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Cooperation and defection may be considered as two extreme responses to a social dilemma. Yet the reality
is much less clear cut. Between the two extremes lies an interval of ambivalent choices, which may becaptured
theoretically by means of continuous strategies defining the extent of the contributions of each individual player
to the common pool. If strategies are chosen from the unit interval, where0 corresponds to pure defection and1
corresponds to the maximal contribution, the question is what is the characteristic level ofindividual investments
to the common pool that emerges if the evolution is guided by different benefit functions. Here we consider the
steepness and the threshold as two parameters defining an array of generalized benefit functions, and we show
that in a structured population there exist intermediate values of both at which the collective contributions are
maximal. However, as the cost-to-benefit ratio of cooperation increases the characteristic threshold decreases,
while the corresponding steepness increases. Our observations remain valid if more complex sigmoid functions
are used, thus reenforcing the importance of carefully adjusted benefits for high levels of public cooperation.

PACS numbers: 87.23.Ge, 87.23.Kg, 89.75.Fb

I. INTRODUCTION

The public goods game is a typical example of an evolu-
tionary game [1–3] that is governed by group interactions.
It requires that players decide simultaneously whether they
wish to bare the cost of cooperation and thus to contribute to
the common pool, or not. Regardless of their decision, each
member of the group receives an equal share of the public
good after the initial contributions are multiplied by a benefit
factor that takes into account the added value of collaborative
efforts. Individuals are best off by not contributing anything
to the common pool,i.e. by defecting, while the group is most
successful if everybody invests to the common pool,i.e. co-
operates. Since the interests of individual players evidently
do not agree with the interests of the group as a whole, we
have a blueprint of a social dilemma that threatens to evolve
towards the “tragedy of the commons” [4]. While the impe-
tus of prosocial behavior in settings described by the public
goods game is commonly attributed to between-group con-
flicts [5] and alloparental care [6], mechanisms that might fa-
cilitate and maintain highly cooperative states are still sought
ardently [7].

Public goods are particularly vulnerable to exploitation
since group interactions that bring them about tend to blur the
traces of those that defect. Reciprocity [8, 9] for example,
i.e. the act of returning favor for a favor, is straightforward in
games governed by pairwise interactions, but becomes prob-
lematic in games governed by group interactions. The same
is true for punishment [10], as those that ought to be punished
may not be easily traced down. Despite of these well known

∗Electronic address:chenx@iiasa.ac.at

difficulties associated with the promotion of cooperation in
the public goods game, complex interaction networks [11–
16], inhomogeneous player activities [17], appropriate partner
selection [18, 19], diversity [20–22], voluntary participation
[23, 24], heterogeneous wealth distributions [25], the intro-
duction of punishment [26–31] and reward [32, 33], risk of
collective failures [34], coordinated investments [35], as well
as both the joker [36] and the Matthew effect [37] were all
recently identified as viable means to avoid the tragedy of the
commons in structured populations [38–43].

In the present paper, we depart from the traditionally as-
sumed notion of discrete strategies by taking into account the
whole continuous range of the strategy space. That is to say,
players are no longer either pure cooperators or defectors, but
they can choose between all the possible nuances between
these two extremes. Indeed, the continuous version of the
public goods game [44, 45] can be considered an additional
step towards more realistic conditions, given that especially
humans are unlikely to stick with simply one or the other pure
strategy. The transition from the two discrete to a continuous
strategy set can be achieved most elegantly by introducing a
continuous variable from the unit interval defining the frac-
tion of the total cost a given player is willing to bare. While
the limits0 and1 recover the two pure strategies, intermediate
values from the unit interval correspond to more or less coop-
erative players. An obvious but important distinction from the
discrete version of the public goods game is that the continu-
ous version allows for the evolution of an intermediate level of
investments from players, which makes it particularly apt for
the investigation of the impact of different benefit functions.

The most frequent assumption is that the benefit returned by
the public goods game scales linearly with the amount con-
tributed by the cooperators,i.e. the more that is contributed
the more can be shared. There are situations, however, where



2

this assumption obviously fails and a nonlinear function be-
comes more appropriate. A prominent example is constituted
by the so-called threshold public goods game, where the sum
of contributions is multiplied by the benefit factor only if the
former exceeds a certain threshold [46–48]. In case all play-
ers are equal this simplifies to the critical mass problem [49].
Thresholds, being described by step-like benefit functions,
can be considered as an extreme case of a general nonlinear
benefit function [50, 51], with the other extreme being when
the public good depends only slightly (or not at all) on the
contributions of the members. The generalized sigmoid func-
tion bridges these two extremes and is characterized by two
parameters, namely the threshold and the steepness parame-
ter. Here we consider such a sigmoid benefit function and
study how both the steepness and the threshold affect the evo-
lution of cooperation in the spatial public goods game with
continuous strategies. Before proceeding with a more accu-
rate description of the model and the presentation of the main
results, our conclusions can be briefly summarized as follows:
There exists an intermediate value of the steepness and thresh-
old in the sigmoid function, which warrant the evolution of the
highest collective efforts of players. Upon increasing the cost-
to-benefit ratio, however, the steepness increases, whereas the
corresponding threshold value decreases. These results are
highly robust to variations in the complexity of the sigmoid
function and bolster the importance of benefits for the suc-
cessful evolution of public cooperation.

II. MODEL

We consider the continuous public goods game on a square
lattice of sizeL × L with periodic boundary conditions and
nearest neighbor interactions. The strategy of each playerx
is initially drawn uniformly at random from the unit interval
sx ∈ [0, 1], defining its level of contribution in each of the
five groupsGi (i = 1, . . . , 5) of sizeN = 5 where it is mem-
ber. Accordingly, the total payoff of playerx is Px =

∑
i P

i
x,

where

P i
x = bB(Si)− sxc (1)

is the payoff obtained from groupGi. In Eq. 1b is the ben-
efit of the public good,c (c < b) is the cost of coopera-
tion, Si =

∑
y∈Gi

sy is the total amount of collected con-
tributions whileB(Si) is the benefit function determining the
total amount of the produced public good. In order to take
into account both extremes, namely when the produced pub-
lic good depends slightly or heavily on the contributions of
group members, the function

B(Si) =
1

1 + exp[−β(Si − T )]
(2)

is used, whereT represents the threshold value, andβ repre-
sents the steepness of the function [50]. Forβ = 0, the benefit
function is a constant equalling0.5. In this situation, the pub-
lic goods are insensitive to the efforts of group members. Con-
versely, forβ = +∞ the benefit function becomes step-like
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FIG. 1: (Color online) Outlays of the benefit functionB(Si) for dif-
ferent values ofβ, as indicated on the graph. The threshold value is
T = 2.5.

so that group members can enjoy the benefits of collaborative
efforts viab only if the total amount of contributions in the
groupSi exceeds a threshold. Otherwise, they obtain nothing.
For clarity, the benefit functionB(Si) is plotted in Fig. 1 for
different values ofβ.

After playing the game, each player is allowed to learn from
one of its neighbors and potentially update its strategy. Player
x adopts the strategysy from one randomly chosen neighbor
y with a probability

f =
1

1 + exp[(Px − Py)/κ]
, (3)

whereκ denotes the amplitude of noise [52]. Without losing
generality, we setκ = 0.5 so that it is very likely that the
better performing players will pass their strategy onto their
neighbors, yet it is also possible that players will occasionally
learn from those performing worse. We note that the presented
results are largely independent on the actual value of noise and
remain valid up toκ ≈ 3.

According to the imitation rule playerx imitates accurately
the strategy of playery, which may cause problem during nu-
merical simulations because we have infinitely large number
of strategies but only afinite number of players. As a result the
final output might depend on the initial condition especially at
small system sizes. This problem can be elegantly alleviated
if we introduce imitation errors resulting in a slightly different
sy for playerx. More precisely, the new strategy of playerx
is sx′ = sy ± wσ | sx − sy |, whereσ ∈ [0, 1] is a random
number andw = 0.1 is a weight factor to limit the deviation
from the precise imitation. When using this update rule, we
have observed similar result to those obtained when applying
the accurate strategy imitation at large system sizes.

Our simulations were carried out by using100 × 100 sys-
tem size, but the results remain valid also if we use larger lat-
tices. We implement the model by using synchronous updat-
ing, where all the individualsfirst collect their payoffs through
the group interactions and subsequently update their strategies
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FIG. 2: (Color online) The average cooperation level and its variance
as a function of the cost-to-benefit ratio c/b by usingb = 1. (a)
Different values ofT (as indicated on the graph) are considered while
the steepness isfixed atβ = 1. (b) Different values ofβ (as indicated
on the graph) are considered while the threshold isfixed atT = 2.5.
The error bars are marked, but they are hardly visible as their size is
comparable to that of the symbols.

simultaneously. This choice, however, does not limit the va-
lidity of our observations because very similar results can be
obtained by using asynchronous strategy updating as well. To
quantify the cooperative behavior in the population, we com-
pute the cooperation level according toρ = L−2

∑
x sx(∞),

wheresx(∞) denotes the strategy of playerx when the system
reaches dynamical equilibrium. We also compute the vari-
ance of the cooperation level inthe equilibrium according to
L−2

∑
x[sx(∞) − ρ]2. All the results reported in the next

section are averages over100 independent initial conditions.

III. RESULTS

Before presenting the results of the evolutionary process,
we note that due to the nonlinearity of the benefit function,
higher collective effort from group members will not neces-
sarily result in higher group benefits. This is evident for high
β values where the collective benefit functionB(S) saturates,
but may also apply to moderate values ofβ. To clarify this
point, one can calculate the optimal value of group invest-
mentsS, where the group interest functionP = NbB(S)−Sc
has a maximum according to

S = T − 1

β
ln

1− 2y −√
1− 4y

2y
, (4)

where

y =
1

Nβ

c

b
.

From this it follows that for a real value ofS, the steepness
parameter should beβ > 4c/Nb. Additional necessary con-
ditions that will result in an optimal group income atS < N ,
however, will depend on the parametersβ, T , S andc/b in a
non-trivial way.

Turning to the simulation results, we begin by showing in
Fig. 2(a) the stationary cooperation level in dependence on the
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FIG. 3: (Color online) Cooperation level as a function of the steep-
ness parameterβ for different cost-to-benefit ratios: (a)c/b = 0.1,
(b) c/b = 0.3, (c) c/b = 0.45, and (d)c/b = 0.6. The applied
threshold values are indicated in panel (c).

cost-to-benefit ratio c/b for five different values of the thresh-
old T at a fixed steepnessβ = 1. As expected, the aver-
age willingness to contribute to the common pool decreases
with increasingc/b for various values ofT . When the cost-to-
benefit ratio is not large, however, maximal investments from
players can be achieved at an intermediate value of the thresh-
old. Figure 2(b) shows the cooperation level in dependence on
the cost-to-benefit ratio c/b for the fixed thresholdT = 2.5
and five different values of the steepness parameter. It can
be observed that the collective investment decreases with in-
creasingc/b for various values ofβ. Qualitatively similar as
in panel (a), players investment the most at an intermediate
value of the steepness whenc/b is not large. With increas-
ing c/b, the value ofβ that results in the maximum increases.
We have also investigated how the variance of the collective
investment in the stationary state varies (not shown),finding
that it approaches zero for different parameter settings. This
implies that the system canfixate into a uniform state where
every player contributes to the common with the same rate,i.e.
where every player adopts the same strategy from the unit in-
terval. As we will elaborate in the continuation of this section,
however, the reportedfixation may depend on the parameters
that characterize the benefit function.

In order to explore the impact of the sigmoid benefit func-
tion more precisely, we show the cooperation level in depen-
dence onβ at different values ofT for four representative
cost-to-benefit ratios in Fig. 3. These plots clearly show that
there always exists an intermediate value ofβ warranting the
best conditions for the selection of the strategy with the high-
est level of collective contributions within the constraints im-
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FIG. 4: (Color online) Contour encoded cooperation level in depen-
dence on the steepness parameterβ and the thresholdT for different
cost-to-benefit ratios: (a)c/b = 0.1, (b) c/b = 0.3, (c) c/b = 0.45,
and (d)c/b = 0.6.

posed by any givenc/b ratio.
To provide a more complete view on how the shape of the

benefit function influences the evolution of cooperation, we
plot the average of stationarysx values on the wholeT − β
plane in Fig. 4 for four different cost-to-benefit ratios. It can
be observed that for different values ofc/b, there always exist
an intermediate value ofT that insures the highest collective
investment from the population. Furthermore, if the cost of
cooperation is not too high, there also exists an intermediate
value ofβ that helps the players to maintain their highest level
of contributions to the group. Moreover, with increasing the
cost-to-benefit ratioc/b, the related region ofβ andT shrinks.
As a result, the corresponding value ofT is decreasing, while
β value is increasing. Even ifc/b is high, e.g. c/b = 0.6,
there exist appropriate values ofβ andT that are able to elicit
the highest level of collective efforts. However, in such a sce-
nario the average investmentfirst increases from zero to the
maximum value, but then for even higher values ofT displays
little change with increasingβ. Finally, if much higherc/b
ratios are used, the optimal region ofβ andT vanishes, and
expectedly, full defection reigns in the whole parameter space.

It can be seen in Fig. 4 that there always exist a value ofT
(except for very smallβ values) that ensures the evolution of
the highest collective investments. For small threshold values,
the amount of produced public goods is high in each group.
Thus, everyone can look forward to a high amount of the bene-
fit, and individuals withholding contribution can have a higher
payoff than those that do contribute. On the other hand, for
high threshold values, the amount of produced public good
is small in each group. Thus, everyone obtains only a small
amount of the benefit, but individuals withholding contribu-
tion can still have higher payoffs than those that do contribute
something. Either way, the level of cooperation cannot be high
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FIG. 5: (Color online) Evolution (from left to right) of the distribu-
tion of individual contributions (strategies) on a square lattice for dif-
ferent values of the steepness parameter: (a,b,c,d)β = 0.1, (e,f,g,h)
β = 1, and (i,j,k,l)β = 10. Individuals withholding the entire con-
tribution (pure defectors) are marked red, while pure cooperators are
marked blue. Individual players adopting an intermediate strategy
are green. For further details we refer to the color bar on the right
of thefigure. Other parameter values are:c/b = 0.1, T = 2.5. An
identical random initial state was used for three values ofβ.

in these two situations. Conversely, for intermediate threshold
values, the collective contribution level in some groups can be
larger than the threshold, and the amount of produced public
goods is hence higher. In this case, individuals with a higher
contribution level have the opportunity of collecting higher
payoffs than their neighbors with a lower contribution level.
Consequently, the former can survive and prevail. In agree-
ment with this insight, there exists an intermediate threshold
value that warrants the highest investment from group mem-
bers. At highβ values, when the benefit function is practically
step-like, the value ofT is in strong correlation with thesx
strategy that ultimately prevails. The mechanism that explains
this fact, however, will be discussed later in this section.

As we have demonstrated, different shapes of the benefit
function influence thefinal output significantly differently. To
understand the origins of this better, we plot the time evolu-
tion of the spatial distribution of strategies for three represen-
tative values ofβ in Fig. 5. In the top row, where a smallβ is
applied, players that contribute a lot die out fast. Afterwards,
the players that are characterized by a smallsx will also go ex-
tinct, andfinally full defection will prevail. In this case there
are no real consequences related to how large contributions
players invest into the common pool because the benefit is vir-
tually independent from it. Given the lack of a substantial ad-
vantage, players who havesx > 0 must bear a substantial cost
relative to a negligible benefit. Consequently, if the steepness
parameter is low defectors will always prevail, regardless of
the fact that players are organized in a structured population.
At an intermediate steepness [middle row, panels (e) to (h)],
full defectors die outfirst because network reciprocity work in
this case: if players cooperate and invest more to the common
pool then they can also harvest more, which ultimately results
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FIG. 6: (Color online) Comparative snapshots depicting the front propagation (from left to right) for the intermediateβ = 1 (a,b,c,d,e) and the
largeβ = 10 (f,g,h,i,j) value of the steepness parameter atT = 2.5. In both rows the initial state contains players havingsx = 0.1 (orange),
sx = 0.55 (green), andsx = 1 (blue). It can be observed that in the top row both the strategysx = 0.55 and the strategysx = 1 will
successfully invade the territory occupied bysx = 0.1. Simultaneously, the interface betweensx = 0.55 andsx = 1 is heavilyfluctuating and
rugged. Conversely, in the bottom rowsx = 0.55 will dominate not justsx = 0.1 but also thesx = 1 strategy. Because of this unambiguous
superiority, the interface separatingsx = 0.55 andsx = 1 remains comparably smooth and stable. The propagation of this border, however,
is slower than that of the one separatingsx = 0.1 andsx = 0.55.

in a competitive individual payoff comparing to the freeriders.
In the stationary state, shown in panel (h), different strategies
can coexist. Here a delicate balance of investment and cost
results in that strategies whose investments are high enough
can survive longer. At largeβ [bottom row, panels (i) to (l)],
where the prize of mutual investment emerges suddenly, play-
ers who contribute less will go extinct soon because they can
collect nothing due to the shape of the benefit function. Only
those whose investment is large enough to reach the public
goods will survive for an intermediate period, but eventually
the systemfixates into a uniform state where only one strategy
remains. Typically this cooperation is approximately consis-
tent with theS value that can be obtained from Eq. 4 and
yields the highest collective benefit.

To illustrate the different mechanisms that shape thefinal
output at intermediate and large steepness values, we compare
the propagation of fronts separating different strategies (con-
tributing differently to the common pool). For this reason, we
have used a prepared initial state containing only three differ-
ent strategies. In particular, players contribute either0.1, 0.55
or 1, as described in the caption of Fig. 6. In the top row, both
sx = 0.55 and1 will invade against thesx = 0.1 strategy
because they can both utilize the increasing benefit function.
The dominance between the strategies of higher contribution
is not so obvious because the higher contribution involves also
a higher cost. Consequently, the interface separating these
strategies is not smooth as the time evolves, but rather itfluc-
tuates intensively. Albeit, the final state is uniform for this
case but the coexistence of strategies is more likely for inter-
mediate values ofβ, as we have argued earlier.

In the bottom row, where the benefit function is practically
step-like, the relation between the three strategies is more

clear. Here the strategysx = 0.1 bares only the cost but ex-
periences no benefits, hence all the other strategies who fulfill
S > T can invade it. Accordingly, the stripe populated by
sx = 0.1 shrinks fast. Although bothsx = 0.55 and1 ful-
fill the criteria to reap the benefits of a collective investment,
the latter players have to bare a larger cost, and consequently
sx = 0.55 dominate this duel too. The explained superior-
ity between the competing strategies can be observed because
the separating fronts remain well determined (the slightfluc-
tuation is the consequence of uncertainty by strategy adop-
tions). The dominance betweensx = 0.55 and1 is weaker
than the dominance between0.55 and0.1 because the former
two strategies differ only in having different costs. This re-
lation can also be observed in Figs. 6(g) and (h), where the
speed of propagation separating the two borders is different
(it is faster between0.1 and0.55). Finally 0.55 prevails. The
fixation for largeβ values is more likely and subject to the
following general scenario: the strategy having the smallest
sx that still fulfills the conditionNSx > T to gain the bene-
fit can invade the whole population.

In combination with the above investigations, in the fol-
lowing we explain why the intermediate value ofT that war-
rants the highest collective efforts decreases whereas the re-
lated value ofβ increases with increasingc/b. In fact, when
the cost-to-benefit ratio c/b is increased, the advantage of ag-
gregated individuals with a high level of contribution in col-
lecting payoffs is weakened at large threshold values [49]. On
the contrary, at lower threshold values the amount of produced
public goods can be higher so that individuals who make some
contribution to the common pool may have a higher return
than those who contribute nothing. Consequently, the coop-
eration level can be higher in this situation. Furthermore, in
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FIG. 7: (Color online) Time evolution of the average amount of pro-
duced public goods (a) and the average cooperation level (b) for three
different combinations of the cost-to-benefit ratios and the steepness
parameter:c/b = 0.15 andβ = 1 (solid black line);c/b = 0.3 and
β = 1 (dashed red line);c/b = 0.3 andβ = 2 (dotted blue line). In
all three casesT = 2.

Fig. 7(a) we observe that, for small values ofc/b andβ, the
average amount of produced public goods in the population
is high, which can provide a high benefit for all the involved
individuals. Hence, they can survive and the cooperation level
in the population is not low. However, when only the value of
c/b is increased, the average amount of produced public good
in the population dramatically decreases at the beginning of
the evolutionary process. Correspondingly, those individuals
that do contribute something to the common pool cannot have
a higher payoff than the ones who contribute noting. Eventu-
ally, the cooperation level reaches zero [Fig. 7(b)]. If the value
of β is also increased, the average amount of produced pub-
lic goods can recover to a higher level. Although the positive
effect induced by an increased value ofβ is still restricted by
the higherc/b ratio, thefinal stationary cooperation level can
still reach a relatively higher level.

Finally, to explore the robustness of ourfindings, we con-
sider a modified yet more complex form of the benefit func-
tion following previous work [53]:

B(Si) =
W (Si)− 1

W (N)− 1
, (5)

where

W (z) =
1 + exp(βT )

1 + exp[−β(z − T )]
. (6)

It is worth emphasizing that this modified form of the benefit
function is still sigmoid. Whenβ → 0, the produced public
good is a traditionally linear function of individual contribu-
tions; whenβ → +∞, the produced public good is a step-like
function of the individual contributions. In other words, this
modified sigmoid function is strictly constrained between the
linear and the step-like shape. Figure 8 presents the coopera-
tion level in dependence on the steepnessβ for different values
of the thresholdT for four different situations: (a)c/b = 0.1,
(b) c/b = 0.2, (c) c/b = 0.3, and (d)c/b = 0.6. We see that
even under the action of an alterative benefit function, there
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FIG. 8: (Color online) Cooperation level as a function of the steep-
ness parameterβ for different cost-to-benefit ratios: (a)c/b = 0.1,
(b) c/b = 0.2, (c) c/b = 0.3, and (d)c/b = 0.6. The applied
threshold values are indicated in panel (c). Importantly, unlike in
Fig. 3, here the more complex benefit function is applied, as defined
by Eq. 5.

still exists an intermediate value ofT that warrants the highest
investments from players. When thec/b ratio is increased, the
optimal value ofT is reduced and the cooperation level also
decreases. Whereas for small values ofc/b, e.g. c/b = 0.1,
the cooperation level monotonously decreases with increasing
the steepnessβ for different values ofT . However, whenc/b
becomes larger,e.g. c/b = 0.2, there also exists an interme-
diate value ofβ warranting the best promotion of cooperation
for different values ofT . As c/b continues to increase, the
non-monotonous dependence of the cooperation level onβ
only occurs at smaller values of the threshold, and the largest
cooperation level is correspondingly reduced. For still larger
c/b ratios, full defection is reached irrespective of the thresh-
old and the steepness parameters (not shown here), likewise as
reported above for the originally considered benefit function.

IV. DISCUSSION

Summarizing, we have studied the evolution of cooperation
in the spatial continuous public goods game subject to differ-
ent sigmoid benefit functions. We have shown that there ex-
ists an intermediate threshold value as well as an intermediate
steepness, at which the collective contributions to the common
pool are the largest. Upon increasing the cost-to-benefit ratio,
we have found that the threshold value related to this max-
imum decreases, while the corresponding measure of steep-
ness increases. Simultaneously, the parameter region where
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public cooperation can prevail was found shrinking, and ulti-
mately vanishing completely at a critical cost-to-benefit ratio.
When employing a more complex variant of the sigmoid func-
tional form in order to describe the governing benefit func-
tions, we have discovered that our results remain robust,i.e.
there always exist intermediate values of the threshold and the
steepness at which investments to the common pool are the
largest. As by the usage of the simpler benefit functions, in
case of more complex variants the related specific values of
both parameters were also found to depend significantly on
the cost-to-benefit ratio. Taken together, our results elucidate
the impact of generalized benefit functions on the evolution of
cooperation in the spatial public goods game, which appear to
always enable the tragedy of the commons to be avoided.

This work continues along the lines of previous investiga-
tions considering different benefit functions, yet it does so on
structured rather than well-mixed populations. Unlike in well-
mixed populations [53], however, here wefind that the out-
come of the public goods game depends significantly on the
steepness parameter, and that thus the step-like benefit func-
tion is not necessarily a good approximation for an arbitrary
nonlinear benefit function. In fact, due to spatial reciprocity
the sigmoid benefit function can significantly broaden the do-
main where cooperative behavior can survive even by rela-
tively unfavorable cost-to-benefit ratios. The presented results
thus promote our understanding of the effects of nonlinear
benefit functions on the evolution of public cooperation, es-
pecially if spatial reciprocity is a contributing factor.

In comparison to [49], where the impact of the critical mass,
i.e. the threshold number of cooperators that is required for

harvesting the benefits of the collective effort, was considered
in the spatial public goods game with two discrete strategies,
we adopt here a more generalized approach, where instead of
just the threshold also the steepness is considered as a free pa-
rameter. Moreover, instead of the two discrete strategies, we
consider the full continuous array of strategies allowing for
the delicate variability of contributions to the common pool.
In this broader framework, we confirm that moderate thresh-
old values can warrant the highest mutual contributions from
all the group members, albeit depending on the value of the
cost-to-benefit ratio and the steepness. More importantly, we
find that there exists an intermediate steepness of the bene-
fit function, which can further amplify the positive effects of
an appropriately adjusted threshold. Our results thus convey
the possibility ofa double enhancement of collective contribu-
tions, thus highlighting the important role of nonlinear benefit
functions for the evolution of prosocial behavior on structured
populations.
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