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Abstract 

In this study I tested whether AVIRIS data allowed for improved classification 

over synthetic Landsat TM data for a location on the urban-rural fringe of Colorado.  

After processing the AVIRIS image and creating a synthetic Landsat image, I used 

standard classification and post-classification procedures to compare the data sources 

for land use mapping.  I found that, for this location, AVIRIS holds modest but real 

advantages over Landsat for the classification of heterogeneous and vegetated land uses.  

Furthermore, this advantage comes almost entirely from the high spectral resolution of 

the sensor rather than the high radiometric resolution. 
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A Comparison of AVIRIS and Synthetic Landsat Data for Land Use 
Classification at the Urban Fringe 

Rutherford V. Platt 

Introduction 

In rapidly urbanizing areas, such as the Front Range of Colorado, maps fast 

loose their validity.  Large areas of prairie or farmland land can be overrun by 

residential development in a matter of months.  Remotely sensed data allows land use 

and land cover to be mapped quickly, relatively cheaply and frequently.  With improved 

mapping of rapidly changing areas, planners will be able to better address issues 

associated with urban sprawl.  However, the images used can significantly influence the 

accuracy of the classification. While it is commonly thought that greater spatial 

resolution is the key to better land use classification, finer spectral and radiometric 

resolution also have potential advantages that remain only partially explored.  

 

 Commonly, researchers use sensors such as those on Landsat or SPOT (Système 

Probatoire d'Observation de la Terre) satellites for mapping land use and land cover 

(Table 1).  Of these, the Landsat sensors have greater spectral resolution and a longer 

time series, while SPOT provides better spatial resolution.  Less traditional sensors may 

provide additional information that can improve mapping accuracy.  The Airborne 

Visible Infrared Imaging Spectrometer (AVIRIS), for example, produces images with 

224 spectral bands between .4 and 2.45 µm, compared to 6 bands for Landsat (not 

including the thermal band) and 4 for SPOT’s multispectral scanner.  Imagery with a 

large number of continuous spectral bands, such as AVIRIS, is called hyperspectral 

imagery.  Though hyperspectral imagery has been used in studies of mineralogical 

mapping and ecology, it has rarely (if ever) been employed for land use mapping of the 

urban fringe since it is more expensive and only available in limited areas. 
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Table 1: Sensor Characteristics 

  AVIRIS Landsat TM SPOT XS 

Platform Airborne Spaceborne Spaceborne 

Spatial Resolution 20 m 30 m 20 m 

Spectral Resolution 224 bands 6 bands 3 bands 

Radiometric Resolution High Moderate Moderate 

Launch 1992 1982 1986 

 

 

In this study, I tested whether AVIRIS data allowed for improved land use 

classification over synthetic Landsat data for a location on the urban-rural fringe of 

Colorado.   I expected that the fine spectral and radiometric resolution provided by 

AVIRIS would help distinguish land cover types that are easily confused – irrigated 

urban areas and irrigated crops, for example.  After processing the AVIRIS image and 

creating a synthetic Landsat image, I used standard classification and post-classification 

procedures to compare the data sources for land use mapping.  I found that AVIRIS 

holds modest but real advantages over Landsat for the classification of heterogeneous 

and vegetated land uses.  Furthermore, this advantage comes almost entirely from the 

high spectral resolution of the sensor rather than the high radiometric resolution. 

Resolution and Mapping Accuracy: The Case of the Urban Fringe 

Among the factors that may influence classification accuracy are a sensor’s 

spatial, radiometric and spectral resolution.  Spatial resolution describes the size each 

pixel represents in the real world.   For example, a satellite with 30 m resolution 

produces pixels that measure a 30x30 m area on the ground.  Radiometric resolution, in 

contrast, is the smallest difference in brightness that a sensor can detect.  A sensor with 

high radiometric resolution has very low “noise”.  Finally spectral resolution is the 

number of different wavelengths that a sensor can detect.  A sensor that produces a 

panchromatic image has very low spectral resolution, while one that can distinguish 

many shades of each color has high spectral resolution. 
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Generally, it is thought that spatial resolution is the most important factor of the 

three for classification accuracy of built environments.  For example, a study of 

Indonesia found that SPOT Multispectral (XS) images are superior to Landsat 

Multispectral Scanner (MSS) images for mapping of heterogeneous near-urban land 

cover because of SPOT’s superior spatial resolution (Gastellu-Etchegorry 1990).  The 

link between spatial resolution and classification accuracy, however, is sometimes 

tenuous.  In heterogeneous areas, such as residential areas, it has been shown that 

classification accuracies may actually improve by up to 20% as spatial resolution is 

decreased (Cushnie, 1987).  This occurs when the spectra in an urban environment 

blend to form an overall “urban signal” that can be easily distinguished from other land 

covers.   

 

Radiometric resolution – a function of the “noisiness” of a sensor -- may also 

influence classification accuracy.   Radiometric resolution varies significantly sensor-

by-sensor and band-by-band depending on the dynamic range and signal to noise ratio 

(SNR) of the instrument.  As a 10-bit sensor with a very high SNR, AVIRIS has 

superior radiometric resolution to the 8-bit Landsat sensors.  Within the Landsat family, 

the Extended Thematic Mapper (ETM+) in Landsat 7 has a higher SNR than the 

Thematic Mapper (TM) in Landsat 4 and 5.   While the advantages of high radiometric 

resolution are well documented in domains such as mineralogical mapping (e.g. 

Smailbegovic et al. 2000), for land use mapping these advantages depend on the classes 

of interest.  For example, mapping urban versus rural land may not require as high 

radiometric resolution as distinguishing irrigated urban land versus irrigated cropland. 

 

Finally, spectral resolution may influence accuracy of land use classification.    

One study showed the benefits of increased spectral resolution in classification of the 

urban fringe.  The study used SPOT XS data to map farmland and urban land uses in 

New Zealand (Gao and Skillcorn 1998).  In this case, using multispectral imagery 

improved the classification because vegetative land covers were easier to classify with 

an infrared band.  In cases where different land uses have similar but separable spectra, 

high spectral resolution will likely improve mapping accuracy.  When land uses are 

either spectrally inseparable or clearly distinct, however, additional spectral resolution 
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may not improve classification accuracy.  In these cases, the extra information could 

add heterogeneous “clutter” that complicates classification.   

 

These studies show that increasing spatial/radiometric/spectral resolution may 

improve classification accuracy for land use mapping, but the net benefits often depend 

on the particular scene and classification system.  In this study AVIRIS data was 

compared with synthetic Landsat TM and ETM+, all fixed at 20-meter spatial 

resolution, to determine the possible effects of increased spectral and radiometric 

resolution for land use mapping at the urban fringe in Colorado.   

Image Processing 

 An AVIRIS flight line was acquired for September 30
th

, 1999 along the northern 

Front Range of Colorado.  A single image cube was extracted that encompasses the 

northern edge of Fort Collins along with Horsetooth Reservoir and agricultural land 

(Figure 1).   

 

 

 

 

 

 

 

 

 

Figure 1: A color-infrared composite of an AVIRIS image of Fort Collins and 
surroundings.  
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In order to convert at-sensor radiance into surface reflectance, an atmospheric 

correction was performed with High-Accuracy Atmosphere Correction for 

Hyperspectral Data (HATCH).  Using spectral features within the data, HATCH creates 

pixel-by-pixel estimates of atmospheric composition.  HATCH takes advantage of 

recent advancements in atmospheric radiative transfer, resulting in highly accurate 

atmospheric corrections (Qu et al. 2000). 

 

In this study, an AVIRIS image was compared to synthetic Landsat images 

derived from AVIRIS.  This method eliminated several sources of error that would be 

present if a real Landsat image were used.   First, AVIRIS images from mid-1999 and 

earlier contain unsystematic distortions introduced by the pitch, yaw and roll of the 

aircraft (A device now sits on the sensor and records these movements so that the 

distortions may later be removed from the images).  As a result, older AVIRIS images 

are difficult to register to other images with any precision.  Secondly, the spatial 

resolution of AVIRIS (20 meters) is finer than that of TM and ETM+ (30 meters), 

necessitating a resampling procedure that would degrade and possibly introduce 

additional distortions to the image.  Finally, the two images would be recorded at 

different times of the day, on different days, with different atmospheric conditions that 

would need to be corrected with different algorithms.  Though it is likely that the 

cumulative effects of these differences would be small, they would no doubt introduce 

errors to the comparison. 

 

 A solution to all of these issues is not to use a Landsat image at all, but rather 

create a synthetic image that approximates its output.  AVIRIS has 224 spectral bands 

between .4 and 2.45 µm at 10 nm intervals, and a spatial resolution of approximately 20 

meters.  In theory, then, an AVIRIS image contains all the information of a Landsat 

image for a given area.  The atmospherically corrected AVIRIS image was used to 

create a synthetic TM and ETM+ image with a two-step process.  First, the appropriate 

AVIRIS bands were combined to approximate the following Landsat bands: 

 

Band 1: 0.45 - 0.52 µm (blue) 

Band 2: 0.52 - 0.60 µm (green)  
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Band 3: 0.63 - 0.69 µm (red) 

Band 4: 0.76 - 0.90 µm (near infrared) 

Band 5: 1.55 - 1.75 µm (mid-infrared)  

Band 7: 2.08 - 2.35 µm (mid-infrared) 

 

Approximately 7 AVIRIS bands must be combined to form a single synthetic 

Landsat band, but these cannot be equally weighted.  Each detector is most sensitive to 

the wavelength at the center of the sensor bandwidth, and progressively less sensitive to 

higher and lower wavelengths (Figure 2).  Therefore the AVIRIS bands that fell in the 

middle of a Landsat band were weighed more than those that fell toward the edge of the 

band, according to a gaussian curve. 

 

Figure 2: Sensitivity of a Sensor Band to a Range of Wavelengths 

 

 In the second step, the synthetic TM images were degraded to approximate the 

radiometric resolution present in actual TM and ETM+ (Table 2).  AVIRIS has a far 

superior SNR than either Landsat sensor and therefore may outperform them even if 

spatial and spectral resolution has been equalized.  The standard deviation of the 

spectrum over a fairly homogenous area, in this case a lake, provided an estimation of 

the noise present in each band of TM and ETM+.  Gaussian noise images were created 

with a standard deviation equal to the noise of each band of each sensor over and above 

that of AVIRIS.  These were added to each synthetic band to approximate the noise in 

the actual TM and ETM+ sensors.   
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Table 2: Standardized Noise Levels 

Band # AVIRIS* ETM+ TM 

1 1 2.64 11.4 

2 1 7.07 16 

3 1 7.79 8.43 

4 1 6.48 8.06 

5 1 10.41 25.4 

7 1 16.38 38.3 

 

* AVIRIS aggregated to Landsat bands. 

 

 Finally, the dynamic range of the images were degraded from 10 bits to 8 bits so 

that that values could theoretically range between 0-255 instead of 0-1023.  The 

resulting synthetic images very closely approximated the spectral and radiometric 

resolution of actual Landsat images, only with a spatial resolution of 20 meters rather 

than 30 meters. 

To reduce processing time and noise, a Minimum Noise Fraction (MNF) 

transform (Green et al. 1988) was performed on the AVIRIS cube and synthetic Landsat 

images.  An MNF transform, similar to a principal components transform, derives a 

series of uncorrelated bands and segregates noise in the data.  Unlike a principal 

components transform, a MNF transform equalizes the noise across bands so that image 

data with variance lower than noise is not hidden in higher bands.  All MNF bands with 

an eigenvalue of less than 2 were eliminated since these bands contain mostly noise.  

The number of remaining bands equals the dimensionality of the image. In this case, the 

synthetic TM data had a dimensionality of 5, the synthetic ETM+ data had a 

dimensionality of 6, and the AVIRIS data had a dimensionality of 30.  All subsequent 

analysis was conducted on these three reduced MNF images. 
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Classification Methodology 

Myriad classification methods exist, and each with different benefits and 

restrictions.  Unsupervised classification automatically separates land use into a number 

of computer-defined categories.  Supervised classification assigns each pixel to a class 

by matching its spectra to that of a defined class.   Linear spectral mixing derives pixel-

by-pixel measures of “abundance” for pure materials.   To confuse matters, each of 

these general classification methodologies has a number of different algorithms.   

 

This study used a variety of supervised classification algorithms but focused on 

a single one: the maximum likelihood (ML) classifier.   ML is a widely accepted 

classification method because of its robustness and simplicity.  The classifier operates 

by determining the probability that a pixel belongs to each class and then assigns the 

pixel to the class with the highest probability (for technical details see Richards 1996).  

It assumes that the spectrum of each class is normally distributed and requires that the 

class be defined by a minimum n+1 training pixels for n spectral bands.  Other 

classifiers, such as the Mahalanobis Distance and Minimum Distance classifiers, 

produced similar results, but a lower overall accuracy than ML and so are not fully 

reported.  Furthermore, a method of linear spectral mixing was tried, but with mixed 

results (see Appendix 1).   

 

Using the ML classifier and training samples for 8 classes, the images were 

classified and a confusion matrix was generated for each classified image.   The 

classification system was a modification of Anderson Level II (Anderson et al. 1976) 

and used the following land use categories:  residential, commercial/industrial, water, 

irrigated cropland, fallow, shrub and brush rangeland, herbaceous rangeland and 

grassland, irrigated urban.  Land uses that did not appear in the scene were eliminated 

(e.g. forest land), others were merged (commercial and industrial) and two new ones 

were created (fallow and irrigated urban).   Training samples with a minimum of 300 

pixels were defined using the interiors of relatively homogenous features in each land 

use class.  Next, the supervised classification was compared to a ground truth image 

with the same categories.  This ground truth image was created with a hand 
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classification of a USGS 8-meter digital orthophoto quarter quad (DOQQ), taken on 

October 4
th

 1999, 5 days after the AVIRIS flight.  Information from the national land 

cover data set (NLCD) and several bands of the AVIRIS data itself were used in the 

hand classification process when the land use was not clear from the DOQQ alone.   

Results 

Accuracy of a properly conducted supervised classification varies by category 

and typically ranges between 60%-90% depending on the classification scheme, the 

classifier, and the image itself.   Using ancillary data, textural data, or post-classification 

rules may further increase the classification accuracy.  These were not used in this 

study, however, since the goal was not to maximize classification accuracy, but to 

compare the performance of different image types with a commonly accepted 

classification procedure.   Since the accuracy of the synthetic Landsat TM was virtually 

identical to that of the synthetic Landsat ETM+, only results for TM will be shown.   

Visually, the ML classifications produced similar results, though the AVIRIS 

classification appears to have smoother edges and fewer isolated pixels (Figure 3).  The 

accuracy assessment verified that the AVIRIS classification was superior to that of the 

synthetic TM image (Table 3).  This remained true with all four classifiers tested, 

though not all classifiers performed the same.   

Table 3: Classification Accuracy 

AVIRIS Synthetic Landsat Difference 

  Accuracy Kappa Accuracy Kappa Accuracy Kappa 

Parallelpiped 35 0.25 30 0.19 5 0.06 

Minimum Distance 72 0.64 64 0.54 8 0.10 

Mahalanobis Distance 69 0.61 53 0.43 17 0.18 

Maximum Likelihood 73 0.65 68 0.59 5 0.06 

 

  

 9



 

 

 

 

 

 

 

 

 

 

(a) AVIRIS   

 

 

 

 

 

 

 

 

 

 

(b) Synthetic TM 

Figure 3:  Supervised Classification Using (a) AVIRIS and (b) Synthetic TM.  

Water is blue, residential is pink, urban irrigation is light green, irrigated agricultural is 
dark green, fallow is orange, commercial/industrial is white, rangeland is brown, 
grassland is yellow. 
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Since ML was the most accurate and conservative, all subsequent results are 

reported from this classification.  Using ML, classification of AVIRIS improved 5% 

over synthetic Landsat, while the Kappa coefficient (which compensates for correct 

classification by chance) increased from .59 to .65.  With other classifiers the difference 

was even greater – the Mahalanobis Distance classifier provided a 17% increase in 

performance for AVIRIS.  Overall, the ML classifier produced the highest classification 

accuracies for both AVIRIS and synthetic Landsat, and the difference between the two 

was the smallest.   

 

At the class level, changes in classification accuracy varied widely (Table 4).    

Producer’s accuracy measures the chance that a pixel is classified as ‘x’ given that the 

ground truth indicates that it is ‘x’.  It is sensitive to errors of omission.  User’s accuracy 

describes the chance that the ground truth images indicates that it is ‘x’ given that it has 

been classified as ‘x’.  It is sensitive to errors of commission.  

 

Table 4: Percent Accuracy by Class (ML Classification) 

Producer Accuracy User Accuracy 

  AVIRIS TM Change AVIRIS TM Change 

Residential 82 71 11 74 75 -1 

Shrub/Brush 71 75 -5 92 75 18 

Urban Irr 63 56 7 49 33 17 

Fallow 66 77 -11 87 29 58 

Herbaceous 59 55 4 70 65 5 

Com/Indust 71 60 11 49 59 -9 

Water 87 91 -4 100 99 0 

Irrigated 72 68 4 73 36 37 

 

 Using the AVIRIS image, the producer accuracy improved in 5 of 8 classes but 

decreased for the other three.   Built areas – residential and commercial/industrial – both 

improved by 11 percentage points, while urban irrigated areas improved by 7.   At the 

same time, the classification accuracy of fallow decreased by 11 and shrub/brush 

decreased by 5.  For these land covers, the classification using AVIRIS failed more 
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often to identify the classes.  Because a large portion of the image is composed of the 

classes that improved, however, the AVIRIS led to an improvement in overall 

classification accuracy. 

  

User’s accuracy benefited much more from AVIRIS than did producer’s 

accuracy.  Of the 8 classes, 4 strongly benefited from AVIRIS – fallow improved by 58 

percentage points, while irrigated improved by 37, shrub/brush by 18 and urban 

irrigation by 17.  Only commercial/industrial substantially decreased (-9%) in user’s 

accuracy using AVIRIS.  This indicated that there were fewer “false positives” of these 

vegetation and soil-based classes but more “false positives” for commercial areas. 

  

The change in the confusion matrix between the two classifications reveals the 

details of the improvement in classification (Table 5).  Along the diagonal, numbers 

indicate the change in classification accuracy by class for AVIRIS over synthetic 

Landsat.  On the off-diagonal numbers show the change in misclassification; a negative 

number indicates that the classification does not confuse these classes as often using 

AVIRIS.  Reading from top to bottom, one can assess where classification accuracy 

increased and where it decreased using AVIRIS.  Overall, AVIRIS improved the ability 

to distinguish several easily confused classes including residential versus vegetated land 

uses; commercial/industrial versus fallow, shrub/brush, and residential; and urban 

irrigation versus irrigated crops and herbaceous rangeland.    

Table 5:  Change in Classification Matrix (ML Classification) 

Synthetic TM   
AVIRIS  

Residen-
tial 

Shrub/ 
Brush 

Urban 
Irrigation 

Fallow 
Herbac-
eous 

Com/ 
Indust 

Water 
Irrigated 
Crops 

Residential 11 0 6 2 10 -3 -3 7 

Shrub/Brush -3 -5 -1 -3 -8 -4 -1 -1 

Urban Irrigation -2 0 7 0 -2 0 1 -6 

Fallow -2 -7 -1 -11 -7 -4 0 0 

Herbaceous -4 3 -5 1 4 0 0 -4 

Com/ Indust 0 9 2 11 5 11 8 1 

Water 0 0 0 0 0 0 -4 0 

Irrigated Crops -1 0 -8 0 -1 0 0 4 
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The net improvement did not take place in all categories, however.  Using 

AVIRIS, the classification accuracy of fallow decreased due to increased confusion with 

commercial/industrial.  Shrub/brush was also more likely to be confused with 

commercial/industrial, though less likely to be confused with fallow.  

 

Discussion 

The classifications of the two images contained similar types of 

misclassifications.  Residential areas were sometimes confused with vegetated land uses 

because both have mixtures of soil and vegetation.  Similarly, commercial/industrial 

areas were sometimes confused with fallow and shrub/brush because all of these land 

uses may contain highly reflective exposed ground.  Water was misclassified in places 

because differences in chlorophyll content, depth and turbidity sometimes gave it 

similar spectral characteristics to other classes.  Urban irrigation was confused with 

irrigated crops and herbaceous rangeland because all have leafy plants high in 

chlorophyll that reflect strongly in the infrared.  Since there are often many-to-one or 

one-to-many relationships between a spectrum and land use, these errors are common 

under almost any classification system or sensor.  However, beneath the similarities, 

there were important differences between the classifications.  

  

Overall, the results support the hypothesis that AVIRIS data contained 

information over and above synthetic Landsat that helped to improve classification 

accuracy for land use in this image.  In terms of producer’s accuracy, this improvement 

appeared to be most pronounced in land use classes with a large amount of vegetation 

such as residential land, urban irrigation, herbaceous grassland, and irrigated 

agriculture.  The improvement in these classes most likely occurred because the signal 

of vegetation – part of the mix for all these classes – contained some distinction that 

only AVIRIS could pick up.  This could be a distinct vegetation type, moisture content, 

stress level or other spectral characteristic that set a given land use apart from another 

land use.  In addition, improvements in producer’s accuracy tended to be in spectrally 

heterogeneous classes such as residential and commercial/industrial.  Perhaps the 
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AVIRIS image was able to detect the full range of features that appeared in these 

classes.  In addition to changes in producer’s accuracy, the user’s accuracy improved 

across most classes.    The “false positives” decreased, in some cases dramatically, 

again perhaps because subtle signatures in the spectrum distinguished easily confused 

classes. 

 

The decrease in accuracy for certain classes is more difficult to explain.  For 

example, the producer’s accuracy for fallow, water, and shrub/brush decreased with 

AVIRIS.  In these fairly homogenous land uses, perhaps AVIRIS provided spurious 

spectral “clutter” that simply complicated classification, and provided no additional 

useful information over synthetic Landsat.  Since the ML classifier was forced to choose 

a class for every pixel (e.g. no unclassified pixels), the additional information could 

potentially have decreased classification accuracy.  The decrease in user’s accuracy for 

commercial and industrial land is also difficult to explain.  It is possible that certain 

spectral similarities between fallow and commercial/industrial are not evident in the 

wavelengths included in synthetic Landsat.  In these cases, spurious similarities between 

the land uses would only be detected by AVIRIS. 

  

Conclusion  

 In this study, a supervised classification with AVIRIS was more accurate than 

one with synthetic Landsat TM for land use classification at the urban fringe.   Which 

image a researcher should choose, provided both are available, largely depends on the 

purpose of the study.  If the goal is to accurately identify existing built and highly 

vegetated land covers – important for mapping sprawl, for example -- AVIRIS holds an 

apparent advantage.  If the objective is to minimize “false positives” for land uses with a 

mix of soil and vegetation, AVIRIS again holds an advantage.  On the other hand, 

AVIRIS produced a greater number of “false positives” for commercial/industrial land 

and performed poorly in classifications of relatively homogenous, less-vegetated land 

uses such as fallow and shrub/brush.  If these are the classes of greatest interest, perhaps 

Landsat should be used.   
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Since classification accuracy is dependent on a number of factors besides 

resolution, caution should be used in extending the conclusions of this study to other 

research.  For example, other classification systems such as the Food and Agriculture 

Organization’s Land Cover Classification system (LCCS) or the V-I-S system will 

clearly yield different classification accuracies for the two sensors (see Di Gregorio 

2000 and Ridd 1995 for a description of these classification systems).  Furthermore, a 

different mix of land covers could be easier or more difficult to distinguish than those in 

this Colorado scene.   

  

A final finding of this study is that the overall advantage of AVIRIS came not 

from its high radiometric resolution, but from its high spectral resolution.  This further 

weakens the argument that land use mapping often does not benefit by high spatial 

resolution imagery.  Furthermore, it indicates that future satellites used for land use 

mapping, such as upcoming Landsat missions, should include detectors with high 

spectral resolution.  
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Appendix 1: Linear Mixing With Mixture Tuned Matched Filtering 

 In addition to the supervised classification described in this study, I compared 

the performance of the two images using Mixture Tuned Matched Filtering (MTMF), a 

specialized procedure for linear spectral mixing.  Unlike ML, which classifies pixels in 

hard categories, MTMF derives the abundance of specified endmembers.  The results 

were mixed, and the techniques are new so these procedures were not used in the main 

study.  They could, however, be used in later research.  

 

To conduct the MTMF, the “hourglass” procedure was used (see Boardman 

1995).  This procedure consists of three steps: an MNF transform, a pixel purity index, 

and the actual MTMF mapping process.  The MNF transform is similar to a principal 

components transform only it ensures that each band has an identical noise level.  The 

pixel purity index (PPI) is an iterative procedure that helps find pixels that are the 

spectrally pure, rather than mixtures.   These pixels were then displayed in an n-

dimensional visualization (n is equal to the number of bands in the MNF transformed 

data), which projects a rotating plot the pure pixels onto the screen.   Using the n-d 

visualization and the image, I selected pixels representing endmembers or “pure” 

materials.   

 

 The final step of the “hourglass” procedure is to map endmembers.  The 

maximum number of endmembers that may be identified in an image is equal to n+1, 

where n is the number of bands.  In this case, the AVIRIS image had 16 endmembers, 

10 of which were associated with urban features, 3 of which were associated with water 

and shore and 3 of which were associated with irrigated agriculture.  The TM image, in 

contrast, consisted of 4 endmembers: water, irrigated agriculture, grassland, and built.   

Images of the abundance of these materials were generated using the MTMF algorithm.  

Finally, land use was mapped by creating a R-G-B composite, using red for “built” 

abundance, green for “irrigated agriculture” abundance and blue for “water” abundance.  

When a single category contained multiple endmembers, these abundance images were 

added together.  For example, in the case of AVIRIS the abundance images of all 10 
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endmembers associated with the built environment were summed to create a single 

image of abundance of built materials.   

 

It was clear that this method was probably not appropriate for heterogeneous 

land covers.  The AVIRIS image showed gross misclassification throughout (Figure 4).  

A handful of irrigated agricultural plots were correctly identified (in green), but others 

were mistaken for built areas.  Water was poorly mapped because lakes have different 

spectral signals depending on depth, algae content and other factors.  Built areas were 

poorly mapped, perhaps because of the lack of representitiveness of the built 

endmembers.  These were derived from large urban structures (parking lots, strip malls, 

etc.), rather than from residential structures, which are generally mixed with trees and 

vegetation and thus not the “purest” pixels.  These residential structures may be 

composed of different materials. 

 

 

Figure 4: Abundance of endmembers from AVIRIS image.   

Red is urban, green is irrigated agriculture and blue is water. 

 

Surprisingly, the MTMF procedure produced better results with TM than with 

AVIRIS (Figure 5).  Water was well classified.  Built areas appeared as red and 

mixtures of red, though were sometimes difficult to see. Irrigated agricultural land 

appeared as dark green, while fallow fields with little living vegetation appeared as light 

green.   
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Figure 5: Abundance of endmembers from TM image.   

Red is urban, green is irrigated agriculture and blue is water. 

  

 Methods of linear mixing show great promise for mapping of land use, but 

several problems remain.  First, the maps created by this procedure are visual 

representations that are difficult to interpret quantitatively or to validate.  To address 

this, statistical links could be drawn between the abundance of endmembers and land 

uses.  However, this would move the procedure back into the realm of supervised 

classification and eliminate the additional information that MTMF derives.  A second 

problem is that, surprisingly, the procedure did not work well with AVIRIS data.  One 

possible explanation for this is that there is a substantial amount of non-linear mixing of 

the endmembers detected by AVIRIS.  For example, a highly reflective surface could 

“draw up” a pixel’s spectrum even though it may cover only a small portion of the 

pixel.  This would cause a pixel to show high abundance for small or spurious land 

covers.  Because of these current limitations, the MTMF procedure was not appropriate 

for this study.  
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