

International Institute for Tel: 43 2236 807 342
Applied Systems Analysis Fax: 43 2236 71313
Schlossplatz 1 E-mail: publications@iiasa.ac.at
A-2361 Laxenburg, Austria Web: www.iiasa.ac.at

Interim Report IR-07-029

Dimensional Consistency Analysis
in Complex Algebraic Models
Vivi Nastase (vnastase@site.uottawa.ca)
Marek Makowski (marek@iiasa.ac.at)
Wojtek Michalowski (wojtek@telfer.uottawa.ca)

Approved by

Leen Hordijk (hordijk@iiasa.ac.at)
Director, IIASA

December 2007

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited
review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National
Member Organizations, or other organizations supporting the work.

– ii –

Foreword

Research described in this report was conducted as part of the activities covered by the
Memorandum of Understanding signed between the International Institute for Applied
System Analysis and the University of Ottawa, Canada and partially funded by the ICRA
Grant from the University of Ottawa. Through such international collaborative effort
the researchers were able to propose novel methodology to supporting development of
complex numerical equations involving multiple units of measurement.

This research builds on the OntoEng methodology for engineering mathematics that
assists in developing semantically consistent complex formulae. It focuses on a method
of representing knowledge about a specific model structure enhanced with the ability
to account for non-standard representations. Such methodological research should help
IIASA researchers involved in the development and use of the SMT Modeling System to
handle in an easier manner semantic consistency of large-scale environmental models.

This collaborative research involved scientists from the School of Management and
Telfer School of Information Technology and Engineering at the University of Ottawa,
and the Atmospheric Pollution and Economic Development Program and the Integrated
Modeling Environment Project at the International Institute for Applied Systems Analy-
sis.

– iii –

Abstract

Relations in complex algebraic models include numerous variables and parameters that
capture the physical dimensions of the objects represented in models (such asmass, or
volumeof an object). A model developer must ensure the semantic correctness of the
model, which includes consistency across physical dimensions and their units of mea-
sure in the model relations. Such dimensional consistency analysis is the subject of the
research described in this paper.

We propose a new methodological framework for this type of analysis which com-
prises:
• a two-level structure for representing knowledge about physical dimensions and units

of measure; and
• the dimensional analysis algorithm that uses this structured knowledge for the verifica-

tion of consistency.
The proposed methodology allows us to resolve issues related to handling complex

non-decomposable units of measure and the situation when instances of the same physi-
cal dimension are associated with different physical quantities. We illustrate the proposed
methodological framework using mathematical relations from a comprehensive environ-
mental model developed at IIASA.

Keywords:analysis of algorithms, algebraic models, dimensional analysis, units of mea-
sure, structured modeling.

– iv –

Acknowledgments

The research described in this paper was supported by the Collaborative Research Grant
from the University of Ottawa while Dr. Vivi Nastase was a post-doctoral fellow at the
University.

The authors wish to thank Dr. Fabian Wagner of IIASA for providing detailed infor-
mation about the new versions of the RAINS model, and for sharing his ideas about the
topics related to the research described in this paper. The authors would also like to thank
Dr. Szymon Wilk, and two anonymous reviewers for their comments and suggestions.

– v –

About the Authors

Vivi Nastase is currently a research scientist at EML Research gGmbH, Heidelberg,
Germany. Vivi’s research interests include computational linguistics, applications
of machine learning and data mining techniques to language and interactions in
negotiations and numerical analysis. She has published papers in journals includ-
ing Group Decision and Negotiation, and computational linguistic and negotiation
conferences. She was a guest editor for two journal special issues, for Computa-
tional Intelligence and Group Decision and Negotiation. Vivi is currently working
on incorporating encyclopedic knowledge in natural language processing systems.

Marek Makowski is a leader of IIASA Integrated Modeling Environment Project. His re-
search interests focus on model-based support for solving complex problems, which
incorporates three interlinked areas. First, integration of interdisciplinary knowl-
edge and its representation by mathematical models. Second, creation of knowl-
edge by comprehensive model analysis, including multicriteria methods. Third,
tailoring the modeling process to meet the needs of decision-making processes.

Thus Marek’s research interests cover a cluster of areas relevant to the adaptation
(whenever possible) or development (when needed) of methodology, algorithms,
and software for model-based decision-making support. This includes more specific
topics in Operations Research (OR) such as: multicriteria problem analysis, large
scale optimization, optimization of badly conditioned problems, use of database
management systems for complex models, decision analysis and support, user in-
terfaces in decision support systems, effective treatment of uncertainty and risk.

Marek has published over 80 papers and book-chapters, coordinated or led sev-
eral scientific projects, and has been twice guest editor of the European Journal of
Operational Research.

Wojtek Michalowski is University Research Chair in Health Informatics and Decision
Support at the Telfer School of Management, adjunct professor in the Faculty of
Medicine, University of Ottawa, member of the Ottawa-Carleton Institute for Com-
puter Science, and adjunct research professor in the Eric Sprott School of Business,
Carleton University. He is past director of the Master of Health Administration
program. During 1997/1998 academic year he was senior research scholar at the
International Institute for Applied Systems Analysis.

Wojtek’s research interests include health informatics and specifically ubiquitous
and mobile clinical decision support systems, health care management, and data
mining. He has written over seventy refereed papers and has published articles in
some thirty journals, including Management Science, Naval Research Logistics,
Operations Research, Journal of Optimization Theory and Applications, IEEE Sys-
tems, Man and Cybernetics, International Journal of Medical Informatics, IEEE In-

– vi –

telligent Systems, Decision Support Systems, Methods of Information in Medicine,
Healthcare Management Science, and European Journal of Operational Research.

Wojtek is a Principal Investigator of the MET Research Program aiming at devel-
oping clinical decision support environment for the point-of-care applications.

– vii –

Contents

1 Introduction 1

2 Modeling context 3
2.1 Dimensions and units of measure . 4
2.2 Physical dimensions in complex algebraic models 4
2.3 General framework . 5
2.4 Related work . 7

3 Knowledge representation of physical dimensions and their units of measure 9
3.1 Requirements for representation of physical dimensions 9
3.2 Knowledge representation . 11

4 Dimensional consistency analysis 13

5 RAINS model 14
5.1 Describing physical dimensions and units of measure 15
5.2 Dimensional consistency analysis algorithm 17

6 Implementation issues 18
6.1 Building a repository of knowledge about dimensions and units 18
6.2 Dimensional consistency analysis algorithm 19
6.3 Object-oriented implementation . 20

7 Conclusions 20

References 21

A A sample of PDs and UMs of the RAINS model entities 24

– viii –

List of Tables

1 Examples of complex PDs and their UMs 15
2 Description of PDs and their UMs in a RAINS model 24

– ix –

List of Figures

1 Example of gPDs. A directed edge fromgPDi to gPDj signifies that
gPDj appears ingPDi’s definition. 6

2 Example of knowledge representation of physical dimensions on two lev-
els, with model entities linked to dimensions from the specific level . . . 6

3 Representation of generic and specific levels of knowledge 11
4 Directed graph representing the connectivity between generic PDs 12
5 Directed graph representing gPDs and iPDs 16
6 Illustration of compatibilities for transfer coefficients. 16

– 1 –

Dimensional Consistency Analysis
in Complex Algebraic Models

Vivi Nastase* (vnastase@site.uottawa.ca)
Marek Makowski** (marek@iiasa.ac.at)

Wojtek Michalowski*** (wojtek@telfer.uottawa.ca)

1 Introduction

Dimensional consistency analysis is a conceptual framework for the verification of cor-
rectness of mathematical relations from the point of view of the physical dimensions and
units of measures associated with the relations’ variables and parameters. (Bridgman,
1922) wrote that such analysisis routinely used by physical scientists and engineers to
check the plausibility of derived equations and computations. It is also used to form rea-
sonable hypotheses about complex physical situations that can be tested by experiment or
by more developed theories of the phenomena.

Dimensional consistency analysis has its formal roots in the works of Fourier from the
1820’s (see (Macagno, 1971) for a historical overview), and by the beginning of the 20th
century, it had established solid foundations through the works of Bridgman (1922) and
Buckingham’sπ-theorem (Buckingham, 1914). Dimensional consistency analysis has
found numerous applications in very diverse fields (see (Sonin, 2001) for an overview).
This paper describes an application of dimensional consistency analysis during devel-
opment of complex algebraic models. In particular, we demonstrate how to verify the
consistency of a model’s relations, from the point of view of units of measure associated
with the variables and parameters appearing in these relations.

Algebraic models are abstract representations of real life objects and phenomena that
use entities (constants, variables, parameters) representing physical quantities and various
types of relationships among them (functions, equalities, inequalities). Algebraic model
complexity comes from two sources: the number of entities and relationships between
them, and the complexity of the entities’ physical dimensions in terms of the correspond-
ing units of measures. An additional difficulty is introduced by the fact that models are
often developed by interdisciplinary teams, working remotely on different model’s com-
ponents, making it more difficult to maintain semantic consistency. Consistency in the
use of units of measure is critical for a model’s usability, but maintaining it is a tedious
task that is difficult to perform manually. Moreover, such consistency has to be assured at
each stage of the modeling process, including:

* School of Information Technology and Engineering, University of Ottawa, Canada.
** Integrated Modeling Environment Project, IIASA.

*** Telfer School of Management, University of Ottawa, Canada.

– 2 –

1. Symbolic model specification, involving declarations of model entities (parameters,
variables), and relations among them;

2. Preparation and verification of data to be used for defining model parameters;

3. Generation and analysis of model instances (composed of the model specification
and a specific set of data);

4. Interpretation of the results of model analysis.

In this research we focus on a methodological framework that supports the first two
stages of modeling process, where the dimensional consistency issues that must be ad-
dressed are difficult and no practical solution is yet available for models having many
complex units of measures.

We stress that we have not attempted to develop any new language nor an ontology
for supporting dimensional consistency analysis. The experience with development of
interdisciplinary models motivated one of the authors to develop the Structured Modeling
Technology (SMT) (Makowski, 2005), which allows to create model specification without
knowledge of any modeling language. Therefore we propose to follow a similar approach
while defining the measurement units. After a set of measurement units is specified by
modelers, the dimensional consistency will be used to check the syntax correctness of
model relations. In the paper we introduce some formalism in order to present in a concise
manner the related concepts to be used in the implementation.

The paper aims at reaching two goals:

• First, to provide the modelers with effective tools for reconciling complex mea-
surement units without a requirement to know any specific modeling language. It
proposes a theoretical framework allowing modelers to easily define appropriate set
of the units and structure them implicitly using template-like or inheritance mecha-
nism.

• Second, to provide an overview of diverse approaches to handling measurement
units and dimensional consistency, and to propose an approach that can be imple-
mented in modeling systems in a way that is transparent to modelers. Most of the
widely used modeling systems do not support dimension consistency analysis (cf
Section 2.4). Therefore the proposed approach may be of interest also to the devel-
opers of modeling environments.

The remaining part of the paper is organized as follows: Section 2 summarizes the
modeling context, and provides an overview of previous research on dimensional consis-
tency analysis, also known asunit of measure reconciliation. Sections 3 and 4 are the core
of the paper and introduce proposed knowledge representation for PDs and UMs, and the
algorithm that uses this knowledge for dimensional consistency analysis. We justify the
need for, and illustrate the application of proposed methodology in Section 5, using the
environmental RAINS model as a case study. In Section 6 we discuss issues of potential
implementation of the proposed solution. Section 7 wraps up the paper with conclusions
and lessons learned.

– 3 –

2 Modeling context

The modeling process of a complex decision problem is very different from traditional ap-
proaches to mathematical modeling, when a person (or a small team) develops a model.
In the traditional approach it is possible to assure consistency of relations and data by
a proper communication between team members. However, complex problems are mod-
eled by multidisciplinary teams often working at distant locations, on different submodels
that are tested separately before being amalgamated. These submodels are developed by
people with diverse professional backgrounds (e.g., in engineering, economics, atmo-
spheric chemistry, environment, health) and describe different problem domains. In each
of these domains typically different units of measure are used to represent models’ enti-
ties. Moreover, data used for instantiating model parameters is coming from diversified
sources (often being generated by solving other models) thus input data is also recorded
using a variety of units of measure. Large models are typically composed of submodels
developed by several teams, therefore assuring semantic consistency of all relations is no
longer as easy as it was for small models developed by a team. Moreover, large models
use millions of data items, typically available from diverse sources and requiring conver-
sions to make the measurement units of original data to become consistent with the units
used in the model symbolic specification.1

Therefore, especially for complex models it is essential to assure:

1. Semantic correctness of relations defined in model specification, which includes
consistency of the units of measure;

2. Consistency between units used in model specification, and those used in input data.

Modeling processes supporting policy making have to meet the strong requirements
of credibility, transparency, replicability of results, integrated model analysis, controlla-
bility2 of the modeling process, quality assurance, documentation, controllable sharing
of modeling resources through the Internet, and efficient use of resources on computa-
tional grids. These requirements cannot be met when models are developed using general-
purpose modeling tools. This was also the situation faced by the developers of a family of
Regional Air Pollution Information and Simulation (RAINS) models (see e.g., (Amann
and Makowski, 2000)) created to support international negotiations on air pollution and
policy development. Therefore, to support the modeling process for RAINS and other
complex models, a specialized Web-based modeling environment called Structured Mod-
eling Technology (SMT) (Makowski, 2005) was developed. SMT employs a methodol-
ogy proposed by Geoffrion, (see (Geoffrion, 1987)) that relies on the concept ofentity to
manipulate various model elements (parameters, constants, variables, relations). Such an
approach makes it relatively easy to handle units of measure associated with parameters
and variables, because they are represented as one of the features each entity has.

Although the SMT provides a conceptual framework to deal with units of measure in a
conceptually simple way, it is actually challenging to apply it in practice, mainly because

1An illustration of complex measurement units is provided in Section 5. A moredetailed discussion of
issues related to the development of large and/or complex models can be found in (Makowski, 2005).

2This term covers several interlinked elements of modeling process, including modification of the model
specification and the data defining the model parameters, various views on data (often having complex in-
dexing structure), and interactive analysis of results (obtained for different modelinstances and/or repre-
sentations of user preferences).

– 4 –

entities in large models have rather complex measurements. Thus, a rational approach
to handling units of measure requires a systematic methodology and this requirement
constitutes the main motivation behind the research reported in this paper.

2.1 Dimensions and units of measure

Entities in a model – variables, constants, parameters, relations – represent measures
of physical quantities (PQs) of objects and phenomena of the world, for example the
earth’s diameter, a person’s age, etc. The measure of a physical quantity is aphysical
dimension (PD) – length, mass, etc. – expressed as a numerical value, ormagnitude
measured with a help of someunit of measure(UM). Normally, a certain set of PDs and
their UMs are chosen as the set ofbaseor primary PDs or UMs, in terms of which all
the other PDs and UMs –derived PDs and UMs – are defined. Usually, the base PDs
and UMs are the fundamental dimensions and their units are defined by the International
System of Units (SI)3 – length, mass, time, electric current, thermodynamic temperature,
amount of substance, luminous intensity, angle, solid angle. Sometimes, for convenience
or to emphasize certain properties of a model, a different set of base PDs and UMs can
be chosen. However, considering that a physical dimension can be measured in many
different ways, we say that all units of measure for a given physical dimension form an
equivalence class(for example: g,$, oz and their multiples representmass). Each UM
in an equivalence class is related to some base unit for the associated dimension through
a scaling factor.

Throughout the paper, we calldecomposablePDs and UMs the derived PDs and
UMs, that for the purpose of dimensional consistency analysis must be represented in
terms of their base components.Non-decomposablePDs and UMs are those which de-
spite being derived must be treated as base PDs and UMs, respectively. When referring to
a PD throughout this paper we assume that its associated UM is defined. Particular fea-
tures of the UM (scaling factors for example) are explicitly mentioned whenever relevant.

2.2 Physical dimensions in complex algebraic models

Algebraic models often combine data from diverse fields and different PDs customarily
used in these fields are associated with the model’s entities. Although they are derived
from the SI system, the diversification of PDs makes it difficult to check if all components
of each model relation are specified consistently, and if the data used for instantiation of
parameters of these relations is correct from the point of view of the UMs. This situation
creates a need for automatic analysis to ensure that the model is dimensionally consistent
and the data used to instantiate the model matches the entity declarations.

A good example of difficulties in ensuring dimensional consistency comes from air
pollution modeling where, for example, the nitrogen-oxides ozone transfer coefficient is
measured in:

mg × hours

m3 × kt
.

Despite the fact that a mass quantity appears both in the numerator and the denominator
it cannot be reduced because one expresses the mass of ozone, and the other the mass of

3http://www.bipm.fr/en/si/.

– 5 –

nitrogen oxides. This exemplifies a situation where similar PDs are differentiated by the
PQ they apply to. Another example is the general PD representingpollutant emissions;
it is defined for each pollution type: sulphur oxides (SOx), nitrogen oxides (NOx) and
ammonia (NH3). These emissions interact during their travel from the emission sources
to deposition places (conventionally called grids) and the resulting environmental effects
are measured by various indicators in each grid. In air-quality models different entities
represent different elements of the problem, for example, emission levels (of the consid-
ered types of pollution), transfer coefficients, air-quality indicators, relations between the
emissions and the indicators, to name a few. Each of these entities is described by a PD.
Semantic correctness of the model requires that each relation including these entities is
consistent from the point of view of the physical dimensions of its terms.

Another dimensional consistency issue is related to non-decomposable PDs. For ex-
ample,force is a derived PD (force = mass× acceleration) and its UMnewton (N)
can be expressed using base UMs asN = kg × m × s−2. However, there are models
where such a decomposition of N is not feasible. We need to stress that a distinction be-
tween decomposable and non-decomposable PDs can only be made by a modeler based
on his/her knowledge about the content in which the PD is used. Therefore a modeling
system should provide the corresponding functionality.

Considering the often complicated specification of PDs in algebraic models, it is es-
sential to support model developers in defining them.

2.3 General framework

We propose a general methodological framework comprised of a method of representing
knowledge about PDs and the dimensional analysis algorithm that exploits this structured
knowledge as a way to verify the dimensional consistency of relations in algebraic models.

We propose to represent knowledge about PDs on two levels. The first level, called
generic, is used to define PDs. The second level, calledspecific, contains instances of
the PDs from the generic level augmented with specific properties needed for defining
features of model entities. For example, a PD calledpollution emissionbelongs to the
generic level, while emissions of specific pollutants, such assulphur oxides, nitrogen
oxidesandammoniabelong to the specific level. Splitting PD information along these
two levels facilitates PD definition, operation on PDs with multiple instances associated
with different PQs, and performing dimensional analysis, as we will demonstrate later.

The generic levelforms the “core” of a knowledge representation. It includes each
generic dimension relevant to a model4 together with the corresponding PDs. Having
defined such generic level we impede redundant definitions. In the discussion that follows
we will call PDs from generic level as thegPDs(generic PDs). The gPDs are linked with
each other according to their definitions. A simple example is shown in Figure 1.

Thespecific levelcontains instances of gPDs that express dimensions of objects in the
model. Because the gPD is already defined, obtaining an instance (iPD) requires only
adding information specific to the iPD in the form of:

attribute – which associates the iPD with a specific world object. For example, by adding
an attributesulphur oxidesto the gPDpollution emission, we obtain the iPDsulphur

4By genericwe mean that there are no distinctions related to particular world objects the dimension may
refer to, or scaling factors within its unit of measure.

– 6 –

distance mass

force

time

speed

acceleration

Figure 1: Example of gPDs. A directed edge fromgPDi to gPDj signifies thatgPDj
appears ingPDi’s definition.

Model entity I+1Model entity IModel entity 1

generic
level

specific
level

model
entities

gPD_1
(Name_1,Definition_1,UM_1)

(Name_1,Definition_1,UM_11,Attr_11)
iPD_1

(Name_1,Definition_1,UM_n1,Attr_n1)
iPD_n1

Model entity KModel entity K−1

gPD_M
(Name_M,Definition_M,UM_M)

(Name_M1,Definition_M1,UM_M11,Attr_M11
iPD_M1...

...

...

Figure 2: Example of knowledge representation of physical dimensions on two levels,
with model entities linked to dimensions from the specific level

oxides emissions;

scaling factor – which is used to adjust the UM of a particular iPD, to reflect the UMs
used in practice.

Figure 2 illustrates the proposed two-level knowledge representation, where each gPD
has several possible instantiations, each with different attributes, possibly different UMs
(from the same equivalence class); iPD instances are then captured as dimensions of the
model entities.

Considering that knowledge of the PDs and UMs in the domain to be modeled sits
with the domain experts, the representation we propose should be, and indeed can be,
easily edited by the model developers. From this point of view, structuring the knowledge
of PDs on two levels, accomplishes the following:

1. Reduces the amount of work necessary for defining PDs for a model:

• gPDs are defined using previously defined gPDs;

• gPD definitions are reused for each iPD specification. This process is de-
scribed in detail in Section 3.

2. Enables reuse of knowledge about PDs. This knowledge can be structured as a spe-
cialized resource that can be shared at different levels: for closely related models,

– 7 –

the entire structure can be reused (generic level, specific level and entity defini-
tions), while for more loosely coupled models only knowledge from the generic
level can be reused.

The proposed two-level knowledge representation facilitates:

1. Distinction of the iPDs associated with different objects by assigning different at-
tributes (see the example on pollution modeling in Section 2.2).

2. Distinction between decomposable and non-decomposable PDs: non-decomposable
PDs have a null definition in terms of simpler dimensions.

3. Projection of all PDs onto the set of base PDs specific for a model.

Ultimately it facilitates the application of the proposed dimensional analysis algorithm
which is based on (Bridgman; Uschold et al.; Novak, Jr., 1922; 1998; 1995).

2.4 Related work

We review the literature from the perspective of dimensional consistency analysis. We
look first at stand-alone methods that solve the UM reconciliation problem, and then
describe solutions incorporated within programming languages. We show how these so-
lutions do not address all PD consistency issues that are present in complex algebraic
models. Finally we discuss approaches that incorporate dimensional consistency analysis
within modeling environments, and those that use an external knowledge representation,
like we do.

An example of a stand-alone method for handling UMs is COMET written in APL,
which performs conversions between the British and the metric measurement systems
(Schulz, 1990). Also Bhargava (1993) proposed a very interesting solution, independent
of a particular system or programming environment, which transforms dimensional con-
sistency analysis into numerical analysis. In this approach each base PD is coded through
a prime number, and consistency check is done by comparisons of the corresponding
products of prime numbers.

A lot of effort has gone into incorporating knowledge about UMs into programming
languages. Karr and Loveman (1978) discuss methods of unit conversion, dimensional
consistency analysis and language syntax issues related to incorporating units into pro-
gramming languages. Hilfinger (1988) describes a method for implementing a package
for dimensional analysis in ADA, using the language’s facilities for abstraction and ex-
tension. He explains the use, implementation and potential efficiency of a package for
four basic PDs, but the method is not flexible enough to accommodate domain-specific
UMs. Cunis (1992) describes an implementation in Lisp for converting units, where for-
mula verification and conversions are performed at runtime. Novak, Jr. (1995) proposes
an implementation of UMs as part of data types, also in Lisp, accompanied by algorithms
to perform conversions and simplifications of combinations of units.

Kennedy (1994) presents an extension of a strongly-typed programming language,
ML with the notion of dimension type. Expressions are checked in a manner similar
to detecting programming errors, before runtime, and the type of an expression can be
inferred, using term and relation unification. Denis (2001) describes Unum, a dimensional

– 8 –

consistency solution implemented in Python. Allen et al. (2004) present a method of
incorporating UMs in object-oriented programming languages.

The approaches summarized above, while providing suitable methodological back-
ground, are separate from model development environments, i.e., are not integrated in
general purpose modeling languages and the corresponding tools, such as GAMS (Biss-
chop and Meeraus, 1982), or AMPL (Fourer et al., 1990). These environments support
the modeling process, thus freeing the users from writing problem-specific model gen-
erators and low-level interactions with optimization solvers. Each tool has a specific
modeling language that supports model specification and data handling. However these
tools do not effectively support handling of UMs. They assume that it is the responsibility
of model developers to use consistent UMs for all model entities, and typically do not
support specification of the units and checking consistency of relations from the UM/PD
perspective. In a model using entities with simple units this is doable but for complex
models, delegating the dimensional consistency verification to a model developer results
in a time-consuming and error prone task.

Among the widely used modeling environments, AIMMS (Bisschop and Roelofs,
2006) is the only one that provides extensive support for handling UMs. The type of
dimensional consistency analysis implemented in AIMMS can be termed as unit reconcil-
iation – it is based on analysis of the UMs associated with entities, as opposed to analysis
of the PDs. AIMMS has a list of built-in PDs and their associated UMs. During model
specification, the model developer must a priori declare the PDs that will be used and the
chosen UM. If a standard PD is used with a derived UM (for examplekm instead of the
basem), the user must define the scaling factor to transform the derived UM into the base
one, because the system maintains a representation of UMs in terms of base units. When
writing a new relation, the system checks if the UMs agree. AIMMS allows the model
developer to define her own dimensions and units, but it does not automatically recognize
standard dimensions, their UMs and scaling factors. Therefore all PDs used in a model
developed with AIMMS must be defined as a part of the model specification.

When developing complex models a possibility of reusing a repository of previously
defined PDs would ease the work load of a model developer.OntoEng(Gruber, 1995),
(Gruber and Olsen, 1994), illustrates the use of an external resource for dimensional con-
sistency analysis, as it has an ontology of PDs and their UMs. The ontology was designed
as an external resource for engineering mathematics to support formula verification from
the point of view of UMs. The UMs sub-ontology was subsequently revised and extended
(Pinto and P. Martins, 2001). Uschold et al. (1998) describe an application using the
UM sub-ontology ofOntoEng for solving a panel layout problem and explore the cost
of reusingOntoEng and enhancing it with the necessary functionality suitable for such
optimization problems.

Having a representation of PDs as an external knowledge representation embedded in
a model development environment provides a solution that greatly eases the development
process. The external resource includes knowledge about PDs that can be reused to avoid
repeated definitions of the same dimensions and units. The representation of knowledge
should be flexible enough to distinguish similar PDs pertaining to different objects, and
to allow for PDs that are both decomposable and non-decomposable.

– 9 –

3 Knowledge representation of physical dimensions and
their units of measure

3.1 Requirements for representation of physical dimensions

In general, there are three important requirements to be satisfied by a representation of
knowledge about PDs. We discuss each requirement together with the proposed solution.

Requirement 1:

Ability to distinguish between PDs describing the same type of physical phenomenon or
quantity, while using knowledge about their commonalities. For example, emissions of
NOx andSOx are both instances ofpollution emissionsthat must be distinguishable in a
model.
Proposed solution:Have a two-level representation of knowledge about PDs:

• Thegeneric levelcontains definitions of distinct generic PDs. A gPD is represented
as the tuple(Name, UM,Definition). For the example above, the gPD is labeled
aspollution emission.

• Thespecific levelcontains instances of gPDs. The iPDs inherit the definition from
the gPD they specialize. iPDs also have an attribute field, which serves to distin-
guish it from any of the other iPDs of the same gPD. An iPD is represented as the
tuple:
(Name,UM,Definition,Attribute).
The name of an iPD can be different than its gPD’s name, to reflect better the iPDs
characteristics. In the example above,NOx emissionis an instance of thepollution
emissionwith the attributeNOx.

In the proposed methodology we rely on the generic level of knowledge representation
and gPD definitions as the basis for the dimensional consistency analysis. UMs are auto-
matically generated using these definitions. The dimensional analysis algorithm operates
on generic representations based on PDs and their definitions.

Requirement 2:

Ability to easily define derived PDs.
Proposed solution:A new gPD (denoted byPD.G) is defined as a function of previously
defined gPDs:

PD.G = f(PD1, . . . , PDk)

wheref is an algebraic function composed of multiplication and division operators. Con-
sidering that division is the inverse of multiplication, we can write an equivalent definition
of PD.G5:

PD.G = PDexp11 × . . .× PDexpkk

5In the following discussion we use the following abbreviations:exp to refer to theExponent, Sf to
refer to theScalingFactor, attr to refer to theAttribute.

– 10 –

whereexpi ∈ R are real numbers. If

{PDB1, . . . , PDBn}

is the set of base PDs chosen for the model, then by replacing gradually eachPDi with
it’s simpler components, we arrive at an expression ofPD.G in terms of base PDs:

PD.G = PDexpB1B1 × . . .× PDexpBnBn

The definition ofPD.G can be written as a vector:

< (PDB1, expB1)(PDB2, expB2) . . . (PDBn, expBn) >

where the exponents of PDs that are not required for inPD.G’s definition are 0. In this
vector notation,PDx stands for the name of thex-th PD.

In order to completely capture UM information in a PD definition, we need to include
an extra component – a scaling factor – that allows for the specification of the correct unit
of measure. The scaling factor is an absolute number (e.g., 1000 to indicate tons when
kilograms is the chosen UM for mass, or 0.7503 to indicate Euros when the chosen UM
for a cost is US Dollars, if 0.7503 is the applied exchange rate).

The revised definition ofPD.G becomes:

PD.G =< (PDB1, expB1, SfB1)(PDB2, expB2, SfB2) . . . (PDBn, expBn, SfBn) >

Knowing the UMs associated with eachPDBi, the UM forPD.G is:

UM.A = UMSfB1×expB1B1 × . . .× UMSfBn×expBnBn

Returning back toPD.G’s original definition, it can be rewritten as:

PD.G =< (PD1, exp1, Sf1)(PD2, exp2, Sf2) . . . (PDk, expk, Sfk) >

whereexpi combines the exponents of the base PDs that participate in the definition of
PDi. The same is true for theSfi.

If PD.I is an instance of the genericPD.G, PD.I inheritsPD.G’s name, UM,
definition, and is augmented by an extra field of attributes. The name and UM can be
changed to reflect specific characteristics of thePD.I .

Following the representation ofPD.G as a vector,PD.I is defined as:

PD.I =< (PD1, exp1, Sf1, attrS1)(PD2, exp2, Sf2, attrS2) . . . (PDk, expk, Sfk, attrSk) >

where a vector element(PDi, expi, Sfi, attrSi) represents an instance of(PDi, expi, Sfi
in the definition of the generic PD. The attributeattrSi is used to distinguish different
instances of the same gPD, and to constrain compatible combinations of iPD in a relation.
For example, an attempt to combine an iPD with the attributeSOx with an iPD with the
attributeNH3 is semantically incorrect, and therefore should not be allowed.

The model developer should provide the attribute, or it can be automatically inherited
from instances of components of the gPD. We explain this process later in this section.

The model developer can also modify the scaling factors, to reflect the UM require-
ments associated with each PD instance.

– 11 –

level

PD.2.G

PD.4.I.1 {AttrA}

PD.4.I.2 {AttrB1}

PD.4.I.3 {AttrB2}

PD.7.I.1 {AttrA}

PD.7.I.2 {AttrB1}

PD.7.I.3 {AttrB2}

PD.6.I.2 {AttrB*}

PD.6.I.1 {AttrA}

PD.5.G = f2(PD.3.G)PD.4.G = f1(PD.1.G, PD.2.G)

PD.3.G

PD.7.G = f4(PD.4.G, PD.6.G)

PD.6.G = f3(PD.2.G, PD.5.G)

PD.1.G

level
generic

specific

Figure 3: Representation of generic and specific levels of knowledge

Requirement 3:

A derived PD can be treated as decomposable and non-decomposable.
Proposed solution:Duplicate the entry for such a gPD in the knowledge representation,
with the non-decomposable PD having a similar name as the decomposable one, but a
null definition.

Thus, ifPDdual is a PD that can be either decomposable (PDdual1) or non-decomposable
(PDdual2) depending on the circumstances, the representation contains the following en-
tries:

(PDdual1 UM < (PD1, exp1, Sf1) . . . (PDk , expk, Sfk) >)
(PDdual2 UM —)

Note that the UM is the same for both PDs. A null definition forPDdual2 makes it
automatically non-decomposable and part of the set of base dimensions. Base dimensions,
together with PD definitions are the essential elements of the dimensional consistency
analysis algorithm.

3.2 Knowledge representation

The two-level representation of knowledge is illustrated in Figure 3. The generic PDs
(PD.i.G) form the generic level,i ∈ {1, . . . , N}, and are represented by their name and
definition in relation to other gPDs in rounded rectangles. Their instances (PD.i.I.j)
form the specific level, and are represented by their name and (optional) attributes6 (in
curly brackets) in regular rectangles. A dimensionPD.i has a projection on the generic
level,PD.i.G and as many as the model requires on the specific level,PD.i.I.j.

As a model representation of a real world object or phenomenon each model entity
has a physical dimension which is represented by an iPD composed of the definition of
the corresponding physical dimension, the UM, and iPD’s attributes.

A gPD is defined using previously defined gPDs. If these previously defined dimen-
sions already have instance PDs, they are automatically combined to generate instances
for the newly defined gPD. Attributes of iPDs determine which combinations are valid.

6The symbol∗ is a wild card, and stands in for any other symbol or combination of symbols.

– 12 –

PD.2.GPD.1.G

PD.7.G = f4(PD.4.G, PD.6.G)

PD.4.G = f1(PD.1.G, PD.2.G)

PD.6.G = f3(PD.2.G, PD.5.G)

PD.5.G = f2(PD.3.G)

PD.3.G

exp.3.5
Sf.3.5

exp.6.7
Sf.6.7

exp.1.4
Sf.1.4

exp.2.4
Sf.2.4

exp.2.6
Sf.2.6

exp.5.6
Sf.5.6

exp.4.7
Sf.4.7

Figure 4: Directed graph representing the connectivity between generic PDs

In the example presented in Figure 3, bothPD.4.G andPD.6.G have instances with
different attributes.PD.7.G combinesPD.4.G andPD.6.G. More precisely:

PD.7.G = f4(PD.4.G, PD.6.G) →< (PD.4.G, exp4)(PD.6.G, exp6) > .

When creating a new PD from existing ones, we create instances for this new PD
using attributes to control the process. In the case of creating instances forPD.7.G, we
use the instances forPD.4.G andPD.6.G (see Figure 3):

PD.7.I.∗ →< (PD.4.I.∗, exp4, Sf4, attr4.∗)(PD.6.I.∗, exp6, Sf4, attr6.∗) >

There are six possible instances forPD.7.I.∗, corresponding to the six pairs of
(PD.4.I.∗, PD.6.I.∗):
PD.7.I.1→< (PD.4.I.1, exp4, Sf4, AttrA)(PD.6.I.1, exp6, Sf6, AttrA) >
PD.7.I.2→< (PD.4.I.2, exp4, Sf4, AttrB1)(PD.6.I.2, exp6, Sf6, AttrB∗) >
PD.7.I.3→< (PD.4.I.3, exp4, Sf4, AttrB2)(PD.6.I.2, exp6, Sf6, AttrB∗) >
PD.7.I.4→< (PD.4.I.1, exp4, Sf4, AttrA)(PD.6.I.2, exp6, Sf6, AttrB∗) >
PD.7.I.5→< (PD.4.I.2, exp4, Sf4, AttrB1)(PD.6.I.1, exp6, Sf6, AttrA) >
PD.7.I.6→< (PD.4.I.3, exp4, Sf4, AttrB2)(PD.6.I.1, exp6, Sf6, AttrA) >
Assuming that attributesAttrA andAttrB∗ do not match, only the first three combi-

nations are feasible, as constrained by the attribute values.
The definition of PD captures the interconnectivity between complex and base PDs.

Thus, it is possible to visualize the relations between the gPDs as a directed acyclic graph
(see Figure 4). The directed edges connect a complex PD with its simpler components.
We can attach information to the edge (such as exponent) to represent how a gPD and its
components are connected. IfPD.G = f(PD1, . . . , PDn) = PD

exp1
1 × . . .× PDexpnn ,

expi and/orSfi can be associated with the edge connectingPD.G andPDi.
In the next section we discuss the role of the attributes as part of the vector represen-

tation of PDs in dimensional consistency analysis.

– 13 –

4 Dimensional consistency analysis

Dimensional consistency analysis of an algebraic model involves two steps:

1. Consistent definitions of complex PDs.

2. Checking dimensional consistency of model relations.

We propose to implement these two steps using a common methodological frame-
work.

From the model developer perspective, consistency analysis involves the UMs associ-
ated with model’s entities. However, it is possible to approach the analysis from the more
general perspective of PDs, as this allows for an easier implementation of a dimensional
analysis algorithm. This is the approach we adopt.

Bridgman (1922) proposed a method of obtaining a dimensional formula of any PD in
terms of PDs that are chosen as base, and shows how to change from a system of units with
one set of base PDs, to a system of units with a different set of base PDs. This research
inspired Novak, Jr. (1995) and Uschold et al. (1998) to use a vector representation of
derived PDs and to perform dimensional consistency analysis using vector operations.
The set of base PDs,{PDBi, i = 1, n} is fixed. Derived PDs are defined in terms of
ever simpler dimensions until the level of base PDs is reached. Each position in the
vector representation of a derived PD is a tuple(expBi, SfBi) representing the exponent
corresponding to the base dimensionPDBi, and the scaling factor relative to the base
UM for PDBi. An entity in a model is expressed through its corresponding PD, and the
scaling factorSf with respect to the base UM for that PD:< PD, Sf >. Projecting this
onto the vector ofn base PDs, the entity is represented by the vector

< (expB1, SfB1)(expB2, SfB2)...(expBn, SfBn) >

For example, if there were 4 PDs:length,mass, time,money, a length ofkm is
expressed as a vector:< (1, 103)(0, 0)(0, 0)(0, 0) >, whenm is considered the base UM
for length7. The acceleration ofm/s2 is represented as< (1, 1)(0, 0)(−2, 1)(0, 0) > if
m is the base unit for length, ands for time.

Each base PD has a specific position (index) in the vector representation. For instance,
index 1 in the example above is assigned to length, index 2 to mass, and so on. This
works well in situations when the base PDs are known in advance. However, when a
non-decomposable PD with a complex UM must be treated as a base PD, then the vector
representation has to be dynamic because the list of base dimensions is known only after
completing the model definition.

Considering the requirements outlined in Section 3, the iPD is represented as:
(Name, Exponent, ScalingFactor, Attributes).

HavingPDname ensures that vector operations are performed correctly even when the
list of dimensions is known only at runtime. The values ofAttributesconstrain operations
to feasible combinations of compatible entities. The exponent and the scaling factor serve
for consistency verification, as described in (Novak, Jr., 1995) and (Uschold et al., 1998).

7Note that we don’t specify a number ofkm, as the amounts corresponding to model entities do not
impact dimensional analysis

– 14 –

This representation is further transformed, usingPD’s definition, into a vector repre-
sentation containing only base PDs:

(PDname, exp, Sf, attr)→< (PDB1, expB1, SfB1, attrB1)...(PDBn, expBn, SfBn, attrBn) >

wherePDBi are base PDs necessary for the definition ofPDname.
Definition of derived PDs (i.e., composed of several base PDs to which either multi-

plication or division operators are applied) requires a multiplication operator.
In order to simplify the notation we denote byPDInfox the tuple(PDx, expx, Sfx, attrx)

for the dimensionPDx. Then themultiplication operator is defined as:

< PDInfoi1, PDInfoi2, ..., PDInfoin >
× < PDInfoj1, PDInfoj2, ..., PDInfojm >
= < PDInfok1, PDInfok2,, PDInfokp >

The result of the multiplication of two PDs is defined in two steps:

1. PDInfok is composed of elements ofPDInfox andPDInfoy

2. If definitions of two PDs ofPDInfok contain the same dimensionPDk with the
same scaling factorSfk and attributeattrk, then such two elements are replaced by
one with the exponent being the sum ofPDk ’s exponents. If the resulting exponent
is equal to zero, then the corresponding element is eliminated from thePDInfok ,
(see the example in Section 5.2).

The described methodology provides consistent definition of complex PDs that are
often composed of other PDs combined with multiplication and/or division operators.
Now, we will show how the same approach can be used for the analysis of dimensional
correctness of model relations.

Model relations can be considered as composed of terms (expressions) to which the
following operators are applied:=, +, −, ≤, <, ≥, >. In other words, a term is
composed of entities (parameters and/or variables) to which either the multiplication or
the division operators is applied. Thus, determining the PD of a term is equivalent to
defining a derived PD from its simpler components.

The dimensional consistency of a relation requires that all terms of a relation have the
same PD. This can be easily verified by comparing the vector representations of the term
PDs. An example of such consistency analysis is presented in Section 5.2.

5 RAINS model

To illustrate the application of the proposed methodology, we use selected relations from
the RAINS models developed at the International Institute for Applied Systems Analy-
sis (IIASA)8. These models combine information on economic and energy development,
emission control potentials and costs, atmospheric dispersion characteristics and environ-
mental sensitivities towards air pollution (Amann et al., 2004), (Sch¨opp et al., 1998).

8The nameRAINScovers a family of algebraic models. The example discussed here comes from the
Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model.

– 15 –

PD Unit Type

mass kg generic
time s generic
length m generic
substance mol generic
area m2 generic

emission kt/year generic
particulate emission kt/year instance
SOx emission kt/year instance
NOx emission kt/year instance
NH3 emission kt/year instance

Equivalence coefficient mol of charge generic
eq(H+) mol of charge instance
eq(N−) mol of charge instance

pollution level eq()/(ha*year) generic
eutrophication level eq(N−)/(ha*year) instance
acidification level eq(H+)/(ha*year) instance

transfer coefficient eq()/(ha*year*kt/year) generic
SOx transfer coefficient eq(H+)/(ha*year*kt/year) instance
NOx transfer coefficient eq(N−)/(ha*year*kt/year) instance
NH3 transfer coefficient eq(N−)/(ha*year*kt/year) instance

Table 1: Examples of complex PDs and their UMs

One of the reasons for developing the SMT system was to support checking seman-
tic consistency of complex models, and the complexity of the RAINS models illustrates
the need of such support. The entities in RAINS models have complex, and often non-
standard, PDs. A sample of these PDs is presented in Table 1.

5.1 Describing physical dimensions and units of measure

In order to define the PDs given in Table 1 in such a way that model entities can be
associated with them, a model developer should be able to define first the base PDsmass,
time, length, substance, and then combine them to define the derived gPDs:particulate
emissionandequivalence coefficient. Finally, one can definepollution levelandtransfer
coefficient. A schematic view of the relations between the PDs from Table 1 is presented
as a directed acyclic graph in Figure 59.

A new gPD is defined using existing PDs. For example, the transfer coefficientskij
(from i-th source toj-th receptor) are defined by:

kij =
∂xj
∂yi
,

wherex andy stand for the corresponding pollution level, and pollution emission, respec-
tively.

9In order to make the figure easier to read, we include only the names of the PDs.

– 16 –

mol/(ha*year)

EQUIVALENCE COEFFICIENT

SUBSTANCEMASS TIME LENGTH

AREAPOLLUTION EMISSION

TRANSFER COEFFICIENT

POLLUTION LEVEL

ACIDIFICATION
LEVEL {H+}

EUTROPHICATION
LEVEL {N−}

NOx EMISSION {NOx}

NH3 EMISSION {NH3}

NOx TC {NOx}

NH3 TC {NH3}

eq(N−) {N−}

SOx EMISSION {SOx} SOx TC {SOx} eq(H+) {H+}

mol

mol

ha

m

mol/(ha*year*kt/year)

specific
level

level
generic

skg

kt/year

Figure 5: Directed graph representing gPDs and iPDs

N−

SOx

NH3

NOx

H+

Figure 6: Illustration of compatibilities for transfer coefficients.

The corresponding knowledge representation contains the following information:




Name : transfer coefficient
UM :mol × ha−1 × year−1 × kt−1

Definition:pollution level× pollution emission−1





The UM is formed using PD’s definition, by combining the UM’s of PD’s components, as
shown in Section 3.

In order to use a transfer coefficient in a model, the model developer first defines
instances of transfer coefficient. For the example shown in Figure 5 and Table 1, the
relevant instances areNOx transfer coefficient,SOx transfer coefficientandNH3 transfer
coefficient.

As explained in Section 3, attributes are used to constrain the generation of iPDs
from their corresponding gPD definition. In the case study, thepollution levelhas two
PD instances – eutrophication (with attributeN−) and acidification (withH+); pollution
emissionhas three PD instances with the attributesSOx,NOx andNH3 respectively.

– 17 –

In order to automatically obtain the three transfer coefficients for the three gases
the model developer defines the following compatibilities:(N−, NOx), (N−, NH3),
(H+, SOx), see Figure 6. Now we can use the definition of thetransfer coefficientin
terms ofpollution levelandpollution emission, and the attributes of instances ofpollution
levelandpollution emissionto determine the instances oftransfer coefficient:
transfer coefficient = pollution level× pollution emission−1

The compatible attribute pairs allow three instances for thetransfer coefficientgPD:
NOx transfer coefficient,NH3 transfer coefficientandSOx transfer coefficient.

Formally, the external knowledge representation is specified as described in Table 2
in the Appendix. The model developer can expand this description, keeping in mind that
when defining a new iPD, the corresponding gPD must be defined first.

5.2 Dimensional consistency analysis algorithm

We illustrate the operation of the dimensional analysis algorithm using a simple relation
from RAINS models:

somo35k =
∑

i∈I

tnoik ∗ ni +
∑

i∈I

tvoik ∗ vi + kok, k ∈ IR (1)

wherek is the grid index,IR is the set of grids (where the environmental impact is
measured), andI is the set of indices associated with countries/regions.

Relation (1) combines the following entities:

• somo35k : measures ozone (O3) impact ink-th grid. The UM ofsomok is defined
asmg × hours × m−3, and it has the following vector representation in terms of
base PDs10:

< (mass, 1, 10−3, [O3]) (time, 1, 3600, [])(length,−3, 1, [])> (2)

• tnoik: measures theO3NOx transfer coefficient inmg × hours ×m−3 × kt−1. Its
vector representation in terms of base PDs is:

< (mass, 1, 10−3, [O3]) (time, 1, 3600, []) (length,−3, 1, []) (mass,−1, 10
9, [NOx]) >

(3)

• ni: measures the annual emission ofNOx, in kt. Its vector representation in terms
of base PDs is:

< (mass, 1, 109, [NOx]) > (4)

• tvoik: measures theO3V OC transfer coefficient inmg× hours×m−3 × kt−1. Its
vector representation in terms of base PDs is:

< (mass, 1, 10−3, [O3]) (time, 1, 3600, []) (length,−3, 1, []) (mass,−1, 10
9, [V OC]) >

(5)

• vi: measures theV OC emission inkt. Its vector representation in terms of base
PDs is:

< (mass, 1, 109, [V OC]) > (6)

10In the vectors that follow, the symbol[] denotes an empty list of attributes.

– 18 –

• kok: measures backgroundO3 accumulation inmg × hours × m−3. Its vector
representation in terms of base PDs is:

< (mass, 1, 10−3, [O3]) (time, 1, 3600, []) (length,−3, 1, []) > (7)

These entities form four terms in relation (1). It is easy to show that all these terms
have the same PDs:

• somo35k : defined by (2);

• tnoik × ni : defined by multiplication of PDs (3) and (4); note that

< (mass, 1, 109, [NOx]) > × < (mass,−1, 10
9, [NOx]) > = < (mass, 0, 10

9, [NOx]) >

therefore this sub-term does not contribute to the term’s PD;

• tvoik × vi : defined by multiplication of PDs (5) and (6).

• kok : defined by (7).

The above demonstrates that relation (1) is dimensionally consistent.

6 Implementation issues

The proposed methodology for representing and using knowledge about PDs and UMs
can be implemented as an SMT resource, consisting of a structured knowledge repository
that supports the model developer in extending the set of commonly used PDs by the PDs
specific to a model (or a set of models from an application domain). New PDs are defined
in terms of existing ones, and knowledge of UMs and scaling factors is automatically
expanded to cover newly defined PDs.

6.1 Building a repository of knowledge about dimensions and units

An important implementation issue is related to creating and editing knowledge about
PDs and their UMs. From a user perspective, this process should be easy and as error-free
as possibly. In particular, many typing errors in PD definitions can be avoided if a model
developer follows a structured process in which the PD components of new definitions
are chosen from automatically generated lists.

Because of the two-level organization of the knowledge representation, there are two
steps of PD definitions: one for gPDs, and one for the iPDs.

Defining a generic PD

A definition of a gPD can be expressed as a product of previously defined PDs with
real-number exponents. Therefore adding a PD definition is easy. We rely on the vector
representation of a PD:
PD.G←< (PD1, exp1) ... (PDn, expn) >
Such a vector can be defined from pairs(PDi, expi), i = 1, . . . , n provided by the

model developer. One can also change the UM associated withPDi so that the final UM

– 19 –

obtained as a product of individual UMs with the appropriate exponents reflects the model
developer’s preferences for a particular dimension.

The knowledge is initialized with information about the base PDs and UMs defined
in the SI. UM equivalence classes are associated with their corresponding PDs, and each
UM in the class has an associated scaling factor that relates it to the base UM for the class.

When defining a PD, the model developer chooses a previously defined PD from a list,
inputs a new integer exponent, and chooses a UM from the equivalence class for this PD.
After this, one can continue the process by adding more PDs to the definition, or close the
definition.

Adding an instance to a gPD

The model developer first selects a gPD from a list. By such a choice the gPD is defined
(and cannot be changed). The corresponding UM however can be changed by adding
scaling factors, and attributes that constrain possible iPD combinations and distinguish
between them.

As described in Section 3, PD instances can be automatically created using PD defi-
nitions, thus greatly reducing the burden on the model developer.

Homonymous attributes for different iPDs match by default. Attributes which have
different names, but should be considered compatible within a certain model (such asH+

andSOx) must be defined as compatible by a model developer.

Specifying model entities

Physical dimension and the corresponding UM of each model entity is defined by a cor-
responding PD instance. Selection of the desired iPD can be easily implemented, for
example through browsing a list. A structured knowledge representation can help this
process by allowing a hierarchical access to the PD repository: the user can select first
from a (smaller) list of gPDs, and then choose one of its instances. This knowledge rep-
resentation can be managed through a separate interface, supporting grouping of PDs into
semantically-motivated clusters (e.g. economic, financial, environmental) to further ease
the definition process when the list of generic PDs becomes too large.

6.2 Dimensional consistency analysis algorithm

The dimensional consistency algorithm, as opposed to the knowledge repository, is hidden
from the model developer. The dimensional analysis is incorporated into the model parser
which processes the model specification. Therefore, the dimensional inconsistencies are
treated in a similar way as other semantic errors in the model specification. SMT has
an efficient model parser therefore model developers are supported in interactive model
specification and analysis. The approach proposed in this paper builds on an efficient
vector representation of PDs, therefore dimensional analysis can be done quickly and
requires only a small part of the (small) computational resources needed for parsing model
specification.

– 20 –

6.3 Object-oriented implementation

SMT is implemented using the object-oriented programming paradigm. Therefore, the
dimensional consistency analysis can be implemented by two new classes, and extensions
of the two existing classes.

The newgPD classimplements the structure and methods for handling generic PDs.
The structure of an object contains fields specific for dimensions, includingName, Defi-
nition, UM. The methods in this class are designed to:11

• manage the corresponding gPD definition,

• build the UM from the definition,

• build the vector representation.

The newiPD classimplements the structure and methods for handling PD instances.
The structure of an object in this class follows PD definition and includes:Name, Defini-
tion, UM, Attribute. The methods in this class are designed to:

• make the link to objects of the gPD class such that the definition, UM and vector
representation can be automatically acquired from the corresponding object,

• interact with the model developer to acquire iPD’s attributes,

• interact with the model developer to allow for changing of scaling factors, as nec-
essary,

• recreate the vector representation to incorporate the new scaling factors and at-
tributes.

TheEntity classhandling the data structure and methods for model entities now man-
ages also the corresponding iPD, which in turn handles all necessary information about
the dimension and the corresponding units of measure.

The Relation class(inherited from theEntity class) manages the data structure and
methods for handling model relations. The relation class handles information about the
entities involved, and the relations between them. A new method in this class implements
the dimensional consistency analysis algorithm. This ensures that the defined relation
is consistent from the point of view of the PDs (and therefore also UMs) it combines.
Any discovered inconsistencies are treated similarly to handling other syntax or semantic
errors in a model specification.

7 Conclusions

We have presented a methodological framework for addressing two specific issues re-
lated to dimensional consistency in complex algebraic models: (i) existence of complex
physical dimensions which can be decomposable or non-decomposable depending on the
modeling context; (ii) existence of physical dimensions of the same type associated with
different objects.

11The actual implementation may reveal other necessary methods.

– 21 –

The proposed framework is composed of a structured knowledge representation de-
scribing physical dimensions and their associated units of measure that the model devel-
oper can create and edit in the course of model creation, and an algorithm for performing
dimensional consistency analysis that uses this structured knowledge. The essential ele-
ments of the knowledge representation include the definition of physical dimensions and
their units of measure in terms of simpler elements, and specification of the attributes as-
sociated with specific dimensions. These elements enable representation of any physical
dimension as a vector, wherein each element represents the contribution of a base dimen-
sion to the definition of the new one, including exponent, scaling factor and attributes. The
attributes capture information about the specific object to which a physical dimension is
associated, allowing consistent dimensional simplifications. The vector representation
supports the easy implementation of dimensional consistency verification.

We illustrated the proposed framework using examples from the RAINS family of
models and showed how it applies to the analysis of consistency of complex dimensions
and units of measure. Our goal is to implement this framework within the SMT modeling
environment and assess its performance and usability not only for RAINS models, but
also for other complex algebraic models.

References

Allen, Eric, David Chase, Victor Luchangco, Jan-Willem Maessen, Jr. Guy L. Steele.
2004. Object-oriented units of measurement.OOPSLA ’04: Proceedings of the 19th
annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications. Vancouver, BC, Canada, 384–403.

Amann, Markus, Janusz Cofala, Chris Heyes, Zbigniew Klimont, Reinhard Mechler, Max
Posch, Wolfgang Schöpp. 2004. The RAINS model. IIASA – Documentation of the
model approach prepared for the RAINS peer review 2004.

Amann, Markus, Marek Makowski. 2000. Effect-focused air quality management.
A. Wierzbicki, M. Makowski, J. Wessels, eds.,Model-Based Decision Support Method-
ology with Environmental Applications. Series: Mathematical Modeling and Applica-
tions, Kluwer Academic Publishers, Dordrecht, 367–398.

Bhargava, Hemant K. 1993. Dimensional analysis in mathematical modeling systems: A
simple numerical method.ORSA Journal on Computing5 33–39.

Bisschop, Johannes, Alexander Meeraus. 1982. On the development of a general algebraic
modeling system in a strategic planning environment.Mathematical Programming
Study1–29.

Bisschop, Johannes, Marcel Roelofs. 2006.AIMMS Language Reference. Lulu Press,
The Netherlands.

Bridgman, Percy William. 1922.Dimensional Analysis. Yale University Press.

Buckingham, Edgar. 1914. On physically similar systems: Illustrations of the use of
dimensional analysis.Physical Review345–376.

– 22 –

Cunis, Roman. 1992. A package for handling units of measure in lisp.ACM Lisp Pointers
5.

Denis, Pierre X. 2001. Unum, numbers with units in python.Data Systems In Aerospace,
DASIA - 2001. home.tiscali.be/be052320/Unum.html.

Fourer, Robert, David Gay, Brian W. Kernighan. 1990. A mathematical programming
language.Management Science36 519–554.

Geoffrion, Arthur. 1987. An introduction to structured modeling.Management Science
33547–588.

Gruber, Thomas. 1995. Toward principles for the design of ontologies used for knowledge
sharing.International Journal of Human-Computer Studies43907–928.

Gruber, Thomas, Greg Olsen. 1994. An ontology for engineering mathematics.Fourth
International Conference on Principles of Knowledge Representation and Reasoning.
Morgan Kaufmann, Bonn, Germany, 258–269.

Hilfinger, Paul N. 1988. An ada package for dimensional analysis.ACM Transactions of
Programming Languages Systems10189–203.

Karr, Michael, David B. Loveman. 1978. Incorporation of units into programming lan-
guages.Communications of the ACM21385–391.

Kennedy, Andrew. 1994. Dimension types. Donald Sannella, ed.,Programming Lan-
guages and Systems, 5th European Symposium on Programming (ESOP ’04), vol. 788.
Springer, Edinburgh, U.K., 348–362.

Macagno, Enzo O. 1971. Historico-critical review of dimensional analysis.Journal of
the Franklin Institute292391–40.

Makowski, Marek. 2005. A structured modeling technology.European Journal of Oper-
ations Research166615–648.

Novak, Jr., Gordon S. 1995. Conversion of units of measurement.IEEE Transactions on
Software Engineering21651–661.

Pinto, Helena Sofia, Jo ao P. Martins. 2001. Revising and extending the units of measure
”subontology”. IJCAI-01 Workshop on the IEEE Standard Upper Ontology. AAAI
Press, Seattle, Washington, USA, 43–50.

Schöpp, Wolfgang, Markus Amann, Janusz Cofala, Chris Heyes, Zbigniew Klimont.
1998. Integrated assessment of european air pollution emission control strategies.En-
vironmental Modelling and Software141–9.

Schulz, Charles A. 1990. Writing applications for uniform operation on a mainframe or
pc: A metric conversion program.APL Quote Quad20.

Sonin, Ain A. 2001. The Physical Basis of Dimensional Analysis. 2nd ed.,
http://web.mit.edu/2.25/www/pdf/DAunified.pdf.

– 23 –

Uschold, Mike, Mike Healy, Keith Williamson, Peter Clark, Steven Woods. 1998. On-
tology reuse and application.Proceedings of the International Conference on Formal
Ontology and Information Systems - FOIS’98. IOS Press, Amsterdam, NL, 179–192.

– 24 –

A A sample of PDs and UMs of the RAINS model entities

Level PD UM Definition Generic PD Attributes
generic mass kg – – –
generic time s – – –
generic length m – – –
generic substance mol – – –
generic area m2 < length2 > – –
generic volume m3 < length3 > – –
generic pollution

emission
kt < mass > – –

generic equivalence
coefficient

mol < substance > – –

generic pollution levelmol × ha−1 × year−1 <

equivalence coefficient,

area−1, time−1 >

– –

generic transfer coeffi-
cient

mol × ha−1 × year−1 < pollution level,

pollution emission−1 >

– –

generic concentrationmg ×m−3 < mass, volume−1 > – –
generic accumulation mg ×m−3 × hours < concentration, time > – –
generic O3 transfer co-

efficient
mg ×m−3 × hours× kt−1 < accumulation,

particulate emission−1 >

– –

...

specific SOx emission kt < mass > particulate emission [SOx]
specific NOx emission kt < mass > particulate emission [NOx]
specific NH3 emission kt < mass > particulate emission [NH3]
specific V OC emis-

sion
kt < mass > particulate emission [V OC]

specific eq(H+) mol < substance > equivalence coeff. [H+]
specific eq(N−) mol < substance > equivalence coeff. [N−]
specific eutrophication

level
mol × ha−1 × year−1 <

equivalence coefficient,

area−1, time−1,

pollution emission−1 >

pollution level [N−]

specific acidification
level

mol × ha−1 × year−1 <

equivalence coefficient,

area−1, time−1,

pollution emission−1 >

pollution level [H+]

specific O3 accumula-
tion

mg ×m−3 × hours < concentration, time > accumulation [O3]

specific O3NOx trans-
fer coefficient

mg ×m−3 × hours× kt−1 < accumulation,
particulate emission−1 >

O3 transfer coeff. [O3, NOx]

specific O3V OC
transfer coeffi-
cient

mg ×m−3 × hours× kt−1 < accumulation,
particulate emission−1 >

O3 transfer coeff. [O3, V OC]

...

Table 2: Description of PDs and their UMs in a RAINS model

