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Abstract

We describe a novel method &stimate the probabilities ahaturing at age as a
function of size; these probiities can often be interpreted as probabilistic reaction
norms for age and size at maturation. Seshimations are useful for describing
maturation process indem#ently from the processes of growth and mortality, and they
can also help to disentangle phenotymlasticity from evolutionary changes in
maturation. The estimation method can be uskdn mature anothmature individuals

are representatively sampled over two consecutive seasons, even when maturing
individuals are not distinguished. Confidenctervals are derived for the reaction norm
parameters using a bootstrggpeoach. Using simulated dathe method is shown to be
asymptotically unbiased and robust to motieraiolations of the main simplifying
assumptions. However, it islatively sensitive to small sargpsizes: the method is not
robust when fewer than about 100 individu@mature and immature) are sampled from
a cohort at a certain age. The method is st by an application to Georges Bank
cod stock Gadus morhua) but can be used for any type of organism.
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ABSTRACT
We describe a novel method to estientne probabilities of maturing atje as a function of size; these
probabilities can often be terpreted as probabilisti@action norms for age and size at maturation.
Such estimations are useful for describing maturation process independently from the processes of
growth and mortality, and they can also helgigentangle phenotypic plasticity from evolutionary
changes in maturation. The estimation method can be used when mature and immature individuals are
representatively sampled over two consecutive aseaseven when maturing individuals are not
distinguished. Confidence intervals are deri¥edthe reaction norm parameters using a bootstrap
approach. Using simulatethta, the method is shown to beragtotically unbiased and robust to
moderate violations of the main simplifying assumptions. However, it is relatively sensitive to small
sample sizes: the method is not robust whearefehan about 100 individisa(mature and immature)
are sampled from a cohort at a certain age. Thihades illustrated by amapplication to Georges

Bank cod stockGadus morhua) but can be used for any type of organism.
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INTRODUCTION

Maturation is one of the most important ontogengtasitions in an individual’s life. It marks the

start of the reproductively active part of the lifecley Maturation has an effect on growth through
changes in energy allocation and behaviour. Maturation also influences mortality risk later in the life,
both because of behavioural changes and growth-mediated effect on size-at-age. Knowledge on how
environmental factors influence age and size atration is consequentlyssential for understanding

how populations react to anthropogenic and naturahgés in their environment. Furthermore, since
maturation influences fertility, growth and mortality, fithess is sensitive to change in age and size at
maturation (Roff, 1992; Stearns, 1992). Consequemtigierstanding the causes and the consequences

of variations in age and size at maturatisnof great importance for both demographic and
evolutionary studies.

Age and size at maturation are clearly not petelent traits, i.e. change in one generally
results in a correlated change in the other (Roff, 1992; Stearns, 1992). The co-dependence of
maturation on age and size is described by the ogactirm for age and size at maturation that, in its
original, deterministic form, gives the combimets of age and size at which maturation occurs
(Stearns and Koella, 1986). In general, reactioomsodescribe how one genotype can give rise to
distinct phenotypes when exposed to different mmvnental conditions (Fig. 1A). In particular, the
reaction norm for age and sizemahturation describes how variahjilin growth conditions, reflected
by variations in size-at-age, influences maturation (Fig. 1B). Notice that variations in environment
appear only indirectly as variations in growthhins reaction norm description. As a consequence, the
reaction norm terminology is only wanted for the population level degtions when variations in

growth are mostly caused by environment rathan genetic differences between individuals.



In real data, age and size at maturation tendmbe confined to a single curve but instead
show varying degrees of scatter. This variability is not accounted for by the original maturation
reaction norm concept by Stearns (Stearns and Koella, 1986). Twitte#the inherent stochasticity
in the maturation process, Heino et al. (Heghal., 2002b) proposed a refin@dobabilistic definition
for the maturation reaction norm, in which the reaction norm is defined as the probability an immature
individual maturing, during a certain age intervalpessed as a function afye and size. In this
paper we operate in the domaintbé probabilistic definition. Probdistic reaction norms are best
illustrated by their contour lines, e.g., by thedpuint, which is the size at which probability of
maturing is 50% at a certain age.

The probabilistic reaction norm for age and size at maturation can be estimated with simple
logistic regression if representative data déseg the age and size of both newly matured and
immature individuals are available (Heiebal., 2002a). However, for many populations the data
describing the size and age of either immature or newly matured individuals are missing. The first
case may arise when immature and mature part®gidpulation are spatially segregated. In this case
it may still be possible to estimate the reaction norm by reconstructing the missing dataefldkejno
2002a). The second case arises when the newlyredaindividuals cannot easily be distinguished
from those that matured earlier.

In this paper we present a novel methodestimate reaction norms for age and size at
maturation. The specific advantage of the methodatitican be applied even when data on age and
size at maturation are unavailable. Instead,n&& method is based a@omparing proportions of
mature individuals at age and size at two consecutive time intervals (e.g., seasons). In other words, the
method requires two “snapskbtof data from a population, and theaturity status, age and size of
the sampled individuals to be detened. As no direct information on the actual maturation events are
required, the method is ideally suited for studyingperal and geographicahriations in maturation.

We will first show how probabilitc reaction norms can be estinteith our novel method. As an

example, we apply the method to c@h@us morhua) on Georges Bank.



THE NEW ESTIMATION METHOD

In this section we derive our method to estinrai@ction norms for age and size at maturation. We
will first present an outline of the method, followedthg detailed descriptioof the various steps in
the estimation procedure.

Our method is based on estimagdportions of mature individlse as functions of age and
size. We will adopt the conmdon of referring to these proportions as “maturity ogives”, which is a
term commonly used in fisheries science. For the sake of clarity we assume that growth and survival
are identical among immature and maturing individuals within an age-class. Furthermore, growth is
assumed to be independent of size within an aagsclThese assumptions are critically evaluated later
(see the Discussion); the assumptions could alsceloged if necessary data were available. For
generality, we use the term "size" throughout the pdpepractice, the measured variable is often the
body length, but it could also be weight or anlyestvariable measuring the accumulation of biomass

along life.
Deriving the probability of maturing from maturity ogives

The goal of the estimation is to estimate probabdftynaturing as a function of both age and size for
a certain cohort of individuals. However, the idea of the method is easier to grasp by first ignoring
size, i.e., by considering how probability of maturing at a certain age is calculated from an age-
specific maturity ogive. This calllation is then extended to account for size as well as age.

Proportion of mature individuals at a certain age the sum of the proportion mature in the
previous age and the contribution from the infloikxnewly matured individuals. The latter is the
product of the proportion ammature individuals that could potely mature andhe probability of

maturing at age. Thus,

P(mature at aga) =P(mature at age +-1)
P( not mature at age )-1 P(maturing at abe not mature at age -1)



where P denotes probability. This equation can be expressed in a more compact form if the
conditional probability of maturing is denoted with(a), and the probability of being mature, given

by the maturity ogive, witlo(a) (Heinoet al., 2002a):

o(a) =o(a-1)+m(a)(l-o(a-1)).

For the sake of simplicity we refer, through out the papen tand maturation reaction norms) as the
probability of maturing but it mudie emphasised that it is the prblity of maturing conditional to

not having matured at an earlier time interval, and to being @iyeearranging this equation, the

age-specific probability of maturing can be expressed as a function of maturity ogives:

m(a) :%. @

Extension of equation (1) to account for bathe and size is straightforward, requiring only
two amendments. First, one needs to consider maturity ogives that give the probabilities of being

mature as a function of both age and sgedenoted Witho(a, s). Second, in the indexing for size,
one needs consider how the size of an individual changes between-agenda. Here we assume
that all individual within an age clagswve identical annual growth incremenis(a) . Thus, the age-

and size-specific analogwé equation (1) is

o(a,s)-o(a-1s-As(a))
1-o(a-1s-As(a))

L)

m(a,s) =

This equation corresponds to the intuitive idea that to derive the probability of maturingaatage

have to: (1) subtract the number of indivals that were already mature at amé ) from the number

of individuals that are now matyr€) divide the result by the number of individuals that were not

mature at ageafl) in order to get a probability, and (3) take account the growth of individuals.
Calculation of maturation probabilities with equation (2) relies on two simplifying

assumptions (see the Appendix): intara and mature individuals afgiven size have the same age-

specific growth and survival rates. Under these assumptions, in order to calculate the reaction norm



for age and size at maturation, one needs to estimate two objects: maturity ogives at age and size
o(a,s), and growth rates at agas(a).

The precision of the reaction norm estimationldgotentially be improved if growth could
be estimated as a function of both age and size. tHmwestimating the sizdependence of growth is
often not possible with availabldata, which only allow for the estimation of growth rates as
population scale averages. Similarly, it would be @rpdesirable to take into account the inter-
individual variability in growth. Preliminary analyses showed that taking the standard deviation of
growth into account increment modifies only maadjiythe reaction norm estimations. Thus, only the
simpler method is presented here. Moreover, preliminary tests shbatethe estimation method is

not very sensitive to growth estimations.
Estimation procedure

We have shown in the previous subsection hawntiaturation reaction norm can be calculated when
age- and size-specific maturityiegs and age-specific growth incremnis are known. In this section
we present the statistical procedures needed, first, to estimate the required ogives and growth

increments, and, second, to use thesetgieganto estimate the maturation reaction norm.
Estimation of age and size-based maturity ogive

Maturity ogives at age and siaee estimated using annual sdspcollected at a time where
age and maturity status can be determined. The most elementary approach is to compute the
percentages of individuals that are mature separately for each age and size class. However, a mor
robust approach is to use someapaetric function with size and a@s explanatory variables. Here
we use logistic regression models (Collett91P Although there is ngarticular mechanistic
underpinning the choice of logistiegression models, experience shdtey fit data well (Jgrgensen,
1990; O'Brien, 1999); other types of curves can reduilysed if they fit paicular data better than

the logistic curve.



Since the reaction norm that we want to dersviihne property of a given stock at a given time,
probabilities of being mature are to be computed separately for different cohorts. No a priori
assumption is made on the effect of age on maturation. Consequently, the following model is fitted

independently for each cohort and age:
logit(o) = In 9 ¢ +sx 3)
g 1o G G

where Iogit(o) is the logit link function andy, andc; are the parameters to be estimated. The

estimated model is then used to calculate probabilities of being mature for any age or size that are
required when applying equation (2). The estimatextiel allows also interpolation to size classes

where actual observations are missing; quedictions, however, may not be robust.
Growth rate

Growth rates can be estimated using any avialanethod. The simplest way is to use the
same data set as for the ogivéreation: with annual gaples of aged and sized individuals, one can
compute a mean size at age for each cohort. Growth rate &ragach cohort is then estimated by
subtracting the means of consecutive years. Alternatively, growth increments can beédtiomat

growth trajectories of individuals when such data are available.
Reaction norm

When probabilities of being mature and growth rates have been estimated using respectively
logistic regressions and differences of mean sizes at age (see above), the probabilities of maturing
within the observed range of ages and sizes are calculated using equation (2). These probabilities
constitute “raw” reaction norms. However, the use of equation (2) may occasionally lead to unrealistic
results: the computed probability of maturing may become negative, or may decrease with size. These
problems are particularly prone to occur when the sample size is low and probabilities of being mature
are very high or very low. One may need to conclude that insufficient data prevents the estimation of

the reaction norm for particulage and cohort combinations.



The raw reaction norms are fully determined by the parameters of the estimated statistical
models for the maturity ogives and the annual growth increments. However, if these reaction norms
display a sigmoid dependence on size, fitting a logistic regression model provides a simple
parameterisation for the reaction norm. Moreover, garhmeterisations facilitate comparisons of the
reaction norms among different cohorts or stocks. Here we use the following logistic model for each
cohort and each age to pareterise the reaction norm:
logit(m) = d, +sxd,. (4)

These models fully describe the reaction norm, however, it can be useful to summarise the
information for illustrative purposes or for compansof the maturation of different cohorts or ages.
One possibility is to display contours on which the probability of maturing takes particular values, e.g.
the midpoint n=0.5), or the quartilesn0.25, andm=0.75). The midpoint, denoted o, is

calculated by replacingn by 0.5 in equation (4):

The quartiles are calculated similarly:

_-In(3)-d, _In(3)-d,
=— 7 0 and =
d, s d,

S
We emphasise that the midpoint is not the sizethich 50 % of individuals actually mature.
The midpoint only specifies the size at which the probability to mature is 50 %, with no reference to
abundance of cohort at that size class. At yourgs,agost (or even all) individuals may be smaller
than that size, which would mean that only a smadportion of a cohort is expected to mature at
these ages (see Fig. 2).
The size at which probability of maturation is 50%) is not to be confused with the so-
calledLsg, the size at which 50% of individuals are nmaturhe latter is a frequently used descriptive

statistic in fisheries science wh is usually not age-specific l€n and Paloheimo, 1994; O'Brien,

1999). In contrast, the reaction norm midpoint is always age-specific.



Estimation of confidenceintervals

The estimation procedure presented above does not yield directly applicable measures of uncertainty
in parameter estimates of the reaction norm. Furthermore, no statistical inference can be based directl
on the final logistic regressions that describe the reaction norms. The problem arises from the fact that
the probabilities of maturing are not directly based on observed data. Instead, they are computed with
a complex non-linear function of @mth rates and maturity ogivesvhich are predictions from
another statistical model. We solve this probleynusing bootstrap techniques to derive confidence
intervals for the reaction norms (Manly, 199bootstrap confidence intervals are derived by
resampling the observed sampld® construct a bootstrapped sample for each age and cohort,
individuals are chosen at random with replacement. The finalstoapped sample contains an
equivalent number of observations as in the original sample. The resulting resampled data set is uset
to estimate the maturity ogives and the growth rates and then to derive the reaction norms of the
different cohorts and their parataes. The resampling is repeatHaD0 times, and the distribution of

the estimated parameters is used to derive confidence intervals with the first percentile method

(Manly, 1991).

ROBUSTNESS OF THE ESTIMATION METHOD

It is important to ascertain the validity of our imed when it is applied to empirical data. Is it robust
to low sampling sizes? Is it robust to the vima of the assumption thammature and mature
individuals have the same growth and survivasa To answer these questions we use simulated
data. Maturation dynamics is simulated using a known probabilesiction norm, and the resulting
data sets are then used to estimate the reactom wih our method. Belowwe first describe how
artificial datasets are built, and then present two typesoblistness tests: robustness to small sample

size, and robustness to the simplifyirsg@mptions used to derive equation (2).



Building artificial data sets

Our robustness assessment is motivated by themearh Georges Bank codosk that is presented

in the next section. We assume in the simulations a very large initial cohotlgige=00000). The
chosen value for the cohort size is much smaller than in reality, but this choice does not influence the
robustness assessment as long as the cohort sazgesenough to avoid any significant demographic
stochasticity (Caswell, 2001pata are generated allowing indiuals to mature according to a given
probabilistic reaction norm for aged size at maturation and to grow deterministically. Each year a
fixed number of individuals are sampleNs{yic); the sample size will be varied in the subsequent
robustness tests. The estimated reaction normhéoGB cod are close to horizontal; for illustrative
purposes we use a horizontal reaction norm witmalpoint values equal to 50 cm (size at which the
probability of maturing is 0.5) and an inter-quartile range of 10 cm. The following procedure is used
to generate the artificial data sets:

1. The sized) distribution of immature individualg)(s,a) at the first considered age=l) is
generated for thBlonort individuals. Sizes are randomlycged from a normal distribution with
mean length 10 cm and standaeliation 5 cm. The size didtitions of mature individuals,
nu(s,a), are initially empty.

2. The probability of maturing is determined using the reaction norm. Maturing individuals are
chosen randomly according to this probability and are then transferred to the size distribution
nu(s,a). Non-maturing individuals are ket the immature size distribution(s,a).

3. Nanpe individuals are chosen randomlyoifn the two pooled distributionsw(s,a) and
ni(s,a)). They constitute the output data for one age.

4. Immatures and matures survive with probabilitgs) and ou(s). Unless stated, we always
consideredai(s)=ou(s)=0. The exact value o=0.85 does not matter as long as enough
individuals survive to avoid sampling errors.

5. Immatures and matures grow according to a von Bertalanffy curve using parakre®et2 (

L. =148.1,1,=-0.616) estimated for Georges Bank cod stock (Penttila and Gifford, 1976).
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Unless stated otherwise, mature and immature growth rates are considered equal. The obtainec
immature and mature distributions are transferred to the next age.
Each iteration of steps 2 to 5 generates data foageelterations are repeated until the immature and
mature size distributions at age 5 have been cadparid sampled. The finautput data set is then
composed oNsampe Mature and immature individuals at each age. This type of data set enabled to
apply exactly the method degmed above (in the sectidrhe new estimation method) to estimate the
maturation reaction norm. Five replicate data sets are computed for each robustness test to determin
whether errors in estimations are systematic or not. Differences between the theoretical and the
estimated reaction norm are assessed using the midginttke inter-quartile rangesS(s-Sys), and
the slope of the linear midpoint-age regression, as descriptive statistics. The mean and the mear
absolute error for these three parameters are displayed in Tables 1 and 2. We also analysed the shaj
of the estimated reaction norm using the quadratic coefficient obtained by quadratic age-midpoint

regression.

Results of the robustness tests

To test whether the method is vadd to determine the required sample size, we first check for the
existence of any systematic bias and a possible between such a bias and the sample size. Six
sample sizes are used: 1000, 500, 250, 100,ah0, 30. At large sample sizes (500 and 1000)
sampling errors are minimal, and estimated reaction norms are very similar to the theoretical ones
(Table 1 and Fig. 2). Errors in the estimated midpoints, inter-quartile ranges and slopes increase wher
sample size decreases but the bias is not directional: these quantities are stochastically underestimate
or overestimated due to sampling errors. As showkigare 2, errors are more likely to arise and are
higher for ages at which few inddluals mature (at points of threaction norms that are away from

the intersection with the mean growth curve) than for ages at which most individuals mature. This can
lead to large errors in the estimated slope at low sample size, although the shape of the central part c

the reaction norm is correct (see Fig. 2, sample size=100). When samptelsizg50 or 30) it is

11



often impossible to compute the reaction norm midpoint for ages ah v#ic individual actually
mature. These problems result from the fact that at ages where few individuals mature, either
immature (age 5) or mature (age 1) individuals so rare that they are unlikely to be sampled.
Samples that contain very few imtage or maturing individuals do not contain enough information to
robustly estimate the parameters of logistic regressi@isare used to describe the maturity ogive.

The bootstrap approach provid#s% confidence intervals for the midpoint estimations (Fig.
2). Confidence intervals are generally less than 5 cm wide when the sample size is high enough. The)
are always the narrowest at age 3, where the majority of individuals mature (see estimated growth
curve on Fig. 2). They are wider at age 1. At low sample siee] confidence intervals are so wide
that the validity of the estimation is questionable. This is not unexpected given that sampling error
depends on sample size. Moreover, the useoofstrap becomes itself gislematic. As explained
above in the estimation proceduexgon, maturity ogives are validgstimated when enough mature
and immature individuals with enough variability in their size are sampled at each age. When the
observed data set is resampled in the bootstrap procedure, there is no guarantee that the qualitativ
properties of the original datet are retained. For example, sd@p samples might contain only
immature or mature individuals even when thgioal sample containboth immature and mature
individuals. When sample size decreases, conveegg@noblems and high standard deviations for
estimated parameters are more likely. This leads to wide confidence intervals for the reaction norm
midpoints, and to non-normal bootstragmistributions (the confidendatervals are highly skewed
toward values that are higher than the observed value, see Fig. 2, sample size 50). In exsefae cas
very low sample size, or at ages where few irtligls mature) it is even not possible to compute the
reaction norm for some bootstrappedadset. For example, for sample size 50, and age 5 (Fig. 2),
only 79 replicates out of 1000 bootstrapped samigieso a successful estimation of the reaction
norm midpoint. The validity of the confideno#erval is thus highly questionable.

We then assess the robustness of the estimatiethod to the two assumptions needed to

derive maturing probabilities (equation 2): immatures and matures have the same growth and survival

12



rate. We thus generated data sets assuming that mature individuals have a higher survival rate tha
immature (0.750i(s) =au(s)), or vice versa dj(s)=0.75 au(s)). Alternatively, we generate data sets
assuming that mature growth rate is 0.75 times higher or smaller than immature growth rate. Finally,
the joint effect of the violation of the two simplifying assumptions is tested. An artificial data set is
built supposing that mature individuals grow 25% slower than immature, and that mature individuals
have a higher survival rate than immature (WS =ou(s)), and vice versad(s)=0.75 au(s)).

When sample size is very large=600), the violation of the assyption of equal growth rates
or equal survival prolmlities is inconsequentiathe bias in the estimated reaction norms is
negligible. Significant biases arise only when samples are small. Absolute errors in the midpoints, in
the inter-quartile range, and in the slope inceeaben sample size decreases from 500 to 100 (in
most cases they roughly double). Errors, especially in the reaction norm slope, are slightly higher
when the hypothesis of equality ben mature and immature growth rates is violated, than when the
hypothesis of equality between matared immature mortality rates is violated (Table 2, comparison
between rows A-B and C-D). The violation of these &ssumptions at the same time does not lead to
higher estimations errors: biases are not cumulative (Table 1, comparison between rows A-B-C-D and
E). Higher mortality after matutian results in overestimatingetmidpoints and to positive reaction
norm slopes while it is the reverse for lower mortality after maturation. Higher or lower growth rate
after maturation does not lead to a consistent-aweunder-estimation of the reaction norm midpoint
and slope across sample sizes (parnson of the Table 2 cells far100 andh=500). The violation of
the two hypotheses (either considered separately or not) leads to an overestimation of the inter-quartile
range (just one exception).

The robustness tests do not indicate any saaif systematic bias in the shape of the
estimated reaction norm. Yet, six artificial data sets out of 80 led to a statistically significantly convex
reaction norm. Furthermore, when curvature is not significant, the estimated reaction norms tend to be
slightly convex when judged visually (Fig. 2:100). This issue is due again more to problems of

sample size than to the estimation method infitestimated reaction nosmare sometimes slightly

13



convex because estimation problems arise at lowpkasize and at ages where few individuals
mature. Thus, the reaction norm midpoints tenddounderestimated at age 1 and age 5 and the

reaction norm are slightly convex.

APPLICATION TO THE GEORGES BANK COD

As an illustrative example, the method we have described is used to estimate the reaction norm for age
and size at maturation for the Gges Bank stock of Atlantic coadus morhua); a full analysis will
be presented in a forthcoming paper. The data obtained from the spring bottom trawl survey
conducted since 1968 by the Northeast Fisheries Science Center along the Northeast coast of the US,
(Azarovitz, 1981; O'Brien, 1999). An average of 299 fish are sampled each year, i.e. about 60
individuals at age. Biological sampling is random and length stratified. Age, length and maturity
status are determined routinely so that maturity ogives, growth rates, and probabilities of maturing at
age and size can be computed using thehodst described above. We directly compute the
probability of being mature as a function of both age and size using a single logistic regression model,
without weighting by abundance at length (Margand Hoenig, 1997). To increase sample sizes,
males and females are pooled, whis usually not a safe option, but preliminary computations
showed us here that male dacthale maturation reaction norms are only slightly different.

Computing the probability of maturing proved to be generally unsuccessful when there are less
than ten mature individuals, or less than ten itoneaindividuals sampled @ge for a given cohort.
For this reason computing the probability of maturing for ages 1 and 5 when few individuals are
maturing is not possible. Moreover, estimatingtuniéy ogives using a logistic regression also
requires that sampled mature amgimature individuals have sufficiently contrasting sizes at the
considered ages. We conclude that in order to safely compute the reaction norms the estimation has t:
meet the following conditions: (1) The logistic regression for the ogive is statistically valid
(convergence of the estimation preseand low standard deviations fbe estimated parameters). (2)

The probabilities of maturing, computed using the estimated maturity ogives, are increasing with size.

14



(3) The observed size range allows computing thdpoint of the reaction norm by interpolation, or
by extrapolation using anothergistic regression if the midpoint is not too far from the observed
range. As a consequence of these requirements, it is possible to compute the probability of maturing a
age and size for ages 2, 3 and 4 and only in a few cohorts.

Figure 3 displays the estimated probability of maturing at age 3 for two cohorts (1969 and
1983) and the fitted logistic regression curve. It describes the way these curves are used to comput
the reaction norm midpoints, i.e. the link between the probability of maturing at a given age as a
function of size and the reaction norm for age andaizeaturation. As an example Figure 4 displays
the midpoints of the reaction norm for age 3 and the cohorts 1969, 1975, 1980, 1983, and 1996, as
well as the corresponding inter-quartile ranges. Small sample sizes preclude computation of midpoints
for the other cohorts. Bootstrapped 95 % confidentvals are also displayed for the reaction norm
midpoints. Midpoints vary between 38.9 and 48.9 @ime confidence intervals for these midpoints
are all between 5 and 7 cm wide. Inter-quartile ranges ranged between 8 and 14 cm. That means that

10 cm increase in size-at-age is necessary to increase the probability of maturing from 0.25 to 0.75.

DISCUSSION

Our results show that the reaction norm for agesarel at maturation can be robustly estimated from
age- and size-specific maturigives and age-specific annual growth increments. Thus, reaction
norm estimation only requires representative yesamples of individual$or which the maturity

status, age and length are determined. The method provides, therefore, an estimation of the reactiol
norm for age and size at maturation when nembtured individuals cannot be distinguished from
those that have matured during earlier seasons — an obstacle that prevents direct estimation witt
simple logistic regression (Heing al., 2002a). The method presenteere thus complements the
method of Heino et al. (2002a) that permits the estimation of maturation reaction norms when

immature individuals hae not been observed.
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Numerical robustness tests hgu®ved the general validity of the method in the sense that
there are no systematic errors. The method is relgtigbust to the violation of the main simplifying
assumptions: identical growth and mortality rates for mature and immature individuals at a certain
age. Moreover, if data is available to estimate the difference in mature and immature survival rates,
this difference can be taken into account inrdeection norm estimation (equation 5 in the Appendix).

One drawback of the method is that it does nlowafor standard statistal inference: since the
estimation method is based on a non-linear equatiorbiting results from two statistical models, it
is not possible to directly derive confidence mgds for the reaction norm parameters. However, a
bootstrap method is availablederive confidence intervafer the reaction norm midpoints.

The validity of the estimations, as alwayspeeds on the quality of the data. The robustness
of our method decreases significantly when sarsples are low. Results become unreliable when
less than about 100 individuals are sampled at Sgmpling error in snlasamples may seriously
influence estimation of the maturity ogives, and eguently, it may not be possible to obtain feasible
estimates of the probability of maturing. A sample size of 100 individuals at age is the bare minimum
that applies when the ratio of immature to mature individuals in the sample is not very extreme.
Larger samples are needed when size at age is not variable, and for ages where very few individual
are maturing. The latter case inevitably arises at agrresponding to very early or late maturation
relative to population average, constraining tharatterisation of the maturation reaction norm over
the whole range of maturation ages.

Sample sizes required by theaction norm estimation method presented in this paper are so
large that they are likely to restrict the use a thethod in its simplest form. For example, for the
Georges Bank cod the reaction norm can only be estimated for a few solitary cohorts and, therefore,
an analysis of the long-term trend in maturation is hindered. The problem of insufficient sample size
can be surmounted by combining data. The first option is to combine data “laterally”, from samples
collected at the same time: combining males and females, different ages, or samples from different

locations. The other option is to combine samples collected at consecutive seasons. By combining we
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do not necessarily mean pooling all data. Data can be more efficiently combined by estimating the
maturity ogives and growth increments with statistical models that use all the available data, but in
which some of the interactions between the explapatariables (e.g., age z&, cohort and sex) have

been omitted. This allows a more robust estimation of maturation reactions norms with small samples
by making some simplifying assumptions on thpatelence of reaction norms on various explanatory
variables. This method will be pursued further in a forthcoming paper. Besides, fishery data set are
unique because they often encompass many years or even several decades of sampling. That was t
first incentive for our work. However, sampling 100 widuals at age (at leaat the ages at which
individuals are likely to mature) during two consecutive years should be feasible for many organisms
(animals, or trees for which age can be determined using growth rings). Obtaining estimations of
maturation reaction norms and comparing the edions for different popations should be an
interesting reward for such an effort.

Simplifying assumptions of our method callr f@areful evaluation. In particular, the
assumption that growth and survival rates are not influenced by maturation may seem far-stretched.
Life-history theory predicts that reproduction resuftsa decrease in growth and/or survival rates
because energy allocation to reproduction starts to compete with allocation to growth and maintenance
(Roff, 1992; Stearns, 1992). Yet, it is difficult tmonstrate such a pattern with field data. This
might be due either to practical problems or to interacting processes generally not taken intio accoun
in life-history evolution modelssuch as behaviour. For Georges Bank cod, no evidence has been
found for a somatic cost of reproduction (Tripeehl., 1995): it seems that fast growing immature
individuals maintain fast growth after maturation. Similarly, demonstrating that adults have higher
mortality than juveniles is difficult due to the lack of sufficiently accurate survival datashn fi
mortality change at maturation could be due tawspng migrations or otlebehavioural changes.
Georges Bank cod, however, does not show maskagavning migration, although mortality could

change due to the spawning behaviour. Neverkelbe estimation method is relatively robust even
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to large differences in between mature and immature fish survival (Table 2). For these reasons, we dc
not expect the estimated reaction norms (Fig. 3) to be strongly biased.

We have interpreted the estimated probabilities of maturing at age and size in Georges Bank
cod as maturation reaction norms. This interpretation is strictly valid only if variations in size-at-age
are mostly caused by differences in the environment experienced by individual fish, rather than
genetic differences among them. However, growth is also partially genetically dete(@Gomeover
and Schultz, 1995; Wootton, 1998; Imsland and Jonsdottir, 2002), although the relative importance of
genetic factors in explaining population-levelrigiion in natural poputgons is seldom known.
Presence of strong genetic effects in grovdbes not jeopardise esations of maturation
probabilities, although it complicates their interpretation. In any case, the value of estimations of
maturation probabilities is not contingent only on the reaction norm interpretation. An attractive
property of probabilistic maration reaction norms is the sepama of maturation process from those
of growth and mortality: because the maturation probability is expressdibing conditional to
certain age and size, the process of maturatiorperaeed from the processaisgrowth and survival
that determine the probability of reaching that age and size (ldeaho 2002b).

Stearns and Crandall (1984) and Stearns and&(#986) have suggested that reaction norms
for age and size at maturation can be used garage genetic and phenpigally plastic effects on
maturation. Variations in growttonditions are likely to be responiglior the bulk of phenotypically
plastic within- and among-population differences in maturation in the wildnésioned above, the
maturation reaction norm is not influenced diretyygrowth variations. Because reaction norms are
genetically determined properties of individuals, estimation of maturation reaction norms allows the
disentanglement of genetic anagtic components in maturation.

Separation of genetic and pias components in maturation iparticularly relevant for
understanding changes in maturation widely obgsemecommercially exploited fish stocks. Most
commonly, maturation occurs earlier and ear{iRijnsdorp, 1989; Jgrgensen, 1990; Morgarml.,

1994; Godg and Haug, 1999; O'Brien, 1999). Threen hgpotheses are advocated to explain the
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decrease in age at maturation (Law, 2000). Firstefabody growth coulditger earlier maturation
when density-dependent effects on growth are rdlaxth decreasing population size. Second, some
long-term climatic trends, e.g. meofavourable temperature regime, could have triggered a change in
the maturation. These two hypotheses thus involve giménotypic plasticity. Third, maturation traits
could have evolved in responses®lection pressures caused byifighmortality. This explanation
therefore implies genetic changes in maturation. Knowing whether changes in the maturation dynamic
are easily reversible (plasticity) or not (genati@anges) is indispensable for long-term management
of fish stocks.

Estimations of age- and size-dependent maturation probabilities have also other applications
than disentanglement of genetic and plastic aomepts in maturation mentied above. In general,
the maturation reaction norm allows characterisation of the maturation process in a manner that is not
confounded by the processes of growth and survival (Hatiab, 2002b). Estimations of maturation
reaction norms can therefore greatly advanceundierstanding of the environmental influences on
the maturation process. Notice that the commonly used probability of being mature (i.e., the maturity
ogive) does not describe the maturation procesd;itsgher, it describes the state of a population.
Furthermore, an appreciation of the need torektibe classical age-struced population models to
account for size structure as well is currently mounting in the literature (Claster2000; De Leo
and Gatto, 2001; Fregysa al., 2002). In the context of fisheriesock assessments, age- and size-
structured models can be used in predictingk&aeproductive potential under different scenarios of
future growth and mortality regimes: What is fireportion of reproducing individuals? What is their
age- and size distribution? The latter pointtansidered increasingly important (Murawskial.,
2001) as it is becoming recognised that the realisedndity may depend, in addition to the size of
reproducing individuals, also on theige distribution: at the sanseze older females would produce
more or better quality eggs than younger femélegppel, 1998; Trippel, 1999). In this context, the

proper description of the age- and size-deperglehthe maturation process is indispensable.
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The estimation method can be applied to ampetgf population as soon as the population is
sampled at least two times and individuals can leel.a§ample size requirements are probably most
often met in the fisheries context where regulaveys often provide ampldata. Nevertheless, the
method could be applied many studies that compare age arz sit first reproduction in different
populations and/or in a single population at different times and that use traditional ways to describe
maturation and disentangle phenatyand genetic differences. Theaturation reaction norms could,
for example be estimated to analyse spatial and temporal variations in maturation of red deer
(Langvatn et al., 1996), life history variations in tw lizard populations (Rohr, 1997), sexual
dimorphism in tortoise (Lagarde al., 2001), or metamorphosis andtoration in amphibians (Scott,

1990; Miaudet al., 1999). However, the method presented leprobably not the most efficient one
when individual recognition and nafestructive determinatn of maturity status are possible, e.g.,
when tagged individuals are followed, or mark-recapture studies. With such data, maturing
individuals can be identified, allowingrfanore straightforward estimation methods.

Taken together, the statistical tned we have developed is likely be useful to address the
following types of questions: Can age and sizenaturation evolve in é&w generations? Are the
differences in maturation between two populations purely phenotypic? What are the demographic

consequences of the decrease in agesimedat maturation in a given population?
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APPENDIX 1 :DETAILED CALCULATIONS OF THE PROBABILITY OF

MATURING
A mathematical link betweeo(a, s) (the probability of being mature at ageand sizes) and

m(a, s) (the probability of maturing at age and size) has to be derived. To do so, the survival rates of

immature and mature individualsi{ o), as well as their growth ratedq , As,, ) must be taken into

account. Since, individuatkat are mature at ageare either newly matuiadividuals, or individuals

that matured earlier and have survived till age

o(a s) _ individual already mature at ada -1)+newly mature individuals
individual already mature at age ( -1)+newly mature individuals+immatures at age

Developing this expression and notiNgandNy the respective numbers of immature and immature

individuals ands,, =s—-As,,, 5 =s—As the size of mature anchmature individuals at agel we

get:

o(a,s)=
[0, (a-15,)Ny (a-15, )+ 0, (a-15,)N, (a- 15,)m(a 5, )]+
[0y (a-1s,)N, (a-1s,)+0, (a-1s,)N, (a-1s,)m(a s, ) +

o, (a-1s)N, (a-1s)(1-m(a s ))]

It must be noticed that this formula is deriveadar the hypothesis that individuals that mature the
focal year and individuals that matured earlier have the same growth and survival rates, which justifies
the expression for the number of newly maturdividuals (second terms of the numerator and

denominator).

Noting NT(a,s) the total number of individuals at age and sizes we have
Ny (a,s) =N; (a,s)o(a,s) and N, (a,s)=N; (a,s)(1-o(a,s)). Dividing the denominator and the
numerator of the fraction b, (a-1,s, ) leads to:

o(a,s)=
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To find an expression ah(a,s) as a function ob(a,s), an other assumption must be made

unless two unknown terms remain on the tiigand side of the equation, im(a,s ) andm(a,s, ).
Assuming that immatures and matures have the ggoveth rates at a given size, which resultsin
and s, being equal to a common valse (then, we also havAs,, = As = As.), we obtain:

o(a,s)=
[ow(a-1s)o(a-1s)+0, (a-1s)(1-o(a- 1s))m(as)]+
[UM a-1s)o(a-1s)+0, (a-1s)(1-o(a-

g,(a-1s)(1-0(a-1s))(1-m(as))]

After some algebra anddenoting the ratias,, (a-1,s) /0, (a-1s ), we obtain:

m(a,s) =

o(a,s)+o(a-1s)(o(a,s)(r -1) -r)
1+o(a-1s)(o(as)(r-1)-r) ®)

Making a last assumption, i.e. immatures and matures of a given size have the same survival rate:
(r=1) leads to:

o(a,s)-o(a-1s-As) .
1-o(a-1s-As)

m(a,s) =
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Table 1: Robustness of the estimation methodsrwall sample size. Foeach robustness test,
corresponding to a different sample size at digee properties of the estimated reaction norm are
assessed: (a) The reaction norm midpoint that describes for each age the size at which the probabilit
of maturing reaches 50 %. Displayed figures are averaged over all ages. (b) The inter-quartile range
describes for each age the size interval within Withe probability of maturing rises form 25 % to 75

%. Again displayed figures are averaged over émelhe reaction norm slope obtained by linear age-
midpoint linear regression. Mean vakiare computed over five simidd replicate data sets and are
displayed together with their error measured as the mean absolute difference between estimated an

actual values.
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Averageinter-

Averagemidpoint Slope
quartile ramge
mean error mean error mean error
Actual reaction norm 50 5 0
Estimated reaction norm
A Sample size 1000 49.6 15 5.2 1.1 0.8 0.8
B Sample size 500 50.4 1.7 5.2 0.9 -0.5 0.9
C Sample size 250 49.7 3.6 5.7 1.6 -2.2 2.8
D Sample size 100 47.6 4.0 4.6 2.3 1.4 1.4
E Sample size 50 49.8 6.2 4.8 3.1 4.1 8.2
F Sample size 30 49.1 8.9 8.8 5.0 -7.9 7.9
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Table 2: Robustness of the estimation mettwothe violation of the simplifying biolgical assumptions. The results are digpthaas in Table 1 (the
same three properties are used to describe the estimated reaction norms, mean and absolute mean error are given). Stoesattstobttificial
data sets are used using a sample siagatof 500 and 100 individuals (respectvitie first and second figure in each relligher mortality after
maturation (A) is realised assuming survival probabilitgda =0.75, while lower mortality after maturation (B) is realised assumings =1/0.75.
Higher growth rate after maturation (C) is implemented multiplytimg original growth rate by 1.25, while lower growth rate (® obtained
multiplying the growth rate by 0.75. The cumulative effect (Bhefviolations of the two hypotheses used to compute thalptibies of maturing is

tested assuming at the same time that growth and survival rates decrease after maturation.

28



11

12
Average midpoint Averageinter- Slope
guartile ramge
sample mean error mean error mean error
size
Actual reaction norm 50 5 0
Estimatedeactionnorm
A higher mortality after maturation 500 51.7 3.1 5.6 1.2 0.2 0.7
100 54.6 6.4 6.5 2.5 2.6 3.0
B lower mortality after maturation 500 49.8 1.6 4.9 1.0 -0.1 0.6
100 49.3 4.2 6.0 2.7 -1.7 2.1
C higher growth rate after matticn 500 49.1 2.0 5.4 1.5 1.0 1.0
100 51.8 4.0 5.0 2.0 2.1 2.6
D lower growth rate after maturati 500 52.1 2.9 6.3 1.7 -1.6 2.4
100 524 5.7 5.7 2.2 -4.8 5.6
E combination of factors 500 49.8 2.3 5.6 15 0.3 1.3
100 50.2 35 55 1.7 1.5 1.6
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Fig. 1: Interpretation of reaction norms for a@ed size at maturation. "Classic" reaction norms
describe the phenotypic responseanforganism to environmehtaariability (A). Reaction norms

for age and size at maturation (Stearns, 1992) give the combinations of age and size at which
individuals mature (B). The interpretation of this curve as a reaction norm is based on the
assumption that differences in growth curvesrasgliated by environmentaariations. Points on

the left (right) of the reaction norm corresponchigh (low) growth rates presumably achieved in
favourable (unfavourable) environmental conditions. Classically, all individuals are considered to
mature exactly when their growth curve hits the reaction norm. Yet, maturation is a complex
process that depends on factors not taken into account by age and size. Consequently the size a
maturation for a given age is variable. This stochasticity is taken into account by the probabilistic
extension (C) of the reaction nornr fage and size at maturity (Heiebal., 2002b). In this case,

the reaction norm for age and size at maturation is defined by the probability of maturing at age and

size, conditional on having not yet matured.

Fig. 2: Sensitivity of the estimation method to small sample sizes. Theoretical reaction norms for
age and size at maturation as well as the estimated midpoints (P(maturing)=0.5) and the quartiles
are displayed (P(maturing)=0.25 and P(maturing)=0f@5Jour different sample sizes at age: 500,

250, 100, 50. Thin horizontal lines denote the tieacnorms that are used to produce the data.
Thick curves correspond to the estimated reaatiorm midpoints together with 95 % bootstrapped
confidence intervals. Thin curves correspond to the quartiles. Dotted lines are the mean estimated

growth curves.
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Fig. 3: Application of the estimation method for Georges Bank cod stock. Probability of maturing at
age 3 computed as a functionside for the cohorts 1969 and 19880 O, raw estimations of the

probabilities of maturing computed in the observed size range; , fitted logistic regression
curves. Thin solid lines (doted) indicate how the reaction norm midpoints (quartiles) can be

graphically determined.

Fig. 4: Application of the estimation nietd for Georges Bank cod stock. Reaction norms
midpoints together with a bootstrapped 95% confidence interval and quartiles (dots) computed at
age 3 for the cohorts 1969, 1975, 1980, 1983, and Fa8&he other documented cohorts it is not
possible to estimate the reaction norm midpointstduew sample sizes (see text for a detailed

explanation).
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