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Abstract

The public goods game is one of the most famous models for studying the evolution of cooperation in sizable
groups. The multiplication factor in this game can characterize the investment return from the public good,
which may be variable depending on the interactive environment in realistic situations. Instead of using the
same universal value, here we consider that the multiplication factor in each group is updated based on
the differences between the local and global interactive environments in the spatial public goods game, but
meanwhile limited to within a certain range. We find that the adaptive and bounded investment returns can
significantly promote cooperation. In particular, full cooperation can be achieved for high feedback strength
when appropriate limitation is set for the investment return. Also, we show that the fraction of cooperators in
the whole population can become larger if the lower and upper limits of the multiplication factor are increased.
Furthermore, in comparison to the traditionally spatial public goods game where the multiplication factor in
each group is identical and fixed, we find that cooperation can be better promoted if the multiplication factor
is constrained to adjust between one and the group size in our model. Our results highlight the importance of
the locally adaptive and bounded investment returns for the emergence and dominance of cooperative behavior
in structured populations.

Introduction

The emergence of cooperation among selfish individuals is an intensively studied problem [1,2]. Traditionally,
the problem of cooperation is investigated by means of the game theoretical models of the prisoner’s dilemma
for pairwise interactions, and more generally public goods game for groups of interacting individuals. In
particular, the public goods game is abundant in human society, e.g., protecting the global climate and
avoiding overfishing of the oceans [3–6]. In the classical public goods game (PGG), individuals engage in
multiplayer interactions and decide simultaneously whether to contribute (cooperate) or not (defect) to a
common pool. Then the accumulated contributions by cooperators are multiplied by a factor large than one,
i.e., the so-called multiplication factor, and finally the resulting assets are shared equally among all group
members irrespective of their initial decision. From the perspective of each individual, defection is clearly
the rational decision to make as it yields the highest income if compared to other members. Thus, selfish
individuals should decline to contribute and attempt to free ride on the other players’ contributions. However,
if nobody decides to invest, the group fails to harvest the benefits of a collective investment, which drives the
population into the tragedy of the commons [7]. Actually the group is most successful if everybody cooperates,
hence the dilemma is caused by the selfishness of the individuals.
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To study the social dilemma in realistic situations, in the last decade the risk PGG [3, 4], the optional
PGG [8–12], the threshold PGG [13–17], the continuous PGG [18–20], and the ecological PGG [21, 22] have
been developed based on the classical PGG from the viewpoint of realistic societies. On the other hand,
several mechanisms for the evolution of cooperation in the PGG, such as punishment [23–33], reward [34–38],
reputation [34,37], network reciprocity [39–55] have been justified. In particular, complex interaction networks
provide a natural and reasonable framework for studying the PGG in structured populations. Within this
framework, some aforementioned mechanisms, such as punishment and reward have been further studied [28,
31,32,36]. Also, some other factors have been incorporated, such as noise [44], social diversity [39,41,46,47],
and success-driven distribution [53]. It is found that social diversity associated with the number and the
size of the public goods game as well as the individual contribution to each game can greatly promote the
emergence of cooperation [41]. Indeed, social diversity by means of the system’s other feature information,
e.g., game payoffs [47,56], teaching activity [39] and preferential selection [46] in strategy updating, have been
also demonstrated to facilitate cooperation in the PGG.

It is worth mentioning that the inhomogeneities and social diversity about features of the system are
widely existent in human society and animal world, which can characterize the asymmetric and different
influence of individuals or interacting environments. However, they are introduced artificially in some previous
studies mentioned above. Indeed the inhomogeneities or social diversity can emerge spontaneously via the
coevolutionary rules, since the values of property should be not invariable, but evolve based on the state of the
system. In the context of evolutionary game theory, the adaptive features are often coupled with the strategy
evolution. The coevolution of strategies and features of the model, e.g., individual social ties (for example see
Refs. [57–65]), noise level [66,67], payoff matrices [68,69], capability of strategy transfer [71,72] and individual
learning rules [73,74], have been investigated in different evolutionary games, especially the prisoner’s dilemma
game (see [75] for a review). Remarkably, recently Lee et al. further proposed a multiadaptive prisoner’s
dilemma game where both the payoff matrices and the interaction structure are shaped by the behavior of the
agents, and found that such multiadaptive mode can result in the coemergence of hierarchical structure and
cooperation [70].

At present, we propose a coevolutionary rule in the PGG. We consider that each interacting group has its
own multiplication factor, which evolves based on the local strategy distribution in the group and the global
strategy distribution in the whole system. Different from the setting in some previous works [53, 68–70], this
adaptive multiplication factor is used to measure the local interacting or cooperative environment in each
group, rather than individual’s feature or the whole system’s interaction conditions. Correspondingly, the
multiplication factor represents the feedback return of the local investment to the public good, and a larger
value of the multiplication factor enables a better investment return [18]. In a sense, a structured population
can provide a reasonable framework to describe this local feature which is updated based on the local and
global cooperation level. In the present study, in order to better focus on the effects of the adaptive investment
returns on the evolution of cooperation, we consider this model a square lattice where the number of group
members are fixed and identical. Due to the diversity of local strategy distribution, the investing cooperators
can get together in some groups, whereas in other groups they are sparse. The inhomogeneous distribution can
induce different investment returns in different interacting groups, which may correspond to the phenomenon
of uneven use of the common resources in society. For example, in some pastures the herdsmen may over-
exploit the pasture resource by adding more and more animals to their herd, which may lead to the gradual
desertification of the grassland. Correspondingly, the socioeconomic returns from herding in these grazing
areas decrease gradually and finally the economic losses will be suffered. On the contrary, in other pastures
the herdsmen may exploit the grassland resource while at the same time consider the conservation of the
ecosystem, and then a higher socioeconomic return will be produced for them. We adopt the state of the
system, i.e., the global cooperation level, as the criterion to measure whether the local cooperative environment
is favorable or not. Since the state of the system is evolving simultaneously, here we prefer the dynamical global
cooperation level, instead of the static criterion in Refs. [69, 70]. Moreover, in real situations the investment
return is variable, but should be somewhat limited by external adjustment. In general, it should be limited in
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a certain range [76].
In this study, we assume that the enhancement factor in each group is updated based on the differences

between the dynamical local and global cooperation levels, and limited between a lower and upper limit. We
study how the adaptive and bounded investment returns influence the evolution of cooperation in the spatial
PGG. We find that this PGG model with the adaptive and bounded investment returns can effectively enhance
cooperation in spatial structures, and appropriate bounded limitation about the multiplication factor can result
in the best cooperation level. We further find that, in comparison to the traditionally spatial PGG where only
one invariable multiplication factor which is larger than one exists in the whole population, our proposed PGG
model can produce a higher cooperation level when each multiplication factor is limited to change only between
one and the group size.

Methods

We consider the PGG on a square lattice of size L × L with periodic boundary conditions. Each individual
who is a pure strategist can only follow two simple strategies: cooperate (C) and defect (D). Cooperators
contribute a fixed amount (here considered to be equal to 1 without loss of generality) to the public good
while defectors contribute nothing. The sum of all contributions in each group i is multiplied by the factor ri,
and the resulting public goods are distributed among all the group members. Correspondingly, the payoff of
player x from the group i is

P i
x =

{

ri
ni

N
− 1 if sx = C,

ri
ni

N
if sx = D,

(1)

where sx denotes the strategy of player x, ni denotes the number of cooperators in the group i, and N
denotes the group size. Here, we consider the square lattice with von Neumann Neighborhood. Accordingly,
the interacting group size is fixed at N = 5, and each individual belongs to five different groups. The payoff of
each player is accumulated from the fixed five interacting groups, and thus player x’ total payoff Px =

∑

iP
i
x.

After playing the games, the multiplication factor in each group needs to be updated. Specifically, we
assume that the multiplication factor of the group centered on player x at time t + 1 is

rx(t + 1) = rx(t) + α[ρx(t) − ρ(t)], (2)

where α controls the strength of feedback from the comparison between the local and global cooperative
environments, rx(t) is the multiplication factor of the focal individual x’s group at time t, ρ(t) is the fraction
of cooperators in the whole population at time t, and ρx(t) is the local cooperation level in the group centered
on x at time t. Here, ρx(t) = nx/N , where nx denotes the number of cooperators in the group where player
x is the focal individual at time t. Moreover, we consider the limitation for the adaptive multiplication factor
following previous work [70], that is, letting rx(t + 1) = Ru if rx(t + 1) > Ru and letting rx(t + 1) = Rl

if rx(t + 1) < Rl. Here, Ru and Rl respectively represent the upper and lower limits of the multiplication
factor in each group, and they satisfy the following inequalities: Ru > Rl and Ru > 1. In particular, when
Ru = −Rl = R, the multiplication factor is constrained in a symmetric interval, which is the same to the
setting in Ref. [70]. Moreover, when R = +∞ (no bounded limitation for the multiplication factor) or α = 0
(no updating for the multiplication factor), the average multiplication factor in all the interacting groups
r = L−2

∑

x rx(t) = r0, where r0 is the initial value of the multiplication factor in each group.
Subsequently, each player is allowed to learn from one of its neighbors and update its strategy. Player x

adopts the randomly chosen neighbor y’ strategy with a probability depending on the payoff difference as

f(Py − Px) =
1

1 + exp[−(Py − Px)/κ]
, (3)

where κ denotes the amplitude of noise [77], accounting for imperfect information and errors in decision
making. Following previous work [70], we simply set κ = 1.0 representing that it is very likely that the better
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performing players will pass their strategy to other players, yet it is possible that players will occasionally learn
also from the less successful neighbors.

Simulations of this spatial PGG model are performed by means of a synchronous updating rule, using
L = 100 to 400 system size. Initially, the two strategies of C and D are randomly distributed among the
population with an equal probability, and the multiplication factor in each interacting group has the same value
r0. The key quantity for characterizing the cooperative behavior of the system is the density of cooperators,
which is defined as the fraction of cooperators in the whole population. The system can reach a dynamical
equilibrium after a suitable transient time [78–80]. Then the density of cooperators reaches its asymptotic
value ρ and remains there within small fluctuations (less than 0.01). This asymptotic value is taken to describe
the cooperation level in the whole population, and all the simulation results are averaged over 100 different
realizations of initial conditions.

Results

First, we study how cooperation evolves in the spatial PGG when Ru = −Rl = R. Fig. 1(a) shows the
cooperation level ρ at equilibrium in dependence on α for different values of R. We find that when α > 1
cooperation can be promoted for larger R. To be specific, when R is small, e.g., R = 4, full defection is
achieved, irrespective of the values of feedback strength. This is because that cooperators cannot survive in
the spatial structure if the maximum enhancement factor is not enough large [44]. When R becomes larger,
e.g., R = 5, the cooperation level first increases and then slightly decreases. Subsequently, it holds at about
0.8 with increasing α. While there is no limitation for the multiplication factor, although the cooperation level
is very high, but a small amount of defectors can survive in the population even for high feedback strength,
e.g., α = 1000. When moderate values of R is set, e.g., R = 10, full cooperation can be achieved for high
feedback strength, and the cooperation level is very similar for other moderate values of R. To further qualify
the effects of R on the evolution of cooperation, we present ρ as a function of R for different α in Fig. 1(b).
Clearly, we see that for different values of α, the cooperation level first increases dramatically from zero until
reaching the maximum value at a moderate R, then decreases slowly with increasing R. Here, we do not
show the cooperation level in dependence on R for large α. In fact, we can still observe the nonmonotonous
dependence of ρ on R even for large α. These results suggest that the PGG model with the adaptive and
bounded multiplication factor can effectively enhance cooperation in spatial structures, and higher cooperation
level can emerges if an appropriate limitation is considered for the dynamical multiplication factor.

In order to intuitively understand the evolution of cooperation, we show some typical snapshots of the
distribution of strategy and multiplication factor in the whole population in Fig. 2. We find that at the
beginning of evolution, cooperators can form many small and isolated patches. But subsequently, some small
compact cooperator clusters are embedded in the sea of defectors. As time increases, the cooperator clusters
increase gradually, and finally cooperators may expand as a single ever growing cluster [upper row in Fig. 2].
Correspondingly, the multiplication factor in the full cooperation group can reach the upper limit, whereas the
multiplication factor in the full defection group can reach the lower limit [bottom row in Fig. 2]. However,
the multiplication factor within the groups along the boundary of cooperators and defectors reaches a value
between the lower and upper limit.

In combination with the above investigations, let us now explain the emergent results. Indeed, a feed-
back mechanism is at work between the strategy distribution and the distribution of multiplication factors
in all the groups. Therefore, cooperators form compact clusters, and these clusters can become larger and
larger, especially when the global cooperation level is not very high. Meanwhile, the multiplication factor in
the cooperators’ clusters becomes larger and larger, which provides cooperators, especially the ones on the
boundary, with a higher payoff. Whereas defectors also gather together, and the multiplication factor in the
defectors’ clusters becomes smaller and smaller [bottom row in Fig. 2]. In those interacting groups where the
multiplication factor is negative, it is better for the players to choose the defective strategy such that they can
have relatively higher payoffs. In a sense, this adaptive mode can induce a double-edged sword effect on the
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evolution of cooperation. However, under the social learning defectors are inclined to learn from their neigh-
boring cooperators. As a consequence, the evolution of cooperation can be favored by this locally adaptive
investment return.

If there is no limitation for the adaptive multiplication factor, due to the continuing negative feedback
effects cooperators cannot invade the defectors’ clusters, even if the feedback strength is high. In this situation,
cooperators can thrive, but cannot dominate the whole population. When the limitation is considered for the
dynamical multiplication factor, the feedback mechanism, especially the negative feedback effects, can be
effectively weakened. If there is too much restriction for the adaptive multiplication factor, that is, R is not
very large, e.g., R = 4, the multiplication factor in some groups can reach the upper limit from a negative
value due to the social learning, but this upper limit cannot warrant the promotion of cooperation in spatial
PGG even if the feedback strength is enough high. Whereas for a larger R, e.g., R = 10, the multiplication
factor in the group along the boundary reaching the upper limit can warrant a better promotion of cooperation.
Hence, this adaptive and bounded mode for the multiplication factor can provide a better environment for the
evolution of cooperation.

However, under this adaptive and bounded mode, the multiplication factor in some groups along the
boundary cannot rapidly become a positive and large value from a negative one when the feedback strength is
not very high [bottom row in Fig. 2]. Although the average multiplication factor r in the whole population can
reach an enough high value which can make the cooperation level reach one in the traditionally spatial PGG [44],
the average multiplication factor along the boundary of cooperators and defectors rb becomes negative as time
increases [Fig. 3(a)]. This does not provide a favorable environment for players’ interactions. Correspondingly,
the average payoffs of cooperators and defectors along the boundary are both negative. Moreover, as time
increases the average payoff of cooperators along the boundary is just a litter higher than the one of defectors
along the boundary, but have larger fluctuations [Fig. 3(b)]. Under the stochastic strategy updating, defectors
do not always successfully imitate their neighboring cooperators, but sometimes may spread their strategy to
the cooperators. As a result, cooperators cannot defeat those defectors along the boundary, and they can only
coexist with defectors for an exceedingly long time. On the contrary, when the feedback strength is high, by
means of social learning the multiplication factor in the group along the boundary can have the opportunity
to suddenly reach the upper limit, which can warrant the invading of cooperative behavior into the defectors’
clusters. Finally, full cooperation can be achieved.

In what follows, we study how cooperation evolves if the lower limit is not the opposite number of the upper
limit. Fig. 4(a) shows the typical time evolution of cooperation for fixed Rl = −5 and three different values
of Ru. We find that increasing the value of Ru can make the system reach a higher cooperation level, but the
cooperation level at equilibrium for Ru = +∞ is just slightly larger than the one for Ru = 10. In Fig. 4(b)
we show the fraction of cooperators as a function of time for fixed Ru = 10 and three different values of Rl.
We find that increasing the value of Rl can make the system reach a higher cooperation level. Moreover, as
time increases the fraction of cooperators first drops and then rapidly increases, but the larger values of Ru

or Rl make the cooperation level increases faster. We also find that to have a favorable cooperation level, it
is better to set the lower limit higher and it is not necessary to set the upper limit too high.

Finally, we study whether cooperation can be better promoted if the adaptive multiplication factor is
constrained between 1 and N by means of a comparative investigation. Previous work has reported that in
the traditional PGG where only one invariable multiplication factor exists in the whole population, defectors
outperform cooperators in any given mixed group for r < N [8]. We further find that in the traditionally
spatial PGG, for noise value κ = 1.0 cooperators can dominate the whole population only if r > 5.4, and they
can survive in the system only if r > 4.1, as shown in Fig. 5(a). It is worth pointing out that the traditionally
spatial PGG corresponds to the situation of α = 0 in this present model, where the multiplication factor in each
interacting group is fixed at r0 = r. In Fig. 5(b), we set r0 = Ru, and show the cooperation level as a function
of feedback strength α > 0 for Rl = 1 and different values of Ru > 4.1. We see that the cooperator density
varying with α displays two different behaviors: for smaller values of Ru, e.g., Ru = 4.2, the cooperation level
first decreases and then increases until reaching the maximum value. Subsequently, it decreases very slowly
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with increasing α and its value approaches 0.8; for larger values of Ru, e.g., Ru = 4.8, the cooperation level
does not change too much for small values of α, then monotonously increases to one with increasing α. In
addition, for smaller values of Ru just a small amount of α (α < 0.5) is needed to warrant a better promotion
of cooperation in comparison to the traditionally spatial PGG, and the critical amount of α becomes smaller
if the Ru is increased. For larger values of Ru, the cooperation level for any value of α > 0 is not less than
the one for α = 0. In fact, the average multiplication factor in the population for α > 0 is not larger than
the one for α = 0, but these results suggest that cooperation can be better promoted in comparison to the
traditionally spatial model. In addition, Fig. 5(b) shows that the cooperation level increases with increasing
the upper limit of the multiplication factor and the initial value of multiplication factor. We also check that
increasing the initial fraction of cooperators is beneficial for the evolution of cooperation in this model.

Discussion

In summary, we have presented a coevolutionary rule where the multiplication factor in each interacting group
is updated based on the local strategy distribution in the group and the global strategy distribution in the whole
population, and studied its impact on the evolution of cooperation in the spatial public goods game. We found
that this adaptive rule for the multiplication factor can effectively enhance the evolution of cooperation. When
the appropriate bounded limitation for the dynamical multiplication factor is further considered, cooperation
can be better promoted. In particular, full cooperation can be achieved in the system when the feedback
strength is high enough. Also, increasing the lower and upper limit values of the multiplication factor is
favorable for the evolution of cooperation, but high cooperation level can be reached even if the upper limit is
not very large. We further found that even if the multiplication factor is constrained to change between one
and the group size, cooperation can be better promoted in the adaptive mode, in comparison to the classically
spatial public goods game where the payoff parameter in each group is fixed and identical.

The adaptive mode for the investment returns results in that a feedback mechanism is at work, that is, the
Matthew effect is introduced. From the viewpoint of this emergent feature, our model is related to the one
proposed by Perc [53], who considered that the reproductive success of each individual is updated by means
of the enforcement of strategy and the distribution of public goods is driven by the reproductive success of
individuals. Under this success-driven mechanism, cooperation can be promoted. However, defectors can
have a much higher payoff even in the sea of cooperators, and easily enforce their strategy choice to their
neighbors. Correspondingly, the superpersistent defector emergences spontaneously, and cooperators cannot
dominate the whole population. The complete dominance of cooperators is elusive even if the limitation factor
about the value of reproductive success is considered. Whereas in our model, the multiplication factor in each
interacting group is updated based on the local and global strategy distribution, which characterizes the local
investment environment for collective interactions, rather than individual’s personality. Also, we incorporate
the limitation factor for the dynamical multiplication factor. In this framework, cooperators and defectors can
form their own compact clusters respectively, and correspondingly cooperators along the boundary can have
a higher payoff than the neighboring defectors. Under the social learning, cooperators can easily spread their
strategy even if the noise level for strategy updating is large. In particular, when the feedback strength is
high, the interacting environment including some defectors can rapidly become favorable. Thus, cooperators
can gradually invade defector’s clusters, and finally dominate the whole population. It could be concluded
that our work further enriches the knowledgeless of coevolutionary rules in PGGs, and importantly our spatial
PGG model with adaptive and bounded investment returns not only can promote cooperation, but also make
cooperators completely dominate the population.

It is worth emphasizing the bounded values of the multiplication factor play a different role in the evolution
of cooperation in our model in comparison to the one in Ref. [70]. It is found that the main results remain
qualitatively if the limit value of the payoff parameter in the prisoner’s dilemma is large enough. Moreover,
it is demonstrated that the final cooperation level strongly depends on the values of initial payoff parameter
and feedback strength in Ref. [70]. In particular, with increasing the initial payoff parameter, the probability
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that the system ends in full cooperation state decreases. Whereas in this work, we find that the introduced
limitation factor can weaken the Matthew effect, particularly the negative feedback effect on the unfavorable
interacting groups, which makes the limit value a crucial model parameter. The limited negative effects can
be overcome via social learning. Hence, appropriate limitation can warrant the best promotion of cooperation.
In addition, we show that the finial cooperation level not only depends on the the values of initial payoff
parameter and feedback strength, but also depends on the limit values. With increasing the initial payoff
parameter and the initial fraction of cooperators, cooperation can be better enhanced when the dynamical
multiplication factor is limited. In a sense, this work further explores the effects of adaptive and bounded
game payoffs on the evolution of cooperation.

During the coevolutionary process, the investment return in most of interacting groups reaches the upper
or lower limit due to the feedback effects. This segregation and polarization of investment returns occurs
spontaneously over time, which is different from the distribution in Ref. [47]. In the latter case, the distribution
of the multiplication factor is artificially introduced by the authors and does not change during the evolutionary
process. Although the emergent values of the multiplication factor in all the interacting groups do not display
too much diversity, we find that cooperation can be promoted in this adaptive and bounded mode. Compared
with the results in the traditionally spatial PGG model, cooperation can be better promoted even if the
multiplication factor can only change between one and the group size.

In this present model, we consider the adaptive mode for the multiplication factor in a group based on
the local cooperation level in the classical PGG where players just have two discrete strategy choices C or D,
and correspondingly the local cooperation level only have several finite values. To make the local cooperation
level continuously change between zero and one, we also introduce the adaptive and bounded investment
returns into the spatial continuous PGG [18–20], and still find that this PGG with adaptive and bounded
investment returns promotes cooperation. We also test this model in an unstructured population and other
types of population structures, e.g., scale-free networks, and still find that cooperation can be enhanced by
this coevolutionary rule. Moreover, we would like to point out that in this work we just simply fix the value of
noise at one. In general, the qualitative behavior of the system remains unchanged for other values of noise,
but there exists an optimal value of noise level at which the evolution of cooperation is most successful [44].
It could be inferred that if we can choose the optimal noise value for strategy updating, the positive effects
from social learning can be amplified. We also believe that, cooperation can be better promoted if we further
incorporate the selection of noise level in strategy adoption [66, 67] into this adaptive and bounded mode for
the multiplication factor.
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Figure 1. Promotion of cooperation due to adaptive and bounded investment returns.

Panel (a) depicts the fraction of cooperators ρ in dependence on the feedback strength α for different
values of R. Panel (b) depicts the fraction of cooperators in dependence on the boundary value R for
different values of α. It can be observed that cooperation can be promoted for large values of feedback
strength, and there exist moderate boundary values warranting the best promotion of cooperation.
Here, r0 = 1.
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Figure 2. Characteristic snapshots of strategy and multiplication factor distributions on a

square lattice during the coevolutionary process. Top row depicts the time evolution (from left
to right) of typical distributions of cooperators (grey) and defectors (black) on a square lattice, and
bottom row depicts the corresponding time evolution (from left to right) of typical distributions of
multiplication factor. Results in all panels are obtained for α = 5, r0 = 1, and R = 10. We have checked
that similar results can emerge for other parameter settings.
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Figure 3. Time evolution of average multiplication factor and payoffs. Panel (a) depicts the
time evolution of average values of multiplication factor in the whole population and in the boundary
groups, respectively. Panel (b) depicts the time evolution of average payoffs of cooperators and
defectors along the boundary, respectively. It can be observed that although the average value of
multiplication factor in the whole population is large enough for the evolution of cooperation [44], the
average value along the boundary becomes negative. Correspondingly, the average payoffs of
cooperators and defectors along the boundary are both less than zero. As time increases, the average
payoff of cooperators along the boundary is a little higher than that of defectors, but has larger
fluctuations. Here, α = 5, r0 = 1, and R = 10.

Figure 4. Cooperation promoted when the values of the lower and upper limits of the

investment returns are increased. Panel (a) depicts the fraction of cooperators in the whole
population as a function of time for fixed lower limit Rl = −5 and different values of upper limit. Panel
(b) depicts the fraction of cooperators in the whole population as a function of time for fixed upper
limit Ru = 10 and different values of lower limit. Increasing the values of lower and upper limit can
provide more positive effects on the evolution of cooperation. Here, α = 5 and r0 = 1.
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Figure 5. Cooperation promoted even when the investment return is updated within the

interval [1, N ]. Panel (a) shows the fraction of cooperators as a function of r0 for α = 0. In this
situation, the model recovers to the traditionally spatial PGG, where the multiplication factor in each
group is fixed at r0 and r = r0. For κ = 1.0, cooperators can survive only if r0 > 4.1, and they can
dominate the whole population only if r0 > 5.4. Panel (b) shows the fraction of cooperators as a
function of α for fixed Rl = 1 and different values of Ru. Initially, the multiplication factor in each
interacting group is r0 = Ru. Dash lines are used to indicate the critical value of α > 0 for a better
promotion of cooperation in this adaptive and bounded mode for the enhancement factor.


