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Abstract

Traditionally, food webs havéeen constructed as stru@hrdirected graphs that
describe “who eats whom,” but it is commoniniterpret them directly as energy flow
diagrams, where predations represent energy transfers from the prey to the predator. It is
the aim of this work to point out that food mgare incomplete as energy flow diagrams

if they ignore passive flows to detritus (demdjanic material), a misconception that is
common both in empirical data sets andassembly models, where detritus often is
either ignored or treated as an unlimited energy source. When individuals die, they
contribute to the detritus pool, and might dre energy source for other species in the
system. This feedback loop is of highpantance, since it increases the number of
pathways available for energy flow, revealing the significance of indirect effects, and
making the functional role of the top gulators less clear. These additional energy
pathways increase the structural cyclicity of the system (measured in terms of the
dominant eigenvaluk of the adjacency matriX). In this work we show the importance

of the structural cyclicity by comparing empirical data sets to 5 different assembly
models. Of these models: cascade (Cokehewman 1985), constant connectance
(Martinez 1992), niche (Williams & Martinez0R0), modified niche (original in this
work), and cyber-ecosystem (Fath, 2004% tivo last include detritus feedback. We
show that when passive flows to detritus are included, the structural cyclicity is
increased both in models and empirical data sets. We also show that there is in an
approximately linear relatiohgp with the link densityl(/N), defined as the number of
links per specie.
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Structural Cycles in Food Webs

Geir Halnes (geir.halnes@bt.slu.se)

Introduction

An area of ecology concentrates on stadystructural aspects of communities of
species or food webs. The terms “comntyrdassemblies” and “food-webs” are used
interchangeably, and both restribe investigations to biotic interactions. The term food
web refers to a conceptualimm of a set of species ancetbonnections between these,

as opposed to the term ecosystem that noynmltaken to refer to a broader picture,
considering also inorganic material flows. Part of the difference arises from where the
system boundaries are drawn. Food weles @ften limited to active, macro-scale
feeding interactions, whereas ecosystems comprise active and passive biotic and abiotic
energy flow processes. Although many food webs include compartments such as
“detritus” or “dead organic material”, there is not a consistent approach for
incorporating them, something that also shows the difficulties in defining clear system
boundaries. The term “specie” is often usednigan “tropic specie”, defined as the set

of biological species that have the samesleof predators and preys. There is also
additional literature on how to lump species into conceptual species groups or
compartments (Krause 2003), either strictly dedi as “tropic speciesr less strictly as
“similar species” having more or less the same rolls in terms of predators and preys. It
has been shown that species in real food veebsnore “lumpable” than are species in
model food webs (Solow & Beet 1998), sugtygg that there are certain underlying
structures that a good food web assembly rhekdeuld be able to reproduce, and that
networks that do not incorporate biologicatlevant features in their structuring are

not good approximations to the real food webs.

Although conclusions based on structurahgiples are limited andt best qualitative,
they are valuable since structural knowledgpout ecosystems is generally easier to
acquire than quantitative flodata. A lot of focus has been put on the structure of food
webs, and the simplest description ofad web is an adjacency matrix of binary
elements that indicates whether two spearesconnected (1) or unconnected (0). In the
typical food web scenario “connected” means that one of the species feeds on the other.
The food web structures can be analyrederms of measures like maximum tropic
position, degree of top-down control, numberspkcies in each of the classes basal
species, intermediate speciesd top predators, lumpability (Solow & Beet 1998), or
pathway proliferation (Borrett et al. 2005). éd® analyses are at best qualitative, and
help to give a conceptualization of tfed webs and an understanding of how their
topologies may look. Since food webs arenptex systems, many of these studies aim
at revealing some simple universal featuegrasp them with, such as global scaling
relations (Ulanowicz & Wdf 1991; Garlaschelli et al2003) or general organizing



principles (Williams & Martinez 2000). Thead that there is an important connection
between stability and diversity has been subject to many debates within the field
(McCann 2000). The idea that food webs seale invariant networks, was for a long
time popular, and connected the field of reseaochelds like general network theory
and graph theory. New empirical findingsvRahowever shown that the hypothesis of
scale invariance doe®t seem to apply (Drossel & McKane 2002).

Since there is a significant lack of empal data on food webs, topologies are often
constructed using so called “assembly rules” that egaeup a connectance matrix for

a number ofN species, or is generated step wise by successively adding species to a
food web. Assembly rules are in general ao$etiles that will genete a network based

on a few parameters, such as the sizth@ffood web, the number of species belonging

in different groups, and the connectivity. Téien of these assembly rules is to produce

a model-food web that can be tested againgimral data, and also can be an object for
network analysis.

One early and simple assembly model was called the cascade model (Cohen & Newman
1985). In the cascade model, thepecies are given a rank from 1nt@nd all species
predate on a random number of the species with lower rank than them self. The
structure of this model is thus a set of fatwhins, in general branched, but in all cases
originating with basal speci€m-degree equal to zero) atetminating at top predators

(out degree equal to zero). There are péndien no cycles in the system, and this is
one of the main criticisms against it, @ we know that examples of intraguild
predation, longer cycles, and even canisba can be found in nature. The constant
connectance model or random model (M&#ir1992) was developed to produce food
webs that allowed for this kind of feedback from higher to lower species. In this model
all the N species are connected randomly ameagh other, with each connection
having the same probability of occurring, thus resulting in a system that is likely to have
structural cycles. A criticism towards the random model is that it has no biological or
ecological knowledge incorporated in the stanal principles, and it has been shown
that both the cascade model and the randwdel are incapable of reproducing many
important features of real food webs. A faéssembly model is called the niche model
(Williams & Martinez 2000), anthas become one of the most accepted models since it
incorporates the probability of cycling andnnibalism in the generation of food webs,
and since it is also based on some biologres#vant parameters. It has been tested
against both random and cascade models (Martinez et. al. — 2005, in press), and has
been proven more successful in repradgcseveral empirically found food web
properties, like the relative fractions of primary producers, intermediate species and top
predators. These analyses were made,eliew without recognizing the additional
structural cycles due to decomposing and uptake of dead organic material. Also the
empirical food webs that the model was @dstgainst (Table 1) ignored the detritus
feedback loop.

It is an important point of this work tstress that the detritus compartment should be
included in a structural analysis of food vgeor ecosystems. Both in models and in
empirical studies, detritus is often ignoredrtRarmore, when detritus is included as a
compartment, it is often treated as arimited energy source that does not receive
input from any of the species in the foaéb. Although traditional food webs strictly

could be regarded as diagrams of whdseahom, they are frequently interpreted

directly as energy flow diagrams, somathithat makes them more useful since they



then give a clue on where resource transactions occur in the system. However, the
conception that energy flows in simple chains from the primary producers to the top
predators, does not give a complete picturetim reasons: First, energy is lost to the
environment due to dissipation, but since theges not alter the internal structure of the
systems, it is not relevant in a structuaatalysis. Second, individuals in all the
compartments in the food web die, and may ttamntribute to a reservoir of detritus that
works as an energy source for other species in the system. This does change the
structure of the system in a significant way since the detritus compartment connects in a
structurally different way than the “real” and more hierarchically structured species in
the food web. Most importantly, the detrittempartment makes a pathway for energy

to flow from the top predators and back to lower levels in the hierarchy, something that
creates a feedback loop and increases theuatof structural cycling in the system.

This also makes the functional role oktkop predator less unique, and makes the
distinction between top-dower bottom-up control ambiguous.

In this work we analyze and compare five different assembly models among each other
and to empirical data, in order to investig the importance of the detritus feedback
loop. Three of the models are the cascadastant connectance and niche model that
have already been briefly described. We compare these to two models that include
detritus in their structure. One of tieess the cyber-ecosystem model (Fath, 2004),
which is slightly more complex than three described models, since it operates with six
different functional categories (primary producers, grazers, omnivores, carnivores,
detrital feeders and detritus) linked in accordance with basic biological rules. The last
model is original in this work, and is a modii version of the niche model. It is given a
more detailed treatmeéin the Methods section below.

Methods

The Modified Niche model

The niche model (Williams & Martinez 2000)as assembly model that generates food
webs when the number of speci@nd the connectan€a (defined as the fraction of
the theoretical number of connectidisthat actually are presersje specified as input
parameters. The niche model, as welltlas other models considered, use random
distributions to assign connections, so that the iGpattually represents the expected
connectance, and not the cesotance itself, of the resulting food web-structure. For
simplicity we will throughout the Methods seantirefer to this inpuas the connectance.

It should be noted that in the Results smttive always use the real connectance when
we compare assembled and empirical food webs.

The general idea of the niche model is thatNhgpecies each are assigned a random
niche valuen between zero and one, representing somewhat the species’ positions in a
food hierarchy. ThesH species are then allowed to predate on species within a range of
niche values centered somewhere behind their own niche values. If the range of
predation is called, its center is placed randomly at in the interv&,[n], meaning

that there also is a probability of predation on species with niche values higher than
The niche model therefore allows for limited cycling and cannibalism in a more realistic
way than the earlier models. The sizer a$ x*n, wherex is a random number, drawn

from a beta-distribution with expected vaRk@.



In the niche model, species are not presételong to subgroups of species, like basal,
intermediate and top spesi Properties like these are a byproduct of the niche-
algorithm. The only exception to this is tHemand that at least one species should be
basal, that is: There should at least be gpecies that does not feed on any others but
receives energy input external to the egst assumingly via solar radiation. This is
included in the model by letting the species with the lowest niche valug+t@ve

There is a possibility, especially for lawandC values, that the niche model generates
a food web with one or several unconneatedes. In this case, the unconnected nodes
are replaced by new species (new nichieies), and the algorithm is rerun. Another
possibility, not considered in the originaper (Williams & Martinez 2000), also most
likely to occur at lowN andC-values, is the possibility of having isolated clusters, that
is; a group of species that are connectedragat each other, but isolated from other
groups. Certain global parameters of Mispecies food web would then in reality be
measures only of the subsystem with less thapecies. We traced the occurrence of
these clusters, but did not reprogramiadel in order to avoid them. For tNeandC
values relevant for data comparison, isolatledters rarely occurred in our simulations,
and the problem was negligible.

The algorithm we used for the Niche model returns an adjacency ragmratrix of
zeros and ones) where the elementslecide whether speciégpredates on specig¢s
(meaning the flow transaction is frgno i).

We propose a modified niche model, whiekpands the basic food web structure (of

size N) that is generated by the original niche model. The modification is a detritus
feedback loop that we add to the systenidiyng all species be connected to a detritus
compartment (compartmeNt 1), meaning that death works as a predator on all living
things. We also add an additional compaant of detrital feeders (compartmeit2),
representing bacteria or other small organisms that feed on the detritus compartment,
and that are were not represented in the initial structure (Figure 1). Through predation
on these microorganisms by the species in the food web, energy can reenter the system.
We let all species that are not primargpgucers have the same probability of feeding

on the detrital feeders, and let this probability be equal to



Figure 1: The structure of the modified niche model. The original niche model (blue) is
used to construct the food web structure ®l#it. Detritus and detritus feeders are then
added to this structure, creating an exé@dback loop that allows energy to flow from
the top predators towards lower levels in the niche-hierarchy.

The modified niche model uses the original niche model to generate a structuké with
compartments, and then adds two compartments, ending witit-2ncompartment
structure. In order to control the expected connectivity of the total structure, it is
necessary to derive the relationship betweerctnnectivity of the original substructure

C and the connectivity of the modified structute

The standard niche model with ingDtandN constructs thé\ first species of thél+2
species modified web. When the detritus feeiloop then is added to the system, the
expected number of link&[L]) should be:

E[L]=CN?+N+CN(1-b)+1,

where the first term on the right is the number of expected links in the basic niche
model structure. The second term is tlieconnections that make all species go to
detritus. The third term is the expectadmber of connections back to a fract©mwf all

the specie¢l-b)N that are not basal species. Th& t@rm is due to the one connection
between the detritus compartment and the detritus feeders. This total number of
expected links should by definition equal

E[L] = C(N +2)?,

where C is the expected connectivity for the tokit 2 species modified niche model.
The relation betwee@ and C is thus given by



c_CIN+27—(N+1)
N+ (1—b)N

Which means that a modified niche food web witk2 species and expected

connectanceC is generated by adding the detritus loop to a standard niche food web
with N species and connectarnce

As mentioned earlier, we use the “reabdnnectance of the assembled food web-
structures (and not the input val®® for model comparison, so that the input
parameters just serve to ensure that the models generate food webs in an appropriate
range of connectance values. Since, in additionNfiterm dominates the denominator

of the above equatiorthe rough approximatiob = 1/3 will work for our purpose,
althoughb in general will be a complex function GfandN.

Empirical data

In a well-studied dataset of 17 food webs, eonsidered only the 10 (Table 1) that
already included detritus. These ten de¢ts, however, only described which species

fed on the detritus reservoir, and did nolee the effect of individuals dying and
contributing to this energy source. The detritus compartment was thus treated as some
autonomous source of available energy, Whis clearly not a realistic case. We
therefore considered two cases, first the data as given, and second modifying the data
set in the same way as we modified thehei model — by assuming that individuals
from all species died and contributed te thetritus pool. The connections back to the
systems were kept as in the original d=gts, where only a subgroup of the species fed

on detritus.

Table 1: Properties of 10 empirical food webs where flows to detritus originally were
ignored.N is the size of the food web, whil@ is the connectance/N?). Both the
original connectance (without passive flowsdetritus) and the modified connectance
(when all species go to detritus) are shown.

Food Web C (Orig.) | C(Mod.) | Reference
N
St. Martin Island 44 0.068 0.090 Goldwasser & Roughgarden 1993
El Verde Rainforest 156 0.062 0.069 Waide & Reagen 1996
Skipworth Pond 37 0.070 0.098 Warren 1989
Bridge Brook Lake 220 0.011 0.016 Havens 1992
Canton Creek 109 0.060 0.069 Townsend et al. 1998
Stony Stream 113 0.065 0.074 Townsend et al. 1998
St. Marks Estuary (TRO) 48 0.096 0.117 Christian & Luczkovich 1999
Caribbean Reef, small 50 0.222 0.242 Opitz 1996
NE US Shelf 81 0.226 0.238 Link 2002




Also some data sets that consider both the flow of energy from species to detritus, and
from detritus to detrital feeders can be found in the literature. These food webs are
ecologically and thermodynamically more realistic than those which do not include this
feedback loop. A goal of our research idbtong to light the dicrepancies in how food
webs are developed and encourage a demsispproach that includes detritus and
detritus feeders. The ecosystems listed in Table 2 were included in our analysis in an
unmodified form.

Table 2: Properties of 16 empiricébod webs that considered flows to detritNgs the
size of the food web, whil€ is the connectancé&/(\?).

Ecosystems Reference

N C
Gramnoids (dry season) 66 0.182 Heymans et al. 2002
Cypress (wet season) 68 0.118 Heymans et al. 2002
Cypress (wet season) 68 0.120 Heymans et al. 2002
Mangrove Estuary (wet season 94 0.152 Heymans et al. 2002
Mangrove Estuary (dry season 94 0.152 Heymans et al. 2002
Florida Bay (wet season) 125 0.124 Heymans et al. 2002
Florida Bay (dry season) 125 0.126 Heymans et al. 2002
Baltic Proper 12 0.250 Sandberg et al. 2000
Bothnian Sea 12 0.236 Sandberg et al. 2000
Bothnian Bay 12 0.222 Sandberg et al. 2000
Oyster Reef 6 0.333 Dame & Patten 1981
Okefenokee Swamp 24 0.201 Patten et al. 1989
Brouage 13 0.195 Leguerrier et al. 2003
Zostera meadows 28 0.220 Patricio et al. 2004.
Cedar Bog Lake 8 0.359 Lindeman 1942

Measures and simulations

Aiming to understand the importance of ocemge of structural cycles in food webs
and ecosystems, we compare simulatiosults for 5 different assembly models
(cascade, constant connectance, nichedified niche andcyber ecosystem) among
each other and also to empal food web structures.



All the five models wergrogrammed so that they could be run witlandC as input
parameters. Note that the input paramé&erepresents the expected connectivity. A
single simulation would then return the adjacency matrigr the structure generated

by the particular assembly model, and the actual value for the connectance was then
used for the presentation of the simulation results. Our main measure was the dominant
eigenvalue), of the adjacency matri&, which works as a measure of structural cycling
(Fath 1998; Jain and Krishna 2003). If this eigdue is zero, then there is no cycling

(or feedback) anywhere in the system. If the eigenvalue is unity, then there is weak
cycling, which means that there is at least one simple cycle in the system,
acknowledging the presence of a stronginreected component (it could be the whole
network or a subset). A strongly conresttcomponent is a system in which all
compartments are reachable to and from each other. If the eigenvalue exceeds unity,
then the adjacency matrix has strong cycling. In the case discussed earlierAwhere
describes a system that consists of isolated clusters, the highest eigenvalue will be the
same as the eigenvalue of the strongest cycling subsystem.

The number of indirect pathways (lengttr1) between two nodes is found by raising

the adjacency matrix to thenth power (Ponstein, 1966)Pathway proliferation,
developed as a measure on how the nurobg@ossible pathways between two nodes
increases with path length, has been used as a good measure of the influence of indirect
interaction in strongly connected networksifi-1998; Borrett et al. 2005 — in press). It

is easy to show that the number of pathways of lengbietween two nodes increases

with min a system with strong cycling. The eigenvalue is thus a measure of how fast the
number of pathways of length increases witlm. Much of this theory, that seems to be
frequently reinvented in the field of theoretiesiology, relates strongly to the theory of
Markov Chains (Kemeny & Snell 1960).

Results

We ran 400 independent simulations for eaommunity assembly rule model. For
each simulation we randomly drew input \v@ufrom uniform distributions within the
range of the empirical data set valuesN<220 & 0.016<C<0.359). After each run, the
dominant eigenvalue of the resulting adjacency matrix was plotted against the link
densityL/N = NC of the resulting structures. We found that all models have a more or
less linear relationship betweanandNC (Figure 2). Also, we see how the modified
niche model (purple line) has a stronger structural cycling than the original one. It is
also clear from the simulation data set that the variance in the original niche model is
greater than in the modified one, since theitls feedback loop is a more or less fixed
structure. More generally, both verss of the niche model had a higherariance than

the other models. The constant connectance model (red) and the cyber ecosystem model
(green) give the structures with the strongest cycling, following approximately the
relation = NC. The cascade model (cyan) has by definition no cycling.
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Figure 2: The dominant eigenvalueplotted againshNC for 400 independent runs with
each of the five assembly models. The regression lines show the approximately linear
relationship betweekh andNC.

When the data set from Table 1 was plotted in its original form (when detritus is treated
as a primary producer or unlimited energy sejrwe could not see any clear trend in

the relationship between the structural cycling and M@ product (Figure 3a).
However, when we added connections from all species to the detritus compartment, the
data set roughly followed the obserVd@ trend, apparent in Figure 3b, and the values

of A were close to the ones produced the Constant Connectance and Cyber
Ecosystem models for the saieandC values.
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Figure 3: The regression lines, derived from the simulations in Figure 2, show the
relationship betweeh andNC for different models. Thblack dots show the dominant
eigenvalues for the 10 different empirical d&tis from Table 1. In a), the original data

set is used, where all passive flows to detritus were ignored. In b), the data set was
modified so that all speciesntribute to the detritus pool.

Finally, in Figure 4, the data from all teenpirical food webs/ecostems are presented.

The dots mark the 10 modified systems a®ifge and the crosses mark the data from
the empirical systems thatiginally included the detritus feedback loop. Three of the
five assembly models underestimated the amoitistructural cycling in the data sets.
The two models that performed best wéne Constant Connectance model and the
Cyber Ecosystem model, whose clear linear trends fitted the data sets well. The
modified Niche model were performing onglightly better than the original Niche
model.
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Figure 4: The regression lines, derived from the simulations in Figure 2, show the
relationship betweeh andNC for different models. Thblack dots show the dominant
eigenvalues for the 10 different empirical d&tis in Table 1, when the datasets were
modified so that all species contributedtb@ detritus pool. The black crosses display
the eigenvalues for the ecosystems in Table 2 that originally included a detritus
feedback loop.

It should be noted that even though tbastant connectance model performs well with
respect to the empirical eigenvalues, it has been shown to give bad fits with respect to
other important food web properties (WilliareisMartinez 2000). Different behaviors

of the cyber ecosystem model and constant connectance model with respect to some
food web properties were also investigatdien the cyber ecosystem model was first
proposed (Fath 2004). Although the structypesduced by the cyber ecosystem- and
constant connectance modéBve roughly the same amount of structural cycling, the
structures in themselves are not in any way similar. Figure 5 shows a graphical
representation (Matlab spy-plots) of the tadiadjacent matrices resulting from three of

the models.
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Figure 5: Graphical representation (Matlab Spy-plots) of the typical adjacent matrices
produced by the three models Const&@unnectance, Modified Niche and Cyber
Ecosystem, foN = 100 andC = 0.1. The ones (connections) in tAematrices are
marked with blue dots.

The connections (row predates on colurarg marked by blue dots, and with proper
ordering blue dots above the main diagandicate a feedback connection (predation

on species that are higher in the hierarchy). For the constant connectance model the dots
are randomly distributed, and the feedback connections are equally many as the feed
forward connections. A strong structural loyg is not unexpected in this case. For the
cyber ecosystem model, the structural cycling is the same as for the constant
connectance model, although the number ofilb@ek connection is more restricted in

this case. The modified niche has even feagpearing over the main diagonal, but still

a fairly high value foi., even though it is lower than for the constant connectance- and
cyber ecosystem models.

For comparison with the empirical data, the structural spy plots for 6 of the systems are
presented in Figure 6. For the modified data set (Table 1), the three data sets with
highestNC values were chosen. For the remaining data (Table 2) we chose from the two
data sources from which we had more than one ecosystem, the system withNi@jhest
value, and at last the system with the higi¥GStvalue that were not from these two
sources. Also in the empirical data sets has a bias towards hierarchical connections,
favoring the structures of the modified niche- and cyber ecosystem models.
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Figure 6: Graphical representation (Matlab Spy-plots) of the typical adjacent matrices
from 6 empirical data sets. The ones (connections) irAthmatrices are marked with
blue dots.

Discussion

Assembly models like the modified niche model and the cyber ecosystem model
produce webs that have both the bias towhrdsarchically directed connections and a
greater amount of structural cyclicity theuas previously acknowledged. They are also
more consistent with food webs that include detritus and detritus feeders. The detritus
feedback loop consists of relatively fewonmections, but because it is structurally
different than the conventional predationsydrks as an important pathway for energy

to flow from top predators and back to a lower level in the food hierarchy. In this way,
the cyclicity in the system can be increased by just a few key connections.

Functionally, the existence of the detritus feedback cycle does also make the roll of top
predators less clear, and the discusasimund top-down vs. bottom-up control becomes
rather ambiguous in the cyclic picturetlvcontinuous dissipative paths reaching also
beyond the level dN trophic steps.

A possible criticism toward the detritus feedback loop is that the interactions along it are
likely to happen at a different time scale thiaa conventional predation. At least some

of the processes of breaking down detritus into the energetic forms that can reenter the
system are expected to be slower ththe conventional predations, although the
existence of scavengers suggests that there also are ways for the detritus feeding to
happen at the same time scateconventional predations.s#ructural description could
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never reflect such differences, in the same way as a structural analysis does not reflect
the differences in flow rates in a weight ecosystem- description. In a dynamic
description this problemotld be overcome by descrilyg interactions with time
delayed differential equations.

While structural analysis is valuable because of data availability, it is our belief that a
quantitative flow-based analysis is required in order to draw further conclusions about
food web properties. In flowvased analysis connectioase weighted, and a greater
variety of properties could be studied, sua$ the importance of weak vs. strong
interactions (McCann et al. 1998). In a dynamical approach, the state of the nodes will
represent populations whose sizes change over time. The possibility of species dying
out, and the possibility of following real flows through the system open for a greater
variety of measures, among which different stability measures (McCann, 2000) like for
instance community persistence (Kondoh 2003)ehgained much focus. Also other
network properties, such asmpartmentalization, requitenowledge about interaction
strength in order to be investigatedniih & Lawton 1980). A practical problem with
such models is that flow quantities are expensive and difficult to acquire.

A flow analysis considers not only the presence of cycles, but also the weighted flow of
energy or nutrients (normalized as a transfer efficiency) between compartments (Patten
1985). A high degree of cyclicity generally means that the number of pathways between
two nodes of a given length increases wittm. The rate of increase is reflected in the
eigenvalue of the adjacency matrix, and generally cycling increases the importance of
indirect effects. Although energy is lost at each transfer due to dissipation, the diverging
number of pathways may still ensure that indirect effects play an important role (Fath &
Patten 1999). This is one of the reasons why cyclic structures should not be neglected.

By assuming that the system is in static steady state equilibrium with the environment,
one can adapt to a flow picture without hayito go to a framework of differential
equations. Such an assumption could onlyddevant on a non-evolutionary scale, and
clearly limits the number possible scenarios that can be studied. However, the
advantages of such a static treatment is that it allows for a rather simple analysis of how
the network behaves with respect to certagrmodynamical goal functions (Fath et al.
2001; Fath et al. 2004). Also measuréke network amplification, network
homogenization, synergism and the ratio of riecl to direct effects have been studied

in steady state ecosystems (Fath & Patten 1998 also this work emphasizes the
importance of including cyclic structures.
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