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Abstract

This paper aims to give an overview of the possibilities for using automatic differentiation
for uncertainty analysis. It presents an introduction to the general theory of automatic
differentiation. Following this an overview of sensitivity analysis and nonlinear regression
is given to provide the reader with a clear understanding of both general concepts and
their relation to automatic differentiation.
Special attention is paid to the effect of model nonlinearity on the quality of the

obtained estimates and it is investigated how automatic differentiation can be used to
improve the estimates. Further the new concept of standard error sensitivity is introduced
and formulas for efficient computation are derived.
Finally the Oak system is discussed. This system is an implementation of the the-

ory discussed in this paper using the ADOL-C library for automatic differentiation. To
demonstrate the possibilities of this system several models used at the IIASA Sustainable
Boreal Forests Project have been investigated.
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Automatic Differentiation and Uncertainty

Analysis

Mark Huiskes(huiskes@iiasa.ac.at)

1 Introduction

In this paper we investigate how automatic differentiation can be used for uncertainty ana-
lysis. Automatic differentiation, as it is now known, consists of a collection of techniques
to obtain derivatives of functions in the form of computer code. These techniques produce,
by varying means depending on their nature, an exact representation of the derivative. It
differs however from symbolic differentiation in the fact that the result is not an analytic
expression, but rather a sequence of elementary computing operations. In the next section
we present an overview of the various forms of automatic differentiation and explain the
general theory behind it.
In the second section we turn to sensitivity analysis. We investigate how automatic

differentiation can be used to obtain sensitivity information of algorithms in the form
of computer code. We consider how uncertainty in independent variables is propagated
through a model to the uncertainty in the dependent variables. We also present the new
concept of error sensitivity and expressions for its computation. As an illustration of how
this theory is used in practice we consider a model that is used to estimate phytomass of
Siberian forests.
Then, in section 4, we move on to the estimation of parameters in nonlinear models

and its associated uncertainty analysis. We show how automatic differentiation is useful
both for the actual parameter estimation itself and for the evaluation and extension of the
reliability of the obtained estimates.
In section 5 we give a short description of Oak, a system for performing uncertainty

analysis by means of automatic differentiation. It consists of a graphical user interface
connected to routines for optimization, nonlinear regression and sensitivity analysis.
At the end of the paper we have included a bibliography on automatic differentiation.

This bibliography is divided into general theory, applications and implementations of au-
tomatic differentiation. It also contains literature on so-called adjoint modelling, which is
closely related to automatic differentiation.

2 Automatic differentiation

The problem of the computation of first and higher order derivatives of functions with m
components and n independent variables arises in various contexts, e.g. that of optimiza-
tion, nonlinear equation solving, bifurcation studies, and as discussed in this paper, also
in uncertainty analysis.
The most widely used method to obtain derivatives is that of approximation by finite

differences. Another possibility is by means of symbolic differentiation. It has been shown
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however that, for general functions, these methods are less efficient than automatic differ-
entiation. See [Gri89] for a discussion. Automatic differentiation can be applied to large
and complicated functions, is computationally more efficient, and yields exact results.
The collection of techniques referred to as automatic differentiation (AD) share the

common property of operating on functions that are presented in the form of computer
code. Such functions consist of a sequence of elementary arithmetic operations, e.g. addi-
tion, subtraction, multiplication and division, and standard univariate functions, e.g. the
exponential and the sine function.
We use the following notation, as introduced in [Gri89], to denote a computational

decomposition algorithm of a function R : X ⊂ IRn → IR, y = R(x)

For i = n+ 1, n+ 2, . . . , N
xi=fi <xj>j∈Ji

y=xN

where
Ji ⊂ {1, 2, . . . , i− 1} for i = n+ 1, n+ 2, . . . , N.

The n independent variables, i.e. the variables on which R depends, are labelled
x1 through xn. The algorithm consists of a sequence of computations of intermediate
variables xi by means of the functions fi, i = n + 1, . . . , N . Each fi may depend on
variables, independent or intermediate, which have an index lower than i. The indices
of the variables on which fi depends are given by the set Ji. The final quantity that is
computed must be the function value y = R(x) = xN , called the dependent variable. In
[JM88] it is shown that almost all functions of practical interest can be represented as a
composition of this form.
In practice it is not necessary to write the computer code explicitly in the form of such

a representation. Current AD packages are able to transform code as it is usually written,
e.g. including assignment statements consisting of a composition of elementary functions,
and including for-loops and if-statements.
The computational decomposition can be visualized by means of a computational

graph. See Fig. 1 for a computational graph of the function y = cos(x1+x2) ·exp(3x3+2).
Each vertex corresponds to a variable. There is a connection between xi and xj (for i > j)

f <5 x3>

f <x7 5>

f < ,x x8 6 7 >

f <6 x4 >

x1 x2>< ,f4

x1 x2 x3

x x

x x

x

4 5

6 7

8

=

=

=

=

=

Figure 1: Computational graph of y = cos(x1 + x2) · exp(3x3 + 2), where f4 <x1, x2>= x1 + x2,
f5 <x3>= 3x3 + 2 , f6 <x4>= cos(x4), f7 <x5>= exp(x5) and f8 <x6, x7>= x6x7

if j ∈ Ji, i.e. if the function fi depends on xj . Since each xi may only depend on variables
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with smaller index the computational graph is acyclic.
Notice that both the computational decomposition and the corresponding computa-

tional graph are not unique.
Depending on how the derivative is computed in relation to the computational graph,

we can discern the two main modes of automatic differentiation. These are the forward
and reverse modes of automatic differentiation. For a detailed discussion of the relation
between the computational graph and automatic differentiation, see [Iri84].
In the remaining part of this section, we first discuss the forward and reverse modes of

automatic differentiation. Then, in section 2.3, we consider the computational complexity
of these two modes. In section 2.4, we discuss the automatic evaluation of higher order
derivatives. Finally, in section 2.5 we discuss the main implementation types of automatic
differentiation.

2.1 The forward mode of automatic differentiation

The forward mode of AD is based on a straightforward application of the chain rule. With
each vertex of the computational graph, i.e for each variable, we associate a derivative
with respect to the n independent variables:

Dxi = (
∂xi
∂x1
, . . . ,

∂xi
∂xn
), for i = 1, . . . , N. (1)

We have
Dxi = ei for i = 1, . . . , n, (2)

where ei is the i-th Cartesian basis vector of IR
n. The derivatives associated with the

other variables can be computed from previously computed derivatives by using

(Dxi)k =
∂xi
∂xk

=
∑

j∈Ji

∂fi
∂xj

∂xj
∂xk

=
∑

j∈Ji

∂fi
∂xj
(Dxj)k. (3)

We start from the derivatives associated with the independent variables and proceed
through the computational tree until finally the derivative associated with the depen-
dent variable is computed. This explains the term forward mode. The process can be
summarized by the following algorithm for the simultaneous evaluation of a function R
and its derivative DR

For i = 1, 2, . . . , n
Dxi=ei

For i = n+ 1, n+ 2, . . . , N
xi=fi <xj>j∈Ji
For k = 1, 2, . . . , n

(Dxi)k=
∑

j∈Ji

∂fi
∂xj
(Dxj)k

R=xN
DR=DxN

Algorithm 2.1: Forward mode of automatic differentiation.
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2.2 The reverse mode of automatic differentiation

As will be shown later it is possible to obtain the derivative of a scalar function much
more efficiently by proceeding through the computational graph in the reverse direction.
To this end we now associate with each variable a scalar derivative

x̄i =
∂xN
∂xi

for i = 1, . . . , N, (4)

which is called the adjoint variable associated with xi. Notice that we have x̄N = 1 and

x̄i =
∂R

∂xi
for i = 1, . . . , n. (5)

This means that the derivative of y = R(x) is equal to the adjoint variables associated to
the independent variables.
Let

Ij = {i|j ∈ Ji} for j = 1, . . . , N. (6)

Ij is the set of indices of those variables that depend directly on xj. For all i ∈ Ij we have
i > j. Now consider xN as a function of xj, i.e.

xN = xN <xi(xj)>i∈Ij ; (7)

by the chain rule we then find

x̄j =
∂xN
∂xj

=
∑

i∈Ij

∂xN
∂xi

∂fi
∂xj
=
∑

i∈Ij

∂fi
∂xj
x̄i. (8)

It follows that the adjoint variable corresponding to xj can be computed once all x̄i with
i > j are known. The following algorithm for reverse automatic differentiation is based
on this structure.

For i = n+ 1, n+ 2, . . . , N
xi=fi <xj>j∈Ji
x̄i = 0

R = xN
xN=1
<x̄i>

n
i=1=0

For i = N,N − 1, . . . , n+ 1

x̄j=x̄j +
∂fi
∂xj
x̄i for all j ∈ Ji

Dy=<x̄i>
n
i=1

Algorithm 2.2: Reverse mode of automatic differentiation.

The functions fi are visited in reverse order. For each j ∈ Ji it can be seen from
(8) that the expression for x̄j contains a term

∂fi
∂xj
x̄i. Notice that when the function fi

is visited, x̄i has already been calculated. Other orders of visitation are also possible
provided that this same requirement is met. (These could be favourable in particular
implementations, for instance to reduce cache misses.)
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2.3 The computational cost of automatic differentiation

We now consider the computational cost of the algorithms discussed above. First we
assume that the cost of evaluating the response function R is equal to the sum of the costs
of evaluating the functions of the computational decomposition, i.e.

cost(R) =
N
∑

i=n+1

cost(fi) (9)

For the forward mode of automatic differentiation, we then have from Algorithm 2.1

cost(R,DR) =
N
∑

i=n+1

(cost(fi, Dfi) + nni cost(mult + add)) (10)

The cost ratio is defined by
cost(R,DR)

cost(R)
, (11)

i.e. the ratio of the cost of evaluating both R and its first order derivative DR and the
cost of evaluating R itself.
If we assume that there exists a constant c for which the cost of evaluating a function

fi can be bounded for every i by the cost of cni arithmetic operations, then it follows that

cost(R,DR)

cost(R)
≥ 1 +

n

c
(12)

This linear growth of the computational cost of a derivative of forward automatic differ-
entiation is of the same order as the cost for evaluating finite differences.

In [Gri89] it is shown that the cost ratio for reverse automatic differentiation is inde-
pendent of the number of independent variables. From Algorithm 2.2, we find

cost(R,DR) =
N
∑

i=n+1

(cost(fi, Dfi) + ni cost(mult + add)) (13)

and define

ω = max
n<i≤N

cost(fi, Dfi) + ni cost(mult + add)

cost(fi)
. (14)

We now find that the cost ratio satisfies

cost(R,DR)

cost(R)
=

N
∑

i=n+1
(cost(fi, Dfi) + ni cost(mult + add))

N
∑

i=n+1
cost(fi)

≤ ω. (15)

This means that the cost ratio is bounded by a ratio for one of the fi. If we now suppose
that the fi are restricted to the elementary arithmetic operations and standard univariate
functions, we can compute the worst case ratio of these functions. The highest ratio is a
limit for the cost ratio. It is shown in [Gri89] that for the sine and cosine function the
ratio lies just above two and for most other system functions is close to one. Multiplication
turns out to be the most expensive arithmetic operation with a cost ratio just under 5. It
thus follows that the cost of evaluating a function and its derivative by means of reverse
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automatic differentiation is at most 5 times the cost of just evaluating the function itself.
In practice one can expect this ratio to be even smaller.
For a thorough discussion of the costs of computing derivatives of functions with more

than one component we refer to [Gri93]. The paper also goes into the memory requirements
of the algorithms. In general it can be concluded that reverse automatic differentiation
is preferable if the number of independent variables is higher or not far less than the
number of dependent variables. The characteristics of the forward method become more
favourable if there are far more dependent than independent variables. Mixed approaches
are also possible, as for instance described in [Iri84].
In [Gri93] bounds are derived for the memory requirements of the forward and reverse

method of automatic differentiation. The memory requirement of the forward mode is
approximately linear in the number of independent variables compared to the memory
requirement of the original code. Since for the reverse mode of automatic differentiation
the entire structure computational graph must be stored, the memory requirement for
the reverse mode is potentially much larger. In a standard implementation it may be
proportional to the run time, T , of the original evaluation code. However in [Gri91] a
scheme is described which limits the required memory to a fixed multiple of log(T ).

2.4 Higher order derivatives by means of automatic differentiation

The forward mode can be readily extended to obtain higher order derivatives. The Hessian
D2xN for instance can be obtained by updating Hessian matrices D

2xi of all the variables
with respect to the independent variables by using

D2xi =
∑

j∈Ji





∂fi
∂xj
D2xj +

∑

k∈Ji

Dxj
∂2fi
∂xj∂xk

(Dxk)
T



 (16)

where Dxi = ei and D
2xi = 0 for i = 1, . . . , n. Similar chain rules are available for third

and higher order derivatives. The evaluation of the Hessian matrix in the forward mode
will usually be roughly n2 times as expensive as evaluation of the function itself. See
[Gri89].
In [BCG+93] a method is described to extract partial derivatives of arbitrary order by

interpolating a number of univariate Taylor expansions. Further in [Chr91] it is shown
that univariate Taylor series can be propagated by a method very similar to reverse auto-
matic differentiation. Since it is possible to obtain each partial derivative separately, the
combination of these methods is ideally suited to exploit sparsity patterns of higher order
derivatives.
The methods described above have been implemented in the ADOL-C package for

automatic differentiation, see [GJSTar].

2.5 Implementations of automatic differentiation

In [Jue91] 29 software packages for automatic differentiation are compared which vary
greatly in their possibilities. A first criterion for comparison is whether either forward or
reverse mode is used, or both modes are available. In the paper a further five categories
are discerned.
Somewhat more roughly we can observe twomain implementation types. The first type

makes use of a precompiler to obtain derivative code. The precompiler is presented with
code for a function in some computer language such as Fortran. It generates code in the
same language for the derivative and possibly higher derivatives of the function. Software
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packages that use this approach are for instance JAKEF ([Hil82]), GRESS ([Hor91]) and
PADRE2 ([Kub91]). These precompilers use Fortran as their source language.
For the second type no separate precompiler is required. Code is compiled by a regular

compiler for a modern programming language, such as ADA or C++. The language con-
structs of operator overloading and polymorphic functions are required for this approach.
These and a special data type for floating point numbers allow the computional graph
to be constructed implicitly while evaluating the original function. Once the structure of
the computational graph has been recorded, one can use first and higher order derivative
library functions which make use of this structure. Two packages that use this approach
are ADOL-C ([GJSTar]) and BC1([Chr92a]).
In Program 2.1 an example of C++ code that uses the ADOL-C library is shown.

In this example the code for the calculation of a simple function is extended by some
additional ADOL-C notation to be able to use the automatic differentiation routines of the
library. The computation takes place between the statements trace_on and trace_off.
The independent and dependent variables are indicated by means of the operators <<=
and >>=, respectively. All variables that depend directly or indirectly on the independent
variables are called active variables and have to be of type adouble.
The structure of the computational graph, called a tape, is stored sequentially in main

memory and is automatically paged to disk when necessary. During subsequent derivative
evaluations, tapes are always accessed sequentially, so they can be paged in and out to
disk without significant run time penalties. After construction of the tape, the gradient
function of the library may be called to evaluate the gradient of the dependent variable
with respect to the indendent variables using the variable tag to indicate the required
tape. The gradient may also be computed for different independent variable values using
the same tape, provided that no new program branches are being taken due conditions on
adouble values.
Similar functions are available for the evaluation of Jacobians, Hessians and higher

order derivatives.

An important new area of application of automatic differentiation is that of obtaining
accurate roundoff error estimates. See [Iri91] for a review. Automatic differentiation
can also play an important part in the development of interval arithmetics. See [Kul96]
for a discussion on how the arithmetic capability and reportoire of computers should be
expanded to make optimal use of the recent advances.

3 Sensitivity analysis

3.1 Single response

Consider a scalar system responseR(x) depending on n independent variables x = (x1, . . . , xn).
Higher dimensional responses are treated following this case. The sensitivity coefficients
of the response are defined by

si(x) =
∂R

∂xi
(x), (17)

or scaled to nondimensional quantities

Si(x) =
∂R

∂xi
(x)
xi
R
. (18)
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#include <adouble.h>

#include <adutils.h>

int main()

{

const int n=10;

double* x_in=new double[n];

adouble* x=new adouble[n];

double y_out;

double* grad=new double[n];

\\ Set values of independent variables.

for (int i=0;i<n;i++) x_in=1.;

\\ Start tracing of computational graph.

short int tag=1;

trace_on(tag);

\\ Indicate independent variables.

for (int i=0;i<n;i++) x[i]<<=x_in;

\\ Perform computations using active variables.

adouble int_res=(x[1]+x[2])*x[3]*cos(x[4]);

adouble end_res=exp(int_res)*x[1]/x[5];

\\ Indicate dependent variable(s).

end_res>>=y_out;

\\ End trace of computational graph.

trace_off(tag);

\\ Use function gradient from ADOL-C library.

gradient(tag,n,x,grad);

delete[] grad; delete[] x; delete[] x_in;

return 0;

}

Program 2.1: Example of C++ code using the ADOL-C library.
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Second order sensitivities are defined by

qij(x) =
∂2R

∂xi∂xj
(x) (19)

and

Qij(x) =
∂2R

∂xi∂xj
(x)
xixj
R
. (20)

Sensitivities of order higher than two can be defined analogously.
If the independent variables x are perturbed by a vector δx, the sensitivity coefficients

can be used to approximate the resulting change δR in the response. We have, using a
Taylor expansion of order two, that

δR = R(x+ δx)− R(x) =
n
∑

i=1

si(x)δxi +
1

2

n
∑

i,j=1

qij(x)δxiδxj +O(|δx|
3). (21)

Scaled sensitivity coefficients are used in dealing with relative perturbations, as can be
seen from

δR

R
=

n
∑

i=1

Si(x)

(

δxi
xi

)

+
1

2

n
∑

i,j=1

Qij(x)

(

δxi
xi

)

(

δxj
xj

)

+O(|δx|3). (22)

We will now assume that the independent variables are stochastic, thereby also making
the response stochastic. We consider how uncertainty information about the independent
variables can be transformed into uncertainty information about the response variable
using the sensitivities. To this end we use a Taylor series expansion of the response
around the expectation value of the independent variables:

R(x) = R(E[x]) +
n
∑

i1=1

(

∂R

∂xi1

)

E[x]

δxi1 +
1

2

n
∑

i1,i2=1

(

∂2R

∂xi1∂xi2

)

E[x]

δxi1δxi2

+
1

3!

n
∑

i1,i2,i3=1

(

∂3R

∂xi1∂xi2∂xi3

)

E[x]

δxi1δxi2δxi3 + . . .

+
1

N !

n
∑

i1,...,iN=1

(

∂NR

∂xi1 . . . ∂xiN

)

E[x]

δxi1δxi2 . . . δxiN + . . . (23)

in which δxi = xi − E[xi].
The expansion is used to construct an Nth order approximation of the response vari-

ance
var(R) = E[(R− E[R])2], (24)

in which, since E[δxi] = 0,

E[R] = R(E[x]) +
1

2

n
∑

i1,i2=1

(

∂2R

∂xi1∂xi2

)

E[x]

E[δxi1δxi2] +

1

3!

n
∑

i1,i2,i3=1

(

∂3R

∂xi1∂xi2∂xi3

)

E[x]

E[δxi1δxi2δxi3] + . . .+

1

N !

n
∑

i1,...,iN=1

(

∂NR

∂xi1 . . . ∂xiN

)

E[x]

E[δxi1 . . . δxiN ] + . . . . (25)
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Since we have

E(δxi1 . . . δxik −E[δxi1 . . . xik ])(δxj1 . . . δxjl − E[δxj1 . . .xjl ]) =

(E[δxi1 . . . δxikδxj1 . . . δxjl ]− E[δxi1 . . . δxik ]E[δxj1 . . . δxjl ]), (26)

where i1, . . . , ik ∈ {1, 2, . . . , n} and j1, . . . , jl ∈ {1, 2, . . . , n}, it follows that the Nth order
approximation of the response variance varN (R) is given by

varN (R) =
N
∑

k,l=1

1

k!l!

n
∑

i1, . . . , in = 1
j1, . . . , jn = 1

(

∂kR

∂xi1 . . .∂xik

∂lR

∂xj1 . . . ∂xjl

)

E[x]

(E[δxi1 . . . δxikδxj1 . . . δxjl ]− E[δxi1 . . . δxik ]E[δxj1 . . . δxjl ]) (27)

Notice that some terms in this expression are zero, since E[δx] = 0. For N = 1 we have

var1(R) =
n
∑

i,j=1

(

∂R

∂xi

∂R

∂xj

)

E[x]

E[δxiδxj ] (28)

By noting that the ∂R∂xi are the first order sensitivities si and thatE[δxiδxj] is the covariance
cov(xi, xj) between xi and xj, we get

var1(R) =
n
∑

i,j=1

sisjcov(xi, xj) = sΣ s
T (29)

where s = (s1, . . . , sn) is the sensitivity (row)vector and Σ the covariance matrix of the
independent variables. This formula is known as the sandwich rule.
The second order approximation (N = 2) of the response variance (27) is given by

var2(R) =
n
∑

i,j=1

(

∂R

∂xi

∂R

∂xj

)

E[x]

E[δxiδxj] +

n
∑

i1, i2 = 1
j = 1

(

∂2R

∂xi1∂xi2

∂R

∂xj

)

E[x]

E[δxi1δxi2δxj] +

1

4

n
∑

i1, i2 = 1
j1, j2 = 1

(

∂2R

∂xi1∂xi2

∂2R

∂xj1∂xj2

)

E[x]

(E[δxi1δxi2δxj1δxj2 ]−E[δxi1δxi2 ]E[δxj1δxj2]) (30)

Notice that for a second order analysis third and fourth order central moments are
required. If we assume however that the independent variables have a multivariate normal
distribution, these higher order moments can be calculated from the second order moments,
i.e. from the covariances, as is shown in [Ron88]. The joint density function of the
independent variables for this case is given by

f(x) =
1

√

(2π)n|Σ|
exp(−

1

2
(x− µ)TΣ−1(x− µ)) (31)

where µ = E[x] is the expectation vector of the independent variables and Σ the covariance
matrix. We use

Σij = ρijσiσj (32)
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with σi the standard deviation of xi and ρij the correlation coefficient between xi and xj.
Since the multivariate normal distribution is symmetric about its mean, all odd central
moments are zero. One can derive from the characteristic function for the multivariate
normal distribution

φ(z) = exp(−
1

2
zTΣz) (33)

that for n even we have

E[δxi1 . . . δxin] =
∑

ikl<jkl

ρik1jk1ρik2jk2 . . . ρikn/2jkn/2
× σi1σi2 . . . σin (34)

Under the multivariate normal assumption, (30) then reduces to

var2(R) =
n
∑

i,j=1

sisjcov(xi, xj) +

1

4

n
∑

i,j,k,l=1

qijqkl(cov(xi, xk)cov(xj, xl) + cov(xi, xl)cov(xj, xk)) (35)

3.2 Multivariate response

We now consider the case that the response R(x) has several components:

R(x) = (R1(x), . . . , Rm(x)). (36)

Sensitivities are now defined for each component as in (17), (18), (19) and (20). Also
the expressions for the approximations of the variance remain valid for each component
separately. What remains to be investigated is the covariance between two components

cov(Rp, Rq) = E[(Rp − E[Rp])(Rq −E[Rq])] (37)

Using the same approach as for the variance of a single response, we obtain for the Nth
order approximation

covN (Rp, Rq) =
N
∑

k,l=1

1

k!l!

n
∑

i1, . . . , in = 1
j1, . . . , jn = 1

(

∂kRp
∂xi1 . . . ∂xik

∂lRq
∂xj1 . . . ∂xjl

)

E[x]

(E[δxi1 . . . δxikδxj1 . . . δxjl ]−E[δxi1 . . . δxik ]E[δxj1 . . . δxjl ]) (38)

where again some terms are zero due to E[δx] = 0. For N = 1 we have

cov1(Rp, Rq) =
n
∑

i,j=1

s
(p)
i s

(q)
j cov(xi, xj), (39)

where s
(p)
i denotes the sensitivity of the response component p with respect to the inde-

pendent variable xi. It follows that the covariance matrix of the response is given by

cov1(R) = SΣS
T (40)

in which sij = s
(i)
j . (Notice that S is equal to the derivative of the response with respect

to the independent variables). The second order approximation of the covariance between
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two response components is given by

cov2(Rp, Rq) =
n
∑

i,j=1

(

∂Rp
∂xi

∂Rq
∂xj

)

E[x]

E[δxiδxj] +

1

2

n
∑

i1, i2 = 1
j = 1

(

∂2Rp
∂xi1∂xi2

∂Rq
∂xj

)

E[x]

E[δxi1δxi2δxj] +

1

2

n
∑

i = 1
j1, j2 = 1

(

∂Rp
∂xi

∂2Rq
∂xj1∂xj2

)

E[x]

E[δxiδxj1δxj2] +

1

4

n
∑

i1, i2 = 1
j1, j2 = 1

(

∂2R

∂xi1∂xi2

∂2R

∂xj1∂xj2

)

E[x]

(E[δxi1δxi2δxj1δxj2 ]−E[δxi1δxi2 ]E[δxj1δxj2]).(41)

Under the assumption that the independent variables have a multivariate normal distri-
bution, we get using the same considerations as for (35)

cov2(Rp, Rq) =
n
∑

i,j=1

s
(p)
i s

(q)
j cov(xi, xj) +

1

4

∑

i,j,k,l=1

q
(p)
ij q

(q)
kl (cov(xi, xk)cov(xj, xl) + cov(xi, xl)cov(xj, xk)). (42)

3.3 Standard error sensitivity

We now introduce a new type of sensitivity measure, which we shall refer to as standard
error sensitivity. This sensitivity approximates the change in response standard error,
given a change in the standard errors of the independent variables.
The standard errors are defined by

eRp =
σRp
Rp
, p = 1, . . . , m and exi =

σxi
xi
, i = 1, . . . , n. (43)

We now define the (scaled) standard error sensitivity coefficients by

Spei =
∂eRp
∂exi

exi
eRp
=
∂σRp
∂σxi

σxi
σRp
. (44)

Notice that just as for the response sensitivities of the previous sections these sensitivity
coefficients depend on the independent variables (which are kept fixed during computation
of the coefficients). The error sensitivity coefficients are used to estimate the effect δeRp
of a change in the response standard errors δexi caused by a change in the standard errors
of the independent variables. This is achieved by means of the following Taylor expansion

δeRp
eRp

=
n
∑

i=1

SpEi

(

δexi
exi

)

+O(|δe|2). (45)

As in the case of response sensitivities these approximations can be improved by incorpo-
rating higher order sensitivities.
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3.4 The role of automatic differentiation

Calculation of sensitivity coefficients amounts to computing a Taylor expansion of the
response with respect to the independent variables. As explained in section 2 this can
be done automatically and efficiently for a given piece of computer code representing the
response using automatic differentiation.
Our AD uncertainty analysis tool using the automatic differentiation library ADOL-C

(see [Gri89]) computes the sensitivity coefficients (as well as the scaled coefficients) for
differentiable functions represented by C++ computer code. It offers the possibility to use
these sensitivity coefficients to propogate uncertainties through the system by computing
response covariances from covariance information of the independent variables and also
allows computation of the standard error sensitivities.
Computation of the standard error sensitivities can be done by automatic differentia-

tion of the covariance transformation code, but since the structure of the computation is
rather simple it is more efficient to explicitly calculate the standard error sensitivities in
terms of the response sensitivities.
We use the last equality of (44), i.e.

Spei =
∂σRp
∂σxi

σxi
σRp
. (46)

Using (39) and (32) we have as a first order approximation of σ2Rp

σ2Rp =
n
∑

i,j=1

s
(p)
i s

(p)
j ρijσxiσxj . (47)

By taking the derivative, we get

∂σRp
∂σxi

=
1

2σRp

∂σ2Rp
∂σxi

=
1

σRp

n
∑

j=1

s
(p)
i s

(p)
j ρijσj (48)

Analogously we have as a second order approximation of σ2Rp

σ2Rp =
n
∑

i,j=1

s
(p)
i s

(p)
j ρijσxiσxj +

n
∑

i,j,k,l=1

q
(p)
ij q

(p)
kl (ρikρjl + ρilρjk)σxiσxjσxkσxl , (49)

giving the derivative

∂σRp
∂σxi

=
1

σRp





n
∑

j=1

s
(p)
i s

(p)
j ρijσj + 2

n
∑

j,k,l=1

q
(p)
ij q

(p)
kl (ρikρjl + ρilρjk)σxjσxkσxl



 . (50)

Using this expression and (44) we can thus evaluate the standard error sensitivities in
terms of the response sensitivities.

3.5 An example – phytomass (live biomass) of Siberian forests

In this section we consider a model as it is used in the Sustainable Boreal Forest Resources
Project at IIASA to obtain estimates of the phytomass inventory of Siberian forests. The
model basically transforms a database of information on the forest composition of so-called
ecoregions into total phytomass estimates. The data for the ecoregions includes areas and
growing stocks over dominant species, age, site indices and relative stocking.
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In [SSN98a] and [SVN96] the details of the estimation process are described and it is
shown how this model is applied to the assessment of carbon dynamics.
The stand phytomass is assumed to depend on the age A, the stock index SI and the

relative stocking RS. Site indices are determined in Russia by average height at a certain
age of stands. The relative stocking is defined as the ratio between the basal area of the
investigated stand and the basal area of a fully stocked stand according to corresponding
yield tables.
The total phytomass is divided into a number of groups, called fractions, where each

of these fractions is assumed to have its own description in terms of the variables A, SI
and GS. These dependencies have been estimated by means of nonlinear regression.
In this example we take pine as our species of consideration as it is generally found

in mixed and deciduous forests or forest steppe. For pine five phytomass fractions are
considered, cf. stem, bark, branches, needles and roots phytomass. The phytomass of
each fraction is described by

Mfr = Rfr ·GS, (51)

where the GS is (green) growing stock in m3 and Rfr is a ratio in Tg/m
3 expressing the

relative density of the corresponding phytomass fraction. It is assumed that this ratio Rfr
can be approximated by

Rfr = c0SI
c1A(c2+c3RS+c4RS

2), (52)

where the coefficients c0 through c4 have been determined by regression as discussed in
[SSN98b]. The coefficients that have been determined for the pine species under consid-
eration are listed in Table 1.

Phytomass fraction c0 c1 c2 c3 c4

Stem 0.3172 0.0445 0.1338 -0.1824 0.0851
Bark 0.1335 0.7125 -0.4021 -0.1727 0.0458
Branches 0.2492 0.2122 -0.6300 0.5516 -0.3717
Needles 0.4146 0.7097 -0.8140 0.1107 -0.1257
Roots 0.6005 -0.0909 -1.0006 1.3113 -0.6323

Table 1: Regression coefficients in equation (52) for pine (mixed and deciduous forests and forest
steppe)

It is further assumed that the growing stock is given by

GS = a1(1− exp(−a2A))
a3, (53)

where each ai, i = 1, 2, 3 is a quadratic polynomial in terms of the site index SI and the
relative stocking RS, i.e.

ai =
2
∑

k1=0

2
∑

k2=0

aik1k2(SI)
k1(RS)k2. (54)

For this example we have (see [SVN96])

a1 = 13.2− 22.1 · SI + 879 ·RS + 3.80 · SI
2 − 121 · SI ·RS + 93.6 ·RS2 (55)

a2 = (2.92− 0.25 · SI − 0.2 ·RS + 0.016 · SI
2 − 0.02 · SI ·RS + 0.020 ·RS2)/100 (56)

a3 = (209− 7.20 · SI − 7.71 ·RS + 1.33 · SI
2 − 0.819 · SI ·RS + 1.19 ·RS2)/100 (57)

By means of our uncertainty analysis tool we now investigate this model. We first
consider a stand of age 50, with a site index SI of 3.0 and a relative stocking RS of 80
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percent. The resulting sensitivity coefficients for the stem phytomass fraction are listed
in Table 2. For the age variable we find a scaled sensitivity of 1.11. This means that if

Parameter Sensitivity Scaled Sensitivity

A 1.8089 1.1144
SI −21.9966 −0.8131
RS 101.2832 0.9983
c0 255.8697 1.0000
c1 89.1654 0.0489
c2 317.5071 0.5234
c3 254.0057 −0.5708
c4 203.2046 0.2131
a1,0,0 0.1790 0.0292
a1,0,1 0.1432 1.5506
a1,0,2 0.1146 0.1322
a1,1,0 0.5370 −0.1465
a1,2,0 1.6111 0.0755
a1,1,1 0.4296 −0.6409
a2,0,0 3926.7868 1.4149
a2,0,1 3141.4295 −0.0774
a2,0,2 2513.1436 0.0063
a2,1,0 11780.3605 −0.3629
a2,2,0 35341.0815 0.0679
a2,1,1 9424.2884 0.0232
a3,0,0 −32.5342 −0.8389
a3,0,1 −26.0273 0.0247
a3,0,2 −20.8219 −0.0031
a3,1,0 −97.6025 0.0865
a3,2,0 −292.8076 −0.0480
a3,1,1 −78.0820 −0.0079

Table 2: Sensitivity of stem phytomass with respect to model parameters.

we change the change the age by 5% then the resulting change in stem phytomass will be
approximately 1.11×5% = 5.55%. From the table we can observe that the stem phytomass
is most sensitive with respect to A, SI , RS, c0, a1,0,1, a2,0,0 and a3,0,0. A similar pattern
is observed for the other phytomass fractions. In general we can conclude that the model
is well behaved and there are no unstable parameters which might cause sudden changes
in the dependent variables.
As an illustration of a transformation of covariance information on the independent

variables to covariance of the dependent variables, in this case the phytomasses of the
five fractions, we consider two cases. First we consider the case where all coefficients
determined by regression, i.e. ci, i = 0, . . . , 4 and aik1k2 , i = 1, 2, 3; k1 = 0, 1, 2; k2 = 0, 1, 2
are exact, i.e. can be determined with negligible variances. For the remaining variables
A, SI and GS we assume that the standard errors are 5% and the cross-correlations given
by 0.25. The resulting standard deviations and standard errors, and correlations of the
phytomass fractions for a stand of age 50, site index 3.0 and relative stocking of 80% are
listed in Table 3 and Table 4, respectively. Both first and second order approximations are
provided. Notice that for this case we have very high correlations between the phytomass
fractions.



–16 –

Phytomass fraction Phytomass Standard Deviation Standard Error

Stem 81.162 6.545 0.081
(6.540) (0.081)

Bark 8.169 0.440 0.054
(0.440) (0.054)

Branches 12.242 0.786 0.064
(0.784) (0.064)

Needles 7.990 0.373 0.047
(0.373) (0.047)

Roots 27.846 3.166 0.114
(3.163) (0.114)

Table 3: First and second order standard deviation and standard error approximations (first order
approximations in brackets) for accurate regression coefficients.

Phytomass fraction Stem Bark Branches Needles Roots

Stem 1.000 0.913 0.974 0.849 0.911
(1.000) (0.914) (0.976) (0.851) (0.911)

Bark 0.913 1.000 0.930 0.968 0.930
(0.913) (1.000) (0.931) (0.969) (0.931)

Branches 0.974 0.930 1.000 0.921 0.976
(0.976) (0.931) (1.000) (0.921) (0.977)

Needles 0.849 0.968 0.921 1.000 0.965
(0.851) (0.969) (0.921) (1.000) (0.967)

Roots 0.911 0.930 0.976 0.965 1.000
(0.911) (0.931) (0.977) (0.967) (1.000)

Table 4: First and second order phytomass correlation approximations (first order approximations
in brackets) for accurate regression coefficients.

Next we consider a more realistic case where the regression coefficients are not assumed
to be known without error. As an example we assume that the regression coefficients have
standard errors of 5% and random cross-correlations (also with A, SI and RS) which
are uniformly distributed between -0.5 and 0.5. The covariance of A, SI and RS is the
same as in the previous case. The resulting standard deviations and standard errors, and
correlations of the phytomass fractions are listed in Table 5 and Table 6, respectively.
As can be expected due to the increase in uncertainty in the values of the regression
coefficients, the standard deviations and standard errors are larger for this case. We also
observe that the correlations between the phytomass fractions are now much smaller than
in the previous case. We conclude that for reliable estimation of the response variable
correlations, reliable information about the covariance of all of the independent variables,
i.e. including the regression coefficients, is essential. In the following section on parameter
estimation for nonlinear models it will be shown how reliable covariance information for
regression coefficients can be obtained.
In Table 7 we have listed the computed standard error sensitivities for the two cases

that we have considered. We observe that the standard error sensitivity of the age variable
is equal to 0.5. This means, for example, that if we decrease the standard error of the
age variable by 5% the resulting standard error of the stem phytomass will decrease by
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Phytomass fraction Phytomass Standard Deviation Standard Error

Stem 81.162 11.806 0.145
(11.715) (0.144)

Bark 8.169 1.117 0.137
(1.109) (0.136)

Branches 12.242 2.669 0.218
(2.638) (0.215)

Needles 7.990 0.918 0.115
(0.913) (0.114)

Roots 27.846 10.487 0.376
(10.123) (0.364)

Table 5: First and second order standard deviation and standard error approximations (first order
approximations in brackets) for inaccurate regression coefficients.

Phytomass fraction Stem Bark Branches Needles Roots

Stem 1.000 0.432 0.685 −0.174 0.607
(1.000) (0.432) (0.691) (−0.180) (0.623)

Bark 0.432 1.000 0.686 −0.328 0.654
(0.432) (1.000) (0.692) (−0.338) (0.671)

Branches 0.685 0.686 1.000 0.350 0.390
(0.691) (0.692) (1.000) (0.353) (0.405)

Needles −0.174 −0.328 0.350 1.000 0.392
(−0.180) (−0.338) (0.353) (1.000) (0.405)

Roots 0.607 0.654 0.390 0.392 1.000
(0.623) (0.671) (0.405) (0.405) (1.000)

Table 6: First and second order phytomass correlation approximations (first order approximations
in brackets) for inaccurate regression coefficients.

approximately 0.5× 5% = 2.5%. From the table it can be seen which variables are most
important for the accuracy of the stem phytomass. For the case of inaccurate regression
coefficients it can be concluded that an increase in accuracy will yield optimal results for
the a1,0,1 parameter. Other relatively error sensitive parameters are the three regressor
variables and c0. Just as the response covariance, the computation of the standard error
sensitivity coefficients requires reliable estimates of the covariance of the independent
variables.

Several other small models for growing stock and tree growth have been investigated
using Oak.
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Parameter Standard Error Sensitivity

Case 1 Case 2

A 0.5030 (0.498) 0.1079 (0.1046)
SI 0.0921 (0.0892) −0.1139 (−0.1130)
RS 0.4167 (0.4127) 0.1779 (0.1621)
c0 0.0 (0.0) 0.1333 (0.1256)
c1 0.0 (0.0) −0.0091 (−0.0086)
c2 0.0 (0.0) 0.1095 (0.1036)
c3 0.0 (0.0) 0.0843 (0.0767)
c4 0.0 (0.0) 0.0692 (0.0637)
a100 0.0 (0.0) −0.0063 (−0.0062)
a101 0.0 (0.0) 0.3206 (0.3035)
a102 0.0 (0.0) 0.0256 (0.0246)
a110 0.0 (0.0) 0.0005 (0.0004)
a120 0.0 (0.0) 0.0043 (0.0043)
a111 0.0 (0.0) 0.0724 (0.0659)
a200 0.0 (0.0) 0.1151 (0.0877)
a201 0.0 (0.0) 0.0040 (0.0030)
a202 0.0 (0.0) −0.0011 (−0.0010)
a210 0.0 (0.0) −0.0059 (−0.0080)
a220 0.0 (0.0) −0.0035 (−0.0035)
a211 0.0 (0.0) 0.0006 (0.0007)
a300 0.0 (0.0) 0.0142 (0.0097)
a301 0.0 (0.0) 0.0016 (0.0016)
a302 0.0 (0.0) 0.0002 (−0.0002)
a310 0.0 (0.0) 0.0011 (−0.0014)
a320 0.0 (0.0) 0.0048 (0.0044)
a311 0.0 (0.0) 0.0001 (0.0001)

Table 7: Standard error sensitivity of stem phytomass for both accurate (case 1) and inaccurate re-
gression coefficients (case 2) (First and second order approximations with first order approximation
between brackets).



–19 –

4 Parameter estimation for nonlinear models

4.1 Overview

We start by giving a concise overview of parameter estimation for nonlinear models that
should capture the essential ideas of the techniques in general use nowadays.
We consider a system response function R describing a nonlinear model

R(α, θ) : IRq ×Θ→ IRm (58)

where Θ ⊂ IRp. The response depends on
(i) α = (α1, . . .αq)

T , the regressor or explanatory variables, and
(ii) θ = (θ1, . . . , θp)

T the vector of unknown parameters to be estimated.

We consider the situation in which N multivariate observations have been made. These
observations can be represented as a sequence of regressor variables vectors, each combined
with a vector of corresponding response observations, i.e.

{αi, yi} (59)

where
αi = (αi1, . . . , αiq)

T and yi = (yi1, . . . , yim)
T , i = 1, . . . , N. (60)

We then have
yi = R(αi, θ) + εi(θ), i = 1, . . . , N. (61)

where εi(θ) is the difference between the vector of observed responses yi and the model
prediction by the system response function R(αi, θ).
It is assumed that there is one true parameter vector denoted by θ∗ which is known to

be in Θ ⊂ IRn. The residuals εi(θ∗) are assumed to be random vectors with E[εi] = 0.
It will be useful to group the observations into one observation vector

y = ((y11, . . . , y1m), . . . , (yN1, . . . , yNm))
T =













y1
y2
...
yN













. (62)

Similarly we group the corresponding system responses in the prediction map

R : Θ→ IRN×m (63)

defined by

R(θ) = ((R1(α1, θ), . . . , Rm(α1, θ)), . . . , (R1(αN , θ), . . . , Rm(αN , θ))) =













R(α1, θ)
R(α2, θ)
...

R(αN , θ)













,

(64)
and the εi(θ) into

ε(θ) = y −R(θ). (65)

We shall repeatedly use the derivative of the prediction map with respect to θ. We use
the following notation for the Jacobian matrix

J(θ) = DθR(θ) =
dR

dθ
(θ) and J = J(θ∗). (66)
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Now consider
P = {R(θ)|θ ∈ Θ} (67)

which is a manifold in IRN×m which represents all possible predictions by the model
for the available observations. It is usually referred to as the expectation surface or the
solution locus. It seems reasonable from a geometrical point of view (ignoring probability
information about the residuals for the moment) to choose the parameter vector θ in such a
way that the corresponding predictionR(θ) is the projection of the observation vector onto
P (with respect to some inner product and induced norm ‖ · ‖). So we choose θ such that
it is closest to the observation vector (and precisely for this reason it is sometimes the case
that this estimator corresponds to the maximum likelihood estimator if the distribution
of ε is taken into account). This estimator θ̂ is given by

θ̂ = min
θ∈Θ
S(θ) = min

θ∈Θ
‖y −R(θ)‖2 = min

θ∈Θ
‖ε‖2 (68)

It follows with Ĵ = J(θ̂), that θ̂ must satisfy

ĴT (y−R(θ̂)) = ĴT ε(θ̂) = 0. (69)

This equation states that the difference between the observation vector and the prediction
corresponding to θ̂ is orthogonal to the tangent plane of the expectation surface P at θ̂.
If we use the projection matrix P̂J = Ĵ(Ĵ

T Ĵ)−1ĴT , this can be expressed as

P̂J ε(θ̂) = 0. (70)

These equations are called the normal equations, which state that the projection of ε(θ̂)
has no component in the tangent plane of the expectation surface at θ̂. For most nonlinear
models they cannot be solved analytically, so that iterativemethods must be used to obtain
θ̂. Notice that since a solution of (68), or equivalently (70), does not have to be unique,
convergence of the iterative methods can, in general, not be guaranteed.
Once we have found an estimator θ̂ we want to know how reliable this estimator is.

The results we present here rest on two important assumptions:

(i) the residual vector ε is normally distributed ε ∼ N(0, σ2I), i.e. we assume that all
components are independent and normally distributed with equal variance σ2. In
appendix A we deal with the question what to do in the case that the assumption
of equal variance is not valid. It is shown that if information about the covari-
ance is available, this can be used to transform the parameters using a Cholesky
decomposition.

(ii) θ̂ is sufficiently close to θ∗ such that a linear approximation of the prediction map
may be used. It can be shown that under certain regularity conditions, θ̂ is almost
certain to be within a small neighborhood of θ∗, see [SW89, Chapter 12].

In the following we will refrain from using the order notation and will understand ’≈’ to
mean ’equal in first order approximation’. We first linearize the prediction map around
the true parameter vector θ∗, i.e.

R(θ) ≈ R(θ∗) + J (θ− θ∗). (71)

To be able to use linear regression theory for the uncertainty analysis of θ̂ the key idea is
now the following: if θ̂ is in a region where the linear approximation (71) is still accept-
able, the projection of the residual vector on the tangent plane at θ∗ will be close to the
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projection on the expectation surface P . Remember that the projection of the residual
vector on the expectation surface gives the exact θ̂; projection on the tangent plane yields
an approximation. We thus have

PJ (y−R(θ
∗)) = PJ ε ≈ R(θ)−R(θ

∗), (72)

where
PJ = J(J

TJ)−1JT . (73)

This also means that, since R(θ̂)−R(θ∗) ≈ J(θ̂ − θ∗)

θ̂ − θ∗ ≈ (J(θ∗)TJ(θ∗))−1J(θ∗)Tε, (74)

which gives us a relationship between the deviation of the true parameter vector and its
estimator in terms of the residual vector. This can be used to transform the stochastic
properties of the residual vector to those of the deviation of the parameter estimate.
Notice that we also have

y −R(θ̂) ≈ ε− PJε = (I − PJ )ε, (75)

and evaluating the norm we get

(Nm− p)s2 = S(θ̂) = ‖y−R(θ̂)‖ ≈ εT (I − PJ )ε (76)

Here we have introduced

s2 =
S(θ̂)

Nm− p
(77)

which is an estimator for the error variance σ2.
Further it can easily be checked now that

‖R(θ̂)−R(θ∗)‖ ≈ (θ̂− θ∗)TJ(θ∗)TJ(θ∗)(θ̂− θ∗) ≈ εTPJε ≈ S(θ
∗)− S(θ̂) (78)

As a final important note we remark that in the above expressions J(θ∗) may be
replaced by J(θ̂) without changing the results. This can be checked by approximating
J(θ∗) by J(θ̂) +H(θ∗ − θ̂), where H is the second order derivative of R evaluated at θ̂.
From the distribution of the residual vector we now have the following theorem. For

the regularity conditions and details of the proof, we refer to [SW89].

Theorem 4.1 Given ε ∼ N(0, σ2) and appropriate regularity conditions then, for large
N , we have approximately:

(i) θ̂ − θ∗ ∼ N(0, σ2C−1), where C = J(θ∗)TJ(θ∗);

(ii) S(θ̂)/σ2 ≈ εT (I − PJ )ε/σ
2 ∼ χ2Nm−p;

(iii) θ̂ is statistically independent of s2; and

(iv)
(S(θ∗)−S(θ̂))/p

S(θ̂)/(Nm−n)
≈ εTPJ ε
εT (I−PJ)ε

Nm−p
p ∼ Fp,Nm−p

Here χ2Nm−p is the Chi-square distribution with Nm− p degrees of freedom and Fp,Nm−p
the F-distribution with p and Nm − p degrees of freedom. From (iv), (77) and (78) we
have, approximately

(θ̂− θ∗)TJTJ(θ̂ − θ∗)

ps2
∼ Fp,Nm−p (79)
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As mentioned we are considering a first order approximation, making that J(θ∗) may be
replaced by Ĵ = J(θ̂). An approximate 100(1− α)% confidence region is given by

{

θ|(θ̂ − θ∗)T ĴT Ĵ(θ̂ − θ∗) ≤ ps2Fp,Nm−p
}

(80)

This confidence region can be investigated using the singular value decomposition of Ĵ,
see for instance [Sto98]

Ĵ = UΣV T (81)

The approximate 100(1− α)% confidence region now becomes

{

θ|(θ̂ − θ∗)TV Σ2V T (θ̂− θ∗) ≤ ps2Fp,Nm−p
}

(82)

This confidence region is an ellipsoid with the columns of V pointing in the direction
of the ellipsoid’s main axes. Projection of the ellipsoid on the parameter axes gives the
independent confidence intervals :

[

θ̂i − δ
Iθi, θ̂i + δ

Iθi
]

(83)

where
δIθi =

√

ps2Fα(p, Nm− p)(VΣ−2V T )ii (84)

and where Fα(p, Nm− p) denotes the upper α quantile for the F-distribution with p and
Nm−p degrees of freedom. The notation (·)ii is used to denote the i-th diagonal element
of a matrix. The intersection points of the ellipsoid with the parameter axes gives the
dependent confidence intervals :

[

θ̂i − δ
Dθi, θ̂i + δ

Dθi
]

(85)

where

δDθi =

√

ps2Fα(p, Nm− p)

(VΣ2V T )ii
(86)

4.2 Assessing and extending linear inference theory

We have seen in the previous section how linear inference theory can be used to obtain
estimates for the covariance and confidence intervals of the parameters. These estimates
obtain their listed characteristics such as unbiasedness and normality only asymptotically,
i.e. for large number of observations.
If the number of observations is moderate or small there may be substantial bias in

both the estimate itself and in the parameter covariance. It is however possible to obtain
first order approximations of these biases. These approximations make use of the curvature
of the expectation surface and thus rely on being able to compute second order derivatives.
An excellent overview of the relevant theory is presented in [SW89].
A first order approximation of the estimator bias is derived in [Box71]. It is shown

that

E(θ∗ − θ̂) ≈ −
σ2

2
(ĴT Ĵ)−1ĴT v (87)

where v is an Nm vector, where the component with index k = im + j, corresponding
with response j of observation i, is given by

vi = Tr
(

Hk(Ĵ
T Ĵ)−1

)

(88)



–23 –

and Hk is the Hessian of Rj(αi, θ) with respect to θ evaluated at θ̂.

The relative bias is given by E(θ∗ − θ̂)/θ̂. In [Rat83] it is suggested that an absolute
relative bias in excess of 1% is a good rule for indicating nonlinear behaviour in θ̂.
For normal data, empiral studies indicate that the approximation works very well,

especially if the bias is large. See [Box71], [GR78] and [Rat83]. The bias vector can also
help to indicate problem parameters. For further details on the properties of the bias
approximation, see [CTW86].
In [Bea60] four measures of the nonlinearity of an estimation problem are proposed.

Further insight in the nonlinearity of the problem can be acquired by computation of
the intrinsic and parameter-effects curvature at the parameter estimate, as described in
[BW80]. In the article it is shown that the bias estimate of Box can also be expressed in
terms of these curvatures.
In [SW89, Chapter 4] higher order correction terms for the asymptotic covariance

matrix are derived. These correction terms can be expressed in terms of the intrinsic
and parameter-effects curvature. In [Cla80] an even higher order covariance correction is
derived which involves the computation of third order derivatives.
The measures of nonlinearity and the covariance corrections will be implemented in

Oak in the near future.

4.3 The role of automatic differentiation

Automatic differentiation should be the method of choice to obtain the derivatives for
both the estimation of the parameters itself and for the subsequent uncertainty analysis.
For the estimation of the parameters an optimization problem must be solved. Espe-

cially for large numbers of parameters derivative information is then essential. Automatic
differentiation is particularly efficient at obtaining the gradient of a function. As was
shown in section 2.3 this can be achieved at a cost which is a small fixed multiple of the
evaluation cost of the function to be optimized. If the numerical method of finite dif-
ferences is used the multiple is linear in the number of independent variables. Since the
gradient must be computed at each step of an iterative optimization procedure, such as
the conjugate gradients or quasi-newton method, large gains in run time can be achieved
by using automatic differentiation. The optimization algorithms can also benefit from the
higher accuracy achieved by automatic differentiation compared to the approximation by
finite differences.
For the uncertainty analysis of the parameter estimates we can first of all use automatic

differentiation to obtain the Jacobian of the prediction map. This derivative can be used
for the estimates that follow from linear inference theory for the asymptotic covariance
matrix and asymptotic confidence intervals. Following that we can evaluate the second
order derivative of the prediction map which is required for the computation of the bias
approximation. The same derivative can be used to calculate intrinsic and parameter
effects curvatures to assess the nonlinearity of the estimation problem, and to compute
a nonlinearity correction for the parameter covariance matrix. This correction can be
improved by computing the third order derivatives.

4.4 An example (continued) – phytomass of Siberian forests

We continue the example on Siberian forests phytomass that was described in Section 3.5.
As an uncomplicated illustration of using the Oak system for nonlinear regression, we fit
a growing stock relationship to a set of observations. The growing stock is assumed to be
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given by
GS = a1(1− exp(−a2A))

a3 (89)

This equation is the same as (53). We do not take the dependency of ai, i = 1, 2, 3 on
the site index and relative stocking into account anymore, and consider the growing stock
solely as a function of age A.
In Figure 2 the growing stock data is displayed together with the fit obtained using

Oak.

Figure 2: Growing stock volume vs. age with fit obtained by Oak.

In Table 8 the parameter estimates and corresponding bias obtained by theOak system
are listed. As can be seen the bias is negligible compared to parameter values; we can
conclude that the model is sufficiently linear to proceed by means of linear inference theory.
In Table 9 the 90% independent and dependent confidence intervals for the parameters
a1, a2 and a3 are listed.

Parameter Estimate Bias

a1 482.6 0.28
a2 0.01824 8.5e− 06
a3 1.849 7.6e− 04

Table 8: Results of nonlinear parameter estimation using the Oak system.

The estimates for the parameter standard deviation and standard error, and the corre-
lations between the parameters obtained from the asymptotic covariance matrix are listed
in Table 10 and Table 11, respectively.
Currently also a multiple response model for phytomass fractions is under investigation.
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Parameter Independent confidence interval Dependent confidence interval

a1 456.7 508.5 474.3 490.9
a2 0.01645 0.02003 0.01793 0.01855
a3 1.755 1.942 1.823 1.875

Table 9: 90% independent and dependent confidence intervals for the parameters a1, a2 and a3.

Parameter Standard Deviation Standard Error

a1 10.3 0.0213
a2 0.000712 0.0390
a3 0.00139 0.0201

Table 10: Standard deviation and standard error approximations for the parameters a1, a2 and
a3.

Parameter a1 a2 a3

a1 1.00 -0.889 -0.687
a2 -0.889 1.00 0.918
a3 -0.687 0.918 1.00

Table 11: Correlation coefficient approximations for the parameters a1, a2 and a3.



–26 –

5 Oak – A system for uncertainty analysis based on auto-
matic differentiation

IN

OUT

ADOL-C
Library

Data
Module

Response
Module

Objective
Module

Scaling
Module

Utility
Module

ModuleModule
Sensitivity

Module
Optimization Regression

Figure 3: Schematic representation of Oak.

A system named Oak written in C++ has been developed which implements the methods
described in the previous sections using the ADOL-C library for automatic differentiation.
(see [GJSTar]). This section does not provide a user manual, but aims to present a brief
overview of its structure and possibilities.
The user is expected to provide the (C++) code representing his/her model and add

it to the Oak system. The system can then be used to perform a sensitivity analyis of
the model, or if observations relating to the model are provided, be used for nonlinear
parameter estimation. Both types of analysis are operated from a graphical user interface.
The system is specifically designed for large scale parameter estimation.
Figure 3 shows the structure of the system. It consists of several modules handling the

various tasks:

• Data module – Sets the number of parameters, regressor variables, responses. Reads
(optional) observational data. Reads (optional) covariance information parameters
and regressor variables.

• Response module – Contains the functions descibing the user’s model.

• Objective module – Contains the objective function to be optimized for the param-
eter estimation problem. Can be changed by the user if necessary.

• Scaling module – Handles the scaling of the problem for efficient optimization.

• Optimization module – Contains the optimization routines. Can be extended by
the user if necessary. Currently the optimization is performed by means of a conju-



–27 –

gate gradients algorithm combined with a Brent line minimization algorithm. Also
positive definiteness of the Hessian at the stationary point can be checked.

• Utility module – Contains various routines, e.g. for calculating eigenvalues of the
Hessian matrix, computing α-percentiles of the χ2 and F distributions and comput-
ing a singular value decomposition of the prediction map derivative.

• Sensitivity module – Computes sensitivity coefficients. Transforms covariance of in-
dependent variables into covariance of the dependent variables. Computes standard
error sensitivity coefficients.

• Regression module – Computes covariance, confidence intervals and bias of esti-
mated parameters. Performs an analysis of variance and computes the significance
of the regression.

Figure 4: Screenshot Oak – Optimization and graphs

Figures 4, 5 and 6 show some screenshots of the Oak system.
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Figure 5: Screenshot Oak – Sensitivity methods: response covariance

Figure 6: Screenshot Oak – Sensitivity methods: sensitivity coefficients
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A Transforming estimation problems to guarantee i.i.d. resid-
uals

Suppose we have
ỹi = R̃(αi, θ

∗) + ε̃i, i = 1, . . . , N (90)

with
E[ε̃] = 0, cov(ε̃, ε̃) = V σ2 and ε ∼ N (0, V σ2), (91)

i.e. with arbitrary error covariance matrix V σ2. Let

V = L2 (92)

be the Cholesky decomposition of V (which is symmetric and positive definite). By mul-
tiplication of the left and right sides of (90) by L−1 and setting

yi = L
−1ỹi, R = L

−1R̃ and ε = L−1ε̃ (93)

we get
yi = R(αi, θ

∗) + εi, i = 1, . . . , N (94)

where
E[ε] = L−1ε̃ = 0 and cov(ε, ε) = L−1cov(ε̃, ε̃)L−1 = σ2I (95)
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