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Abstract

The process of competition of large-scale projects is studied in a setting motivated by
real-life problems of optimization of gas and oil transportation networks and optimization
of the corresponding investment. The employed mathematical model is a noncooperative
game of several players with choice of time moments and payoff functions that contain
improper integrals.
It is assumed that the investigated processes are described by exponential functions.

This assumption is reasonable because of the economic sense of the problem. Also, this
assumption simplifies the mathematical model and the implementation of the correspond-
ing algorithms. The use of exponential functions makes it possible to create effective codes
for computer modelling of these problems. The paper contains detailed consideration of
the involved mathematical assumptions, description of the algorithms for finding points
of Nash equilibrium and the best responses of investors to actions of other investors, and
description of the developed software. An illustrative numerical example is also given.
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1 Introduction

Mathematical and computer models of the process of competition of investors to large-
scale projects, such as construction of gas pipelines, was studied in many publications,
see e.g. Brykalov et al., 2005; Klaassen et al., 2002. Klaassen et al., 2004 described
Nash equilibrium points in a game of two investors who finance competing projects of
gas pipeline construction. Brykalov et al., 2005 showed that if instead of a complete
description, we are satisfied with an algorithm that enumerates all the points of Nash
equilibrium, then we can consider a game of several investors and significantly relax the
imposed mathematical requirements.
The games considered in the above-cited articles provide mathematical models for the

following situation. Several gas pipelines are being built by competing investors and are
aimed at one and the same regional market of natural gas. When new gas pipelines come
into operation, the amount of gas supplied to the market is increased, which obviously can
lower the price of gas. The investors that put their pipelines into operation earlier can
enjoy a high price of gas for some time. The investor who comes to the market first enjoys
some period of monopoly. On the other hand, completing the construction of a pipeline
later can be desirable for a number of reasons. In particular, it can reduce the price of
construction. This naturally creates a kind of game between the investors. Various aspects
of this game were studied in the above cited articles.
In particular, the above described research included mathematical and computer mod-

elling of the Turkish gas market. These considerations are based on the assumption that
the price of gas is set by the market itself. Some heuristic algorithms were proposed.
A strict mathematical model was developed and published later by Klaassen et al., 2004.
This model has initiated further development of computer realizable algorithms and math-
ematical generalizations in many ways.
In the further research, an attempt was made to apply the developed technique to the

Chinese natural gas market. However, many of the assumptions used for modelling the
Turkish market appeared to be invalid for the specific Chinese market. From the point
of view of economics, the main difference is that in the case of China the prices are fixed
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not purely by a market mechanism. A mathematical model that takes into account these
circumstances was given by Nikonov 2004. Methodically, this article is a continuation of
the research by Klaassen et al., 2004, where the basic model is described. However, the
assumptions of the model of Chinese market are essentially different and sometimes the
opposite.
Below the results and algorithms of Brykalov et al., 2004 are specified for a typical case

when the process of construction and exploitation of the gas pipelines is described with the
help of exponential functions see Brykalov et al., 2005. This allows us to simplify many
of considerations and imposed conditions. On the other hand, this supposition is not too
restrictive as exponential functions frequently arise in connection with problems of this
type and in research on economics in general. It is convenient to work with exponential
functions as each of them is described by two parameters only. The algorithms in Brykalov
et al., 2005 require finding the intersection points of the corresponding graphs. In the case
of exponential functions, this is reduced to an elementary equation. There is no need to
employ numerical methods. Because of that, algorithms from Brykalov et al., 2004 in the
case of exponential functions can be effectively realised in the form of computer codes;
see Nikonov, 2004. Below we analyse in detail the mathematical requirements that arise
in these problems in the case of exponential functions, present algorithms for finding best
responses of participants and points of Nash equilibrium, and describe the corresponding
software. This paper is a contribution to the Fragility of Critical Infrastructures Project
(FCI) which is currently on-going.

2 Basic assumptions and problem statement

We study a mathematical model of the investment process in the form of a game of several
players. There are n players, where n ≥ 2. The players can be treated as investors or
managers supervising the construction of several gas pipelines. These projects compete
with each other as they are aimed at the same regional gas market. Assume that the
construction of the gas pipelines starts at one and the same moment in time t = 0. The
player number i chooses the commercializationmoment ti of the corresponding project. At
this moment, the construction of the gas pipeline number i is finished and its commercial
exploitation starts. So the gas supplied by this pipeline is available at any moment in time
t ≥ ti. Thus the actions of a player are treated as the choice of the commercialization
moment (Klaassen et al., 2004). This is a laconic and convenient description, which is
informative enough with respect to the stages of both construction and exploitation of the
pipeline.
Let Ci(ti) = γie

−qiti be the total investment needed for finishing the construction of
the pipeline i at the time moment ti. Here γi, qi are positive parameters. Let us also
consider the cost reduction rates

ai(ti) = −C
′
i(ti) = αie

−qiti ,

where αi = qiγi.
We understand the expression {1, ..., i− 1, i+ 1, ..., n} for i = 1 as the set {2, ..., n},

and for i = n as the set {1, ..., n− 1}.
Let for any number i = 1, ..., n and set H ⊂ {1, ..., i− 1, i+1, ..., n}, positive numbers

βiH , piH be given. For any time moment t > 0, the value biH(t) = βiHe
−piH t is assumed to

be the benefit rate player i receives by means of sales of gas at the time moment t under
the condition that at this time all pipelines j ∈ H and only they supply gas to the market
together with pipeline i. Until player i has made the choice of the commercialization
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moment ti, the benefit rate βiHe
−piH t can be considered to be ’virtual’ because it is not

known yet whether t will be larger than ti, that is, whether the corresponding pipeline
will be in operation at the time moment t. The parameters βiH , piH depend on the price
in the regional market and also the cost of extraction of gas and its transportation along a
pipeline. In its turn, the price depends on the amount of gas available on the market, and
so, on what pipelines are already in operation. This explains the dependence of parameters
βiH , piH on the set H . When construction of new pipelines is completed, the amount of
available gas increases on the market. Increase of supply results in decrease of the price.
Thus, let us assume the following: If G ⊂ H ⊂ {1, ..., i− 1, i+ 1, ..., n} and G �= H then
the following inequalities hold

βiG > βiH , piG ≤ piH . (1)

We also assume that for any number i = 1, ..., n one has

pi{1,...,i−1,i+1,...,n} < qi. (2)

Note that inequalities (Klaassen et al., 2004) imply: piG < qi for any set G ⊂ {1, ..., i−
1, i+1, ..., n}. In this case, only player i can be present in the market, which corresponds
to monopoly. We assume that the parameter αi in the expression for the cost reduction
rate and the value βi∅, which corresponds to the monopoly case, satisfy the inequality

αi > βi∅ (3)

that should hold for all numbers i = 1, ..., n. In connection with inequality see As-
sumption 4 in Brykalov et al., 2004 and also Assumption 2.2 and Remark 2.1 in Klaassen
et al., 2004.
For any i = 1, ..., n, denote by Ai the set of all numbers of the form

t =
lnαi − lnβiH
qi − piH

, (4)

H ⊂ {1, ..., i−1, i+1, ..., n}. The number of these subsets is 2n−1. So, Ai is a finite set
with no more than 2n−1 elements. (Values of some of the expressions (Nikonov, 2004) can
coincide, which decreases the number of elements.) Note that inequalities (Klaassen et al.,
2002 and Brykalov et al., 2004) imply that the numerator of fraction (Nikonov, 2004) is
positive, and inequalities (Klaassen et al., 2002, and Klaassen et al., 2004) imply that the
denominator is positive as well. Thus, the elements of the set Ai are positive. Note also
that equality (Nikonov, 2004) is obtained when the variable t is found from the equation

αie
−qit = βiHe

−piH t. (5)

From a geometrical point of view, Ai is the set of abscissas of the points of intersection
of the graphs of functions (Brykalov et al., 2005) for all H .
As αi = qiγi, the expression (Nikonov, 2004) can be written in the form

lnqi + lnγi − lnβiH
qi − piH

.

For any given numbers t1, ..., ti−1, ti+1, ..., tn, denote by
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Gi(t) = Gi(t|t1, ..., ti−1, ti+1, ..., tn) = {j �= i : tj ≤ t}

the set of all rivals of player i who are present in the market at the time moment t.
For any t ≥ ti, the actual benefit rate bi(t) of player i at time moment t is defined by

bi(t) = bi(t|t1, ..., ti−1, ti+1, ..., tn) = biGi(t)(t) = βiGi(t)e
−piGi(t)t.

The total benefit for player i is

Bi(t1, ..., tn) =

∞
∫

ti

bi(t|t1, ..., ti−1, ti+1, ..., tn)dt =

∞
∫

ti

βiGi(t)e
−piGi(t)tdt.

It should be noted that here the numbers βiGi(t), piGi(t) can change with the growth of
t. For values of t that exceed all the numbers t1, ..., ti−1, ti+1, ..., tn, the function to be
integrated is an exponent of the form

βi{1,...,i−1,i+1,...,n}e
−pi{1,...,i−1,i+1,...,n} t,

where the parameters βi{1,...,i−1,i+1,...,n}, pi{1,...,i−1,i+1,...,n} no longer depend on t. As the
number pi{1,...,i−1,i+1,...,n} is positive, we see that the improper integral is finite. The total
profit Pi(t1, ..., tn) of player i is the total benefit of this player minus the total investment
in the construction of the corresponding pipeline:

Pi(t1, ..., tn) = −Ci(ti) +Bi(t1, ..., tn) = −γie
−qiti +

∞
∫

ti

βiGi(t)e
−piGi(t)tdt.

Thus, we have an n-person game of timing. Strategies ti of players i in this game are
positive numbers. Any collection of strategies (t1, ..., tn) of all players determines the
payoff Pi(t1, ..., tn) to each player. Here the strategy ti is the commercialization moment,
and the payoff Pi(t1, ..., tn) is the profit of investor i.

3 Finding best responses and points of Nash equilibrium

Let us recall two widely used definitions of game theory and apply them to the consid-
ered case. A strategy ti of player i is called a best response of this player to strategies
t1, ..., ti−1, ti+1, ..., tn of other players 1, ..., i− 1, i+ 1, ..., n if

Pi(t1, ..., ti−1, ti, ti+1, ..., tn) = max
s>0
Pi(t1, ..., ti−1, s, ti+1, ..., tn).

The best response exists if the maximum in the right-hand side is attained at some point.
This point might happen to be not unique. So, there might exist several best responses
of a player to a fixed collection of strategies of other players. A collection of strategies
t1, ..., tn of players 1, ..., n is called a Nash equilibrium if for every i = 1, ..., n, the strategy
ti is a best response of player i to the strategies t1, ..., ti−1, ti+1, ..., tn of other players
1, ..., i− 1, i + 1, ..., n. A Nash equilibrium corresponds to the case when neither of the
players is interested in changing the strategy provided all the other players are not changing
their strategies.
Theorem. For an arbitrary collection of strategies t1, ..., ti−1, ti+1, ..., tn of players 1, ..., i−
1, i+ 1, ..., n, there exists at least one best response ti of player i to these strategies, and
each best response ti belongs to the set Ai.
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Proof of the existence of the best response is reduced to a direct application of Propo-
sition 2 (Nikonov, 2004), taking into account properties of exponential functions. From
Proposition 1 in Nikonov 2004, it directly follows that the best response belongs to the set
Ai. In the considered case, the set Di introduced (Nikonov, 2004) happens to be empty
due to the continuity of the functions employed.
Corollary. If a collection of strategies t1, ..., tn is a Nash equilibrium, then ti ∈ Ai for
every i = 1, ..., n.
Proof of the Corollary consists in application of the second part of Theorem together
with the definition of Nash equilibrium.
It was mentioned above that in the considered case the sets Ai are finite. Because

of that, the above statements provide the basis for algorithms for direct finding of best
responses of a player to strategies of other players and for checking if a given collection of
strategies of all players forms a Nash equilibrium. Let us describe these algorithms. We
assume that all the above imposed conditions are satisfied, the natural number n ≥ 2 is
fixed.
Best Response Algorithm.

The input data of the algorithm:
(i) an integer i, such that 1 ≤ i ≤ n;
(ii) positive numbers γi, qi;
(iii) positive numbers βiH , piH for all subsets H ⊂ {1, ..., i− 1, i+ 1, ..., n};
(iv) strategies t1, ..., ti−1, ti+1, ..., tn of players 1, ..., i− 1, i+1, ..., n. The output of the

algorithm is a nonempty finite set S, which consists of positive numbers and contains no
more than 2n elements. Here S is the set of all best responses of player i to the strategies
t1, ..., ti−1, ti+1, ..., tn of the rest players 1, ..., i− 1, i+ 1, ..., n.
Sequence of actions of the algorithm:

Step 1 For each subset H ⊂ {1, ..., i− 1, i+1, ..., n} find the number lnqi+lnγi−lnβiH
qi−piH

and
form the set Ai of all these numbers.

Step 2 For all s ∈ Ai calculate the values

v(s) = −γie
−qis +

∞
∫

s

βiGi(t)e
−piGi(t)tdt,

where Gi(t) = {j �= i : tj ≤ t}.

Step 3 Find the set S of all points s ∈ Ai at which the maximum of function v(s) on the
finite set Ai is attained.

Indeed, we see from Theorem that the output of this algorithm is the set of all best
responses, and that this set is nonempty.
Now we can use Corollary and the definition of Nash equilibrium as the basis for

constructing an algorithm for checking this property.
Nash Equilibrium Verification Algorithm.

The input data of the algorithm:

i positive numbers γi, qi, βiH , piH for all integers i = 1, ..., n and all subsets H ⊂
1, ..., i− 1, i+ 1, ..., n;

ii a collection of strategies t1, ..., tn of all players.

otherwise.
Sequence of actions of the algorithm:



– 6–

Step 1 Put i := 1.

Step 2 For player i and strategies t1, ..., ti−1, ti+1, ..., tn of other players 1, ..., i− 1, i +
1, ..., n, with the help of the Best Response Algorithm find a nonempty finite set S
of best responses of player i to these strategies.

Step 3 If ti �∈ S, finish the work of algorithm with the output NO.

Step 4 If ti ∈ S and i < n, put i := i+ 1 and go to Step 2.

Step 5 If ti ∈ S and i = n, finish the work of algorithm with the output YES.

Remark 1. It can be seen from Corollary that all the Nash equilibrium points belong to
the set N = A1 × ...× An. As the set Ai for every number i contains no more than 2

n−1

elements, we have that the set N is finite and contains no more than 2((n−1)
2) elements.

Application of Nash Equilibrium Verification Algorithm to all collections of strategies
(t1, ..., tn) ∈ N allows one to find all the points of Nash equilibrium in the considered
game.
Remark 2. From the point of view of mathematics, the imposed conditions can be some-
what relaxed by discarding inequality (Klaassen et al., 2004) and allowing the parameters
γi, qi to equal zero. In this case, a fraction of the form (Nikonov, 2004) can happen to be
undefined (can contain zero in denominator or under the sign of logarithm) or can happen
to be negative. Only positive numbers should be included into the set Ai, while indefinite
and negative fractions should be ignored. Here the set Ai can be empty. Here the asser-
tion of the Theorem about the existence of the best response becomes invalid, however; if
the best response exists, then it still belongs to the set Ai. Note that the Corollary also
remains valid. Both algorithms need only insignificant changes.
Remark 3. The advantages of the considered model are its simplicity, small number
of parameters, and the possibility to work with this model in explicit form without em-
ploying any difficult numerical methods. Some drawback can be seen in the finiteness of
values Ci(0) = γi. According to the economical sense of the problem, these values should
be infinite, because no amount of investment, however large, can permit completiton of
construction in a very short time. In order to avoid this drawback, one could take the
functions Ci(ti) in the form employed in Section 5 of Klaassen et al., 2004; however, that
would complicate the model and one would have to numerically find the corresponding
points of intersection of the graphs. The above-mentioned shows that the values γi ide-
ally should be chosen large enough, so that these values Ci(0) = γi do not interfere in
the process of finding the points of Nash equilibrium. In the case when the algorithm
gives collections of strategies with the presence of zero components, one should change the
parameters of the model (or even use a different model).

4 Computer realization of the algorithm and a numerical

example

The above described algorithm for finding points of Nash equilibrium was realized in the
form of a Delphi 7 computer code. The code provides a convenient interface including
graphical illustrations. We give some results produced by the code for the case of three
players (n = 3) for illustrative purposes.
The code allows to choose interactively the number of players (investors). After this

choice is made, the code asks to fill in tables with characteristics of the participants. An
example of the tables with parameters of players in the case n = 3 is shown in Fig. 1.



– 7–

Figure 1: Input parameters of the players.

The first box of each table contains parameters of the function that characterizes the
cost of construction (A = αi, I = qi). The other boxes describe the functions bi(t) in
cases when only one player number i acts on the market, two players in the corresponding
combinations are present, and at last, all the three players take part. Here B with indices
equals βiH for the corresponding H , and similarly q = piH .
Note that in the case of three players, for each i = 1, 2, 3 one has 2(3−1) = 4 variants

of the set H . For each of these variants, the parameters are fixed that describe the benefit
function of the player. As an illustration, the code shows the graphs of all the employed
functions ai(t), bi(t) = βiHe

−piH t. On these graphs, the intersection points are marked,
which are needed to construct the sets Ai, and the corresponding values of abscissa are
given. In Figure 2, the graphs are shown of the functions that characterize players with
the values of parameters given in Fig. 1.
Here, according to the algorithm, for each player we find the set Ai whose elements

are the points that can be expected to give the maximal values of the benefit function of
the player. These are the abscissas of the intersection points of the corresponding graphs
(Figure 3). Their values can be found as the solutions of equation 5.
The code forms for the players the sets A1, A2, A3 and the points of Nash equilibrium:
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Figure 2: Graphs of functions that characterize the players:

a) for player 1,

b) for player 2,

c) for player 3.
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Figure 3: Sets Ai, i = 1, 2, 3

(0.081, 0.111, 0.012);
(0.116, 0.061, 0.012);
(0.116, 0.018, 0.038).

Let us demonstrate the work of the Nash equilibrium verification algorithm. Consider,
e. g., the point (0.116, 0.061, 0.012). Taking into account the inequality t2 > t3, we see
that the benefit function of the first player has the form

P1(t1|t2, t3) =

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∞
∫

t1

b1H123(t)dt− C1(t1), for t1 > t2 > t3

t2
∫

t1

b1H13(t)dt+
∞
∫

t2

b1H123(t)dt− C1(t1), for t2 > t1 > t3

t3
∫

t1

b1H1(t)dt+
t2
∫

t3

b1H13(t)dt+
∞
∫

t2

b1H123(t)dt, for t2 > t3 > t1.

As t1 > t3, we can construct the benefit function of the second player in the form:

P2(t1|t1, t3) =

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∞
∫

t2

b2H213(t)dt−C2(t2), for t2 > t1 > t3

t1
∫

t2

b2H23(t)dt+
∞
∫

t1

b2H213(t)dt−C2(t2), for t1 > t2 > t3

t3
∫

t2

b2H2(t)dt+
t1
∫

t3

b2H23(t)dt+
∞
∫

t1

b2H213(t)−C2(t2)dt, for t1 > t3 > t2.

Similarly, we construct the benefit function of the third player, taking into account that
t1 > t2.
Substituting the considered values of the coefficients, we obtain the functions a1(t1) =

73e−40t1, b1H1(t1) = 7e
−4t1, b1H13(t1) = 5e

−7t1, b1H123(t1) = 2e
−9t1, a2(t2) = 6e

−25t2,
b2H2(t2) = 4e

−3t2 , b2H23(t2) = 2e
−7t2, b2H213(t2) = e

−9t2. Since C1(t1) =
73
40e
−40t1 + 7340 ,

one has that
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P1(t1|t2, t3) =

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
9e
−9t1 + 7340e

−40t1 − 7340 , for t1 > t2 > t3

−57(e
−7t2 − e−7t1) + 29e

−9t2 + 7340e
−40t1 − 7340 , for t2 > t1 > t3

−74(e
−4t3 − e−4t1)− 57(e

−7t2 − e−7t1) + 29e
−9t2 + 7340e

−40t1 − 7340 , for t2 > t3 > t1.

It is easy to see that the number t1 =0.116 is the best response of the first player
to the strategies t2 =0.061, t3 =0.012 of the other players, i. e., the maximum point of
the function P1(t1|0.061; 0, 012) for t2 > t3. As the considered number is obtained as a
solution of the equation a1(t) = b1H123(t), this number is a stationary point of the function
and belongs to the set A1. It can be checked directly that this number is indeed the point
of maximum. Similarly, the number t2 =0.061 is the best response of the second player to
the strategies t3 = 0.012, t1 = 0.116 , and the number t3 = 0.012 is the best response of
the third player to the strategies of the other players.
For illustrative purposes, the code gives the graphs of benefit functions of the players

and the values of the benefit functions at the points of Nash equilibrium. The graphs for
the considered example are presented in Fig. 4. The break points of the curves correspond
to the discontinuity points of the benefit function, i. e. the moments when new investors
enter the market.
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Figure 4: Benefit functions of the players at an equilibrium point:

a) the function P1(t1|0.061, 0.012),

b) the function P2(t2|0.116, 0.012),

c) the function P3(t3|0.116, 0.061)
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