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Cooperation and defection may be considered as wtreme responses to a social dilemma. Yet the reality
is much less clear cut. Between the two extremes lies an interval of ambivalent choices, whichaaptubed
theoretically by means of continuous strategiefsnitleg the extent of the contributions of each individual player
to the common pool. If strategies are chosen from the unit interval, viheseresponds to pure defection ahd
corresponds to the maximal contribution, the question is what is the characteristic lieiVigfual investments
to the common pool that emerges if the evolution is guided by differentfivdéunections. Here we consider the
steepness and the threshold as two parametéirsrgan array of generalized bditdunctions, and we show
that in a structured population there exist intermediate values of both at which thetiwellcontributions are
maximal. However, as the cost-to-béheatio of cooperation increases the characteristic threshold decreases,
while the corresponding steepness increases. Our observations remain valid if more complex signioigfunct
are used, thus reenforcing the importance of carefully adjusteditsefoe high levels of public cooperation.

PACS numbers: 87.23.Ge, 87.23.Kg, 89.75.Fb

I. INTRODUCTION difficulties associated with thergamotion of cooperation in
the public goods game, complex interaction networks [11-
16], inhomogeneous player activisifl 7], appropriate partner
selection [18, 19], diversity [20-22], voluntary participation
3, 24], heterogeneous wealth distributions [25], the intro-
guction of punishment [26-31] and reward [32, 33], risk of

The public goods game is a typical example of an evolu
tionary game [1-3] that is governed by group interactions
It requires that players decide simultaneously whether the

wish to bare the cost of cooperation and thus to contribute t . g . )
the common pool, or not. Regardless of their decision, eachollective failures [34], coordinated investments [35], as well

member of the group receives an equal share of the publi"&ls bo:lh Fge jl(ﬁ).kzr [36]. %r;d the Mattthew .(ejﬁ;ﬁCtt[BH éver? t?]"
good after the initial contributions are multiplied by a bfne recently idenfied as viable means 1o avold the tragedy ot the

factor that takes into account the added value of collaboratiy&®MMONS N structured populations [38-43].

efforts. Individuals are best off by not contributing anything In the present paper, we depart from the traditionally as-
to the common pool,e. by defecting, while the group is most sumed notion of discrete strategies by taking into account the
successful if everybody invests to the common poel,co- ~ Whole continuous range of the strategy space. That is to say,
operates. Since the interests of individual players evidentlplayers are no longer either pure cooperators or defectors, but
do not agree with the interests of the group as a whole, wéhey can choose between all the possible nuances between
have a blueprint of a social dilemma that threatens to evolvéhese two extremes. Indeed, the continuous version of the
towards the “tragedy of the commons” [4]. While the impe- Public goods game [44, 45] can be considered an additional
tus of prosocial behavior in settings described by the publigtep towards more realistic conditions, given that especially
goods game is commonly attributed to between-group confumans are unlikely to stick with simply one or the other pure
flicts [5] and alloparental care [6], mechanisms that might fastrategy. The transition from the two discrete to a continuous

cilitate and maintain highly cooperative states are still sough$trategy set can be achieved most elegantly by introducing a
ardently [7]. continuous variable from the unit intervalfdeng the frac-

tion of the total cost a given player is willing to bare. While

Public goods are particularly vulnerable to exploitation imi q h T di
since group interactions that bring them about tend to blur th&1€ limits0 and1 recover the two pure strategies, intermediate
values from the unit interval correspond to more or less coop-

traces of those that defect. Reciprocity [8, 9] for example,”*™. - . R
i.e. the act of returning favor for a favor, is straightforward in €rative players. An obvious butimportant distinction from the

games governed by pairwise interactions, but becomes IOrOE,i_iscrete version of the public goods game is that the continu-
lematic in games governed by group interactions. The sam@Us version allows for the evolution of an intermediate level of
is true for punishment[10], as those that ought to be punishe. vestments from playe_rs, which_makes it pa_trticularly apt for
may not be easily traced down. Despite of these well knowA'® investigation of the ipact of different berfé functions.
The most frequent assumption is that the igneturned by

the public goods game scales linearly with the amount con-

tributed by the cooperatorse. the more that is contributed
*Electronic address:henxeiiasa.ac.at the more can be shared. There are situations, however, where



this assumption obviously fails and a nonlinear function be-
comes more appropriate. A prominent example is constituted
by the so-called threshold public goods game, where the sum
of contributions is multiplied by the befiefactor only if the
former exceeds a certain threshold [46—48]. In case all play-
ers are equal this simfiles to the critical mass problem [49].
Thresholds, being described by step-like Hankinctions,
can be considered as an extreme case of a general nonlinear
bendit function [50, 51], with the other extreme being when
the public good depends only slightly (or not at all) on the
contributions of the members. The generalized sigmoid func-
tion bridges these two extremes and is characterized by two
parameters, namely the threshold and the steepness parame- S
ter. Here we consider such a sigmoid bienfinction and
study how both the steepness and the threshold affect the evo-
lution of cooperation in the spatial public goods game withFIG. 1: (Color online) Outlays of the befiefunction B(.S;) for dif-
continuous strategies. Before proceeding with a more accuferent values of3, as indicated on the graph. The threshold value is
rate description of the model and the presentation of the mai = 2.5.
results, our conclusions can be iyssummarized as follows:
There exists an intermediate value of the steepness and thresh-
old in the sigmoid function, which warrant the evolution of the . . .

. ) . . so that group members can enjoy the bgaef collaborative
highest collective efforts of players. Upon increasing the cost:

to-bendit ratio, however, the steepness increases, whereas tﬁgorts viab only if the total amount of contributions in the

, roupsS; exceeds a threshold. Othése, they obtain nothing.
corresponding threshold value decreases. These results & clarity, the benfét function B(S,) is plotted in Fig. 1 for
highly robust to variations in the complexity of the sigmoid ! ! '

function and bolster the importance of bétefor the suc- dlfz;:?t}/:l?nestgfj. ame. each plaver is allowed to learn from
cessful evolution of public cooperation. playingthe g ’ play

one of its neighbors and potentially update its strategy. Player
x adopts the strategy, from one randomly chosen neighbor
I MODEL y with a probability

B(9)

1
: . : = , 3
We consider the continuous public goods game on a square f 1+ exp|(Py — P,)/A] (3)

lattice of sizel x L with periodic boundary conditions and

nearest neighbor interactions. The strategy of each player \yhere denotes the amplitude of noise [52]. Without losing
is initially drawn uniformly at random from the unit interval generality, we set: = 0.5 so that it is very likely that the
s; € [0,1], défining its level of contribution in each of the peter performing players will pass their strategy onto their

five groups7; (i = 1,. .., 5) of size N = 5 where it is MEM- " neighbors, yet it is also possible that players will occasionally
b(;r. Accordingly, the total payoff of playeris . = >, P, |earn from those performing worse. We note that the presented
where

results are largely independent on the actual value of noise and
i N remain valid up tos ~ 3.
Py =bB(Si) = sac (1) According to the imitation rule player imitates accurately

is the payoff obtained from grou@;. In Eq. 1b is the ben- the strategy of playey, which may cause problem during nu-

efit of the public good,c (¢ < b) is the cost of coopera- merical simulations because we havénitely large number

tion, S; = 3 . Sy is, the total amount of collected con- Of strategies but only &inite number of players. As aresultthe
[t yelG; 1

tributions while B(S;) is the benét function determining the final output might depend on theiiial condition especially at

total amount of the produced public good. In order to takesma" system sizes. This problem can be elegantly alleviated
f we introduce imitation errors seilting in a slightly different

into account both extremes, namely when the produced puB for ol M iselv. th trat £ ol
lic good depends slightly or heavily on the contributions of * or playerz. More precisely, tn€ new strategy ot player
group members, the function iS s/ = sy £ wo | s, — sy |, whereo € [0,1] is a random

number andv = 0.1 is a weight factor to limit the deviation

1 from the precise imitation. When using this update rule, we
B(S;) = 1+ exp[—B(S; — T)] (2)  have observed similar result to those obtained when applying
' the accurate strategy imitation at large system sizes.
is used, wheré” represents the threshold value, ahdepre- Our simulations were carried out by usin@0 x 100 sys-

sents the steepness of the function [50]. Fet 0, the benét ~ tem size, but the results remain valid also if we use larger lat-
function is a constant equallirig5. In this situation, the pub- tices. We implement the model by using synchronous updat-
lic goods are insensitive to the efforts of group members. Coning, where all the individualirst collect their payoffs through
versely, fors = +oo the benét function becomes step-like the group interactions and subsequently update their strategies
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FIG. 2: (Color online) The average cooperation level and its variance
as a function of the cost-to-beifiteratio ¢/b by usingb = 1. (a)
Different values ofl" (as indicated on the graph) are considered while
the steepnessiixed at3 = 1. (b) Different values of (as indicated

on the graph) are considered while the threshofiked atT” = 2.5.

The error bars are marked, but they are hardly visible as their size is
comparable to that of the symbols.
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simultaneously. This choice, however, does not limit the va-
lidity of our observations because very similar results can b&
obtained by using asynchronous strategy updating as well.
quantify the cooperative behavior in the population, we coms,,
pute the cooperation level accordingae= L2 3" s, (c0),
wheres,,(oco) denotes the strategy of playewhen the system
reaches dynamical equilibrium. We also compute the vari-

ance of the cooperagtlon level the equilibrium according 10  ¢qgt-to-bentit ratio /b for five different values of the thresh-
L7235, [sa(00) — p]”. All the results reported in the next o4 7 at afixed steepnes§ = 1. As expected, the aver-
section are averages oVl independent initial conditions. age willingness to contribute to the common pool decreases
with increasing:/b for various values of . When the cost-to-
bendit ratio is not large, however, maximal investments from
. RESULTS players can be achieved at ardnhediate value of the thresh-
old. Figure 2(b) shows the cooperation level in dependence on
Before presenting the results of the evolutionary processhe cost-to-berfé ratio ¢/b for the fixed thresholdl’ = 2.5
we note that due to the nonlinearity of the bh&unction, andfive different values of the steepness parameter. It can
higher collective effort from group members will not neces-be observed that the collective investment decreases with in-
sarily result in higher group befits. This is evident for high creasing:/b for various values off. Qualitatively similar as
B values where the collective bditdunction B(S) saturates, in panel (a), players investment the most at an intermediate
but may also apply to moderate values/f To clarify this  value of the steepness wheyb is not large. With increas-
point, one can calculate the optimal value of group investing ¢/b, the value of3 that results in the maximum increases.
mentsS, where the group interest functidh= NbB(S)—Sc  We have also investigated how the variance of the collective
has a maximum according to investment in the stationary state varies (not shofinling
that it approaches zero for diffent parameter settings. This

IG. 3: (Color online) Cooperation level as a function of the steep-
ess parametet for different cost-to-berfé ratios: (a)c/b = 0.1,

) ¢/b = 0.3, (€) ¢/b = 0.45, and (d)c/b = 0.6. The applied
reshold values are indicated in panel (c).

S T 1 o 1—2y—+/1—-4y (@) implies that the system cédixate into a uniform state where
8 2y ’ every player contributes to the common with the same rate,
where where every player adopts the same strategy from the unit in-
1 ¢ terval. As we will elaborate in the continuation of this section,
y = NBb however, the reportefiixation may depend on the parameters

that characterize the béitgunction.

From this it follows that for a real value of, the steepness  In order to explore the impact of the sigmoid b&nfinc-
parameter should b& > 4¢/Nb. Additional necessary con- tion more precisely, we show the cooperation level in depen-
ditions that will result in an optimal group incomegt< N, dence ong at different values ofl’ for four representative
however, will depend on the parametgrsT’, S andc/bina  cost-to-benfit ratios in Fig. 3. These plots clearly show that
non-trivial way. there always exists antermediate value gf warranting the
Turning to the simulation results, we begin by showing inbest conditions for the selection of the strategy with the high-
Fig. 2(a) the stationary cooperation level in dependence on thest level of collective contributions within the constraints im-
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FIG. 5: (Color online) Evolution (from left to right) of the distribu-
tion of individual contributions (strategies) on a square lattice for dif-
ferent values of the steepseeparameter: (a,b,c,d)= 0.1, (e,f,g,h)

B =1, and (ij,k,l) 5 = 10. Individuals withholding the entire con-

FIG. 4: (Color online) Contour encoded cooperation level in depentrlbutlon (pure defectors) are marked red, while pure cooperators are

dence on the steepness paramgtend the threshold’ for different ~ Marked blue. Individual players adopting an intermediate strategy

cost-to-bentt ratios: (a)e/b = 0.1, (b) ¢/b = 0.3, (C) ¢/b = 0.45, &€ green. For further details we refer to the color bar on the right

and (d)e/b = 0.6. of thefigure. Other parameter values argb = 0.1, T = 2.5. An
identical random initial state vgaused for three values 6f

ol 102102 100 100 100 102

Steepness,

posed by any given/b ratio.

To provide a more complete view on how the shape of thdn these two situations. Conversely, for intermediate threshold
bendit function influences the evolution of cooperation, we values, the collective contribution level in some groups can be
plot the average of stationasy, values on the whol@” — j3 larger than the threshold, and the amount of produced public
plane in Fig. 4 for four different cost-to-béfiteratios. It can goods is hence higher. In this case, individuals with a higher
be observed that for different valuesagh, there always exist = contribution level have the opportunity of collecting higher
an intermediate value & that insures the highest collective payoffs than their neighbors with a lower contribution level.
investment from the population. Furthermore, if the cost ofConsequently, the former can survive and prevail. In agree-
cooperation is not too high, there also exists an intermediatg€nt with this insight, there exists an intermediate threshold
value of3 that helps the players to maintain their highest levelvalue that warrants the highest investment from group mem-
of contributions to the group. Moreover, with increasing thebers. Athigh3 values, when the befiefunctioniis practically
cost-to-bentit ratioc/b, the related region of andT shrinks. ~ step-like, the value of is in strong correlation with the,

As a result, the corresponding valuelfs decreasing, while  strategy that ultimately prevails. The mechanism that explains
j value is increasing. Even if/b is high,e.g. ¢/b = 0.6, this fact, however, will be discussed later in this section.

there exist appropriate values@fnd7 that are able to elicit As we have demonstrated, different shapes of the fiilene
the highest level of collective efforts. However, in such a scefunction influence thdinal output sigrficantly differently. To
nario the average investmefitst increases from zero to the understand the origins of this better, we plot the time evolu-
maximum value, but then for even higher value§afisplays  tion of the spatial distribution of strategies for three represen-
little change with increasing. Finally, if much higherc/b  tative values of3 in Fig. 5. In the top row, where a smdllis
ratios are used, the optimal region ®fandT vanishes, and applied, players that contribute a lot die out fast. Afterwards,
expectedly, full defection rgns in the whole parameter space. the players that are characterized by a smaWill also go ex-

It can be seen in Fig. 4 that there always exist a valug of tinct, andfinally full defection will prevail. In this case there
(except for very smalB values) that ensures the evolution of are no real consequences related to how large contributions
the highest collective investmen For small threshold values, players invest into the common pool because the tigeeir-
the amount of produced public goods is high in each grouptually independent from it. Given the lack of a substantial ad-
Thus, everyone can look forward to a high amount of the benevantage, players who haye > 0 must bear a substantial cost
fit, and individuals withholding contribution can have a higherrelative to a negligible befi¢. Consequently, if the steepness
payoff than those that do contribute. On the other hand, foparameter is low defectors will always prevail, regardless of
high threshold values, the amount of produced public goodhe fact that players are organized in a structured population.
is small in each group. Thusyeryone obtains only a small At an intermediate steepnessiffdle row, panels (e) to (h)],
amount of the berfd, but individuals withholding contribu- full defectors die oufirst because network reciprocity work in
tion can still have higher payoffs than those that do contributehis case: if players cooperate and invest more to the common
something. Either way, the level of cooperation cannot be higipool then they can also harvest more, which ultimately results



FIG. 6: (Color online) Comparative snapshots depicting the front propagation (from legfhtpfor the intermediat@ = 1 (a,b,c,d,e) and the
large8 = 10 (f,g,h,i,j) value of the steepness parametefat 2.5. In both rows the initial state contains players having= 0.1 (orange),

s = 0.55 (green), ands,, = 1 (blue). It can be observed that in the top row both the strategy- 0.55 and the strategy, = 1 will
successfully invade the territory occupieddy= 0.1. Simultaneously, the interface betwegn= 0.55 ands, = 1 is heavilyfluctuating and
rugged. Conversely, in the bottom rew = 0.55 will dominate not justs, = 0.1 but also thes, = 1 strategy. Because of this unambiguous
superiority, the interface separating = 0.55 ands, = 1 remains comparably smooth and stable. The propagation of this border, however,
is slower than that of the one separating= 0.1 ands, = 0.55.

in a competitive individual payoff comparing to the freeriders.clear. Here the strategy, = 0.1 bares only the cost but ex-

In the stationary state, shown in panel (h), different strategieperiences no beffi¢s, hence all the other strategies whdifll

can coexist. Here a delicate balance of investment and cost > T can invade it. Accordingly, the stripe populated by
results in that strategies whose investments are high enough = 0.1 shrinks fast. Although bothk, = 0.55 and1 ful-

can survive longer. At largg [bottom row, panels (i) to ()], fill the criteria to reap the befits of a collective investment,
where the prize of mutual investment emerges suddenly, playthe latter players have to bare a larger cost, and consequently
ers who contribute less will go extinct soon because they car, = 0.55 dominate this duel too. The explained superior-
collect nothing due to the shape of the bignfeinction. Only ity between the competing strategies can be observed because
those whose investment is large enough to reach the publibe separating fronts renmawell determined (the sligttuc-
goods will survive for an intermediate period, but eventuallytuation is the consequence of uncertainty by strategy adop-
the systenfixates into a uniform state where only one strategytions). The dominance betweep = 0.55 and1 is weaker
remains. Typically this coopetian is approximately consis- than the dominance betweers5 and0.1 because the former
tent with the S value that can be obtained from Eq. 4 andtwo strategies differ only in having different costs. This re-
yields the highest collective befite lation can also be observed in Figs. 6(g) and (h), where the

To illustrate the different mechanisms that shapefihal ~ SPeed of propagation separating the two borders is different
output at intermediate and large steepness values, we compdfgis faster between.1 and0.55). Finally 0.55 prevails. The
the propagation of fronts separating different strategies (corfixation for large values is more likely and subject to the
tributing differently to the common pool). For this reason, wefollowing general scenario: the strategy having the smallest
have used a prepared initial state containing only three differs= that still fuffills the conditionV'S,. > T'to gain the bene-
ent strategies. In particular, players contribute either0.55  fit can invade the whole population.
or1, as described in the caption of Fig. 6. In the top row, both | combination with the above investigations, in the fol-
s; = 0.55 and1 will invade against the;, = 0.1 strategy  |owing we explain why the intermediate valueBfthat war-
because they can both utilize the increasing befinction.  rants the highest collective efforts decreases whereas the re-
The dominance between the strategies of higher contributiopyted value of3 increases with increasing’. In fact, when
is not so obvious because the higbentribution involves also  the cost-to-berfi ratio ¢/b is increased, the advantage of ag-
a higher cost. Consequently, the interface separating theggegated individuals with a high level of contribution in col-
strategies is not smooth as the time evolves, but ratlilergt  |ecting payoffs is weakened at large threshold values [49]. On
tuates intensively. Albeit, therfal state is uniform for this  he contrary, at lower threshold values the amount of produced
case but the coexistence of strategies is more likely for intefpyblic goods can be higher so that individuals who make some
mediate values of, as we have argued earlier. contribution to the common pool may have a higher return

In the bottom row, where the béfitefunction is practically  than those who contribute nothing. Consequently, the coop-
step-like, the relation bewen the three strategies is more eration level can be higher in this situation. Furthermore, in



=
=3
S
2 1.0F 1.0F
s (a) (b)
o
5 0.8-)/_,_“_..____._._ 7;0.8-
ENVE 2
B 06 ob=015p=1 |506 [ _____________________
Jg . ---cb=03,p=1 |E [
204 e ap=03,p=2 | 204
2 ! S 1 o)
020 “0.2f, z
o t T TTTTmmm \ -
2 .~ __ (=]
go'o-l 1 1 1 1 1 00—1 1 —_l_-_l__l___l 'g
Z 0 200 400 600 800 1000 0 200 400 600 800 1000 s -
Time [MCS] Time [MCS] ‘;.ﬁ (d)
3 L
FIG. 7: (Color online) Time evolution of the average amount of pro-

duced public goods (a) and the average cooperation level (b) for three
different combinations of the cost-to-bditeatios and the steepness
parameterc/b = 0.15 and = 1 (solid black line);c/b = 0.3 and

B =1 (dashed red line);/b = 0.3 and3 = 2 (dotted blue line). In

all three caseg’ = 2.

-2

. Steepness, S
Fig. 7(a) we observe that, for small valuescgh and 3, the

average amount of produced public goods in the populatioRg. g: (Color online) Cooperation level as a function of the steep-
is high, which can provide a high befitefor all the involved  ness paramete# for different cost-to-berfi ratios: (a)c/b = 0.1,
individuals. Hence, they can survive and the cooperationleveb) ¢/b = 0.2, (c) ¢/b = 0.3, and (d)c/b = 0.6. The applied

in the population is not low. However, when only the value ofthreshold values are indicated in panel (c). Importantly, unlike in
¢/bis increased, the average amount of produced public goolig. 3, here the more complex béitéunction is applied, as dieed

in the population dramatically decreases at the beginning d# Ed. 5.

the evolutionary process. Correspondingly, those individuals

that do contribute something to the common pool cannot have

a higher payoff than the ones who contribute noting. Eventu-

ally, the cooperation level reaches zero [Fig. 7(b)]. If the vaIue_Sti" exists an intermediate value ®fthat warrants the highest

of 4 is also increased, the average amount of produced IOuE)rjvestments from players. When th@ ratio is increased, the

lic goods can recover to a higher level. Although the positive®Ptimal value ofI" is reduced and the cooperation level also

effect induced by an increased valuesbis still restricted by ~ decreases. Whereas for small values @ e.g. ¢/b = 0.1,
the highere/b ratio, thefinal stationary cooperation level can the cooperation level monotonously decreases with increasing
still reach a relatively higher level. the steepness for different values off". However, where/b

Finally, to explore the robustness of dimdings, we con- PECOMES largee.g. ¢/b = 0.2, there also exists an interme-
sider a modied yet more complex form of the befitefunc- diate value of3 warranting the best promotion of cooperation
tion following previous work [53]: for different values ofl’. As ¢/b continues to increase, the

non-monotonous dependence bétcooperation level o

W(S;) —1 only occurs at smaller values of the threshold, and the largest
B(Si) = W(N) =1 (5)  cooperation level is correspondingly reduced. For still larger
c¢/b ratios, full defection is reached irrespective of the thresh-
where old and the steepness parameters (not shown here), likewise as

reported above for the originally considered bigirfeinction.
W(z) = 1+ exp(BT)
1+ exp[-B(z —T)]

(6)
It is worth emphasizing that this mdikd form of the berfit IV. DISCUSSION

function is still sigmoid. Wherg — 0, the produced public

good is a traditionally linear function of individual contribu- ~ Summarizing, we have studied the evolution of cooperation
tions; whens — +o0, the produced public good is a step-like in the spatial continuous public goods game subject to differ-
function of the individual contributions. In other words, this ent sigmoid berf& functions. We have shown that there ex-
modified sigmoid function is strictly constrained between theists an intermediate threshold value as well as an intermediate
linear and the step-like shape. Figure 8 presents the coopersteepness, at which the collective contributions to the common
tion level in dependence on the steepnefs differentvalues  pool are the largest. Upon increasing the cost-to-fieragio,

of the threshold” for four different situations: (a)/b = 0.1,  we have found that the threshold value related to this max-
(b) ¢/b = 0.2, (c)¢/b = 0.3, and (d)c/b = 0.6. We see that imum decreases, while the corresponding measure of steep-
even under the action of an alterative bénfinction, there ness increases. Simultaneously, the parameter region where
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public cooperation can prevail was found shrinking, and ulti-harvesting the beffigs of the collective effort, was considered
mately vanishing completely at a critical cost-to-b@&matio.  in the spatial public goods game with two discrete strategies,
When employing a more complex variant of the sigmoid func-we adopt here a more generalized approach, where instead of
tional form in order to describe the governing b&nh&unc-  just the threshold also the steepness is considered as a free pa-
tions, we have discovered that our results remain rolest, rameter. Moreover, instead of the two discrete strategies, we
there always exist intermediate values of the threshold and theonsider the full continuous array of strategies allowing for
steepness at which investments to the common pool are ttike delicate variability of contributions to the common pool.
largest. As by the usage of the simpler bieininctions, in  In this broader framework, we céirm that moderate thresh-
case of more complex variants the related dpeealues of  old values can warrant the highest mutual contributions from
both parameters were also found to depend figamtly on  all the group members, albeit depending on the value of the
the cost-to-berfd ratio. Taken together, our results elucidate cost-to-bent ratio and the steepness. More importantly, we
the impact of generalized béfitfunctions on the evolution of find that there exists an interaiate steepness of the bene-
cooperation in the spatial public goods game, which appear tfit function, which can further amplify the positive effects of
always enable the tragedy of the commons to be avoided. an appropriately adjusted threshold. Our results thus convey
This work continues along the lines of previous investiga-the possibility ofa double enhancement altective contribu-
tions considering different befiefunctions, yet it does so on tions, thus highlighting the important role of nonlinear bieine
structured rather than well-mixed populations. Unlike in well- functions for the evolution of prosocial behavior on structured
mixed populations [53], however, here Viiad that the out- populations.
come of the public goods game depends digantly on the
steepness parameter, and that thus the step-likeib&mec-
tion is not necessarily a good approximation for an arbitrary
nonlinear bentt function. In fact, due to spatial reciprocity
the sigmoid berfit function can sigrficantly broaden the do-
main where cooperative behavior can survive even by rela-
tively unfavorable cost-to-befieratios. The presented results  Financial support from the Hungarian National Research
thus promote our understanding of the effects of nonlineaFund (Grant No. K-73449), the Slovenian Research Agency
bendit functions on the evolution of public cooperation, es- (ARRS) (Grant No. J1-4055), the 973 Program (Grant No.
pecially if spatial reciprocity is a contributing factor. 2012CB821203) and the National Natural Science Foundation
In comparison to [49], where the impact of the critical mass,of China (NSFC) (Grants Nos. 61020106005 and 10972002)
i.e. the threshold number of cooperators that is required fors gratefully acknowledged.
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