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Abstract

For one parametric smooth family of pairs of control systems and profit densities on
the circle, the transition between optimal strategies of cyclic and stationary types in the
problem of maximization of infinite horizon averaged profit is studied. We show that only
two types of such transition can be observed for a generic pair, study the corresponding
singularities of the averaged profit as a function of the family parameter and prove their
stability to small perturbations of such a family. We also complete the classification of
generic singularities of the maximum averaged profit for such families.
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Centro de Matemática da Universidade do Porto
Porto, Portugal



–v –

Acknowledgements

This work was partially performed during the visit of the first author to Departamento
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Generic Phase Transition and Profit Singularities

in Arnold’s Model

Alexey Davydov*

Helena Mena-Matos**

1 Introduction

A control system on a smooth ( =C∞ ) manifold is defined by a smooth family of vector
fields on it, parameterized by a control parameter. We assume that the control parameter
space U is a smooth closed manifold or a disjoint union of ones with at least two different
points.
An admissible motion of a system is an absolutely continuous map x : t �→ x(t)

from the time interval to the system’s phase space such that its velocity (at each point
of differentiability) belongs to the convex hull of the admissible velocities of the system.
Taking into account the autonomous character of the control system, the start time of an
admissible motion can be placed to zero without loss of generality.
In the presence of a smooth (or even continuous) profit density f on the phase space

of the control system, any admissible motion on the interval [0, T ], T > 0, provides the
profit

P (T ) =

T
∫

0

f(x(t))dt

and the averaged profit A(T ) = P (T )/T. If the phase space is compact any admissible
motion can be extended to the whole time axis. For the noncompact case this is not
always so, like for the solutions of the equation ẋ = x2 on the real line.
The problem of maximizing the infinite horizon averaged profit over all admissible

motions is an important problem of control theory. If there is no limit of the profit A(T )
when T → ∞ one needs to take its upper limit. In particular this problem includes
optimization of the averaged profit of cyclic processes, arising in the case where the phase
space is a circle. Due to that, problems of such type are well known and were treated in
different ways [14], [16], [17].
A new approach in the investigation of such problems, based on the achievements of

the singularity theory, was proposed by V.I. Arnold in papers [1]-[3]. V.I.Arnold showed
that for control systems and profit densities on the circle, among the motions maximizing
the infinite horizon averaged profit there can appear level cycle which uses the maximum
and minimum velocities when the profit density is less or greater, respectively, then the
maximum of infinite horizon averaged profit, or a stationary strategy (equilibrium point)

*Partially supported by grants RFBR 03-01-00140 and FCT XXI/BBC/22225/99
**Partially supported by Centro de Matemática da Universidade do Porto (CMUP) financed by FCT
(Portugal) through the programmes POCTI and POSI with national and European Community (FEDER)
structural funds
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which is the staying at a equilibrium point (with the admissible zero velocity). V.I.Arnold
also studied some of the corresponding generic singularities of the maximum averaged
profit as a function of a parameter in the one parametric case [2]. Here the analysis
of Arnold’s one-parameter model is continued. We prove that a strategy providing the
maximum infinite horizon averaged profit can always be found within these two classes
of motions. However we use a more general definition of an equilibrium point, namely,
we understand an equilibrium point as a point, at which the convex hull of the system’s
admissible velocities contains zero.
Additionally we analyze the transitions between the optimal strategies of these two

types and prove that generically only two forms of them can appear under the change of
the one-dimensional parameter. We find the corresponding singularities of the maximum
infinite horizon averaged profit as a function of the parameter, and prove their stability to
the small perturbation of a generic families of pairs of control systems and profit densities
is proved.
In the case of one-dimensional parameter, the obtained results hold true for a generic

family of control systems (or profit densities) provided a generic family of profit densities
(control systems, respectively) is fixed. The formulation and the proof of a corresponding
theorem are the same as in [10].

2 Notions and Theorems

Here the main results are formulated. We denote by x and p the phase variable and the
family’s parameter, respectively. In what follows a generic object (a family of control
systems or profit densities, or else pairs of these, ... ) will always be understood an an
element of an open and dense subset in the space of objects endowed with smooth or
sufficiently smooth fine topology. A property or a statement is said to hold generically if
it holds for a generic object.

2.1 Optimal motions

An admissible motion is called optimal if it provides the maximum infinite horizon averaged
profit, which we for simplicity will call the maximum averaged profit or the best averaged
profit, provided it is defined for a selected class of strategies, for example, the equilibrium
points.
For a value c of the profit density we define the c-level motion as the one keeping the

maximum and minimum admissible velocities at points, at which the profit density is not
greater and greater then c respectively. A value of the profit density is called cyclic, if
for all nearby values, the motions of the corresponding levels rotate over the circle. For a
cyclic value c its level motion is called a c-level cycle or just a level cycle. The period of a
level cycle is defined as its smallest period.
For a control system with positive velocities only, the maximum infinite horizon av-

eraged profit A is provided by an A-level cycle. Along this periodic motion the averaged
profit gained in one cycle equals the maximum one gained on the infinite horizon. Indeed,
as we mentioned above, for such a system an optimal motion keeps the maximum and
minimum admissible velocities at points at which the profit density is less and greater
than the maximum averaged profit A, respectively [2]. Besides the motion kept on the
density level A does not have any influence on the averaged profit [10], thus it can be
selected as an A-level cycle.
As said before an equilibrium point is a point at which the convex hull of the admissible

velocities contains zero. This point is stationary in the sense that for a control system
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with a one dimensional phase space there exists an admissible motion circulating close to
that point, which is generated by a piecewise continuous control and tends to the point as
time goes to infinity. It is clear that the infinite horizon averaged profit provided by such
motion equals the profit density value at this point, that is, the profit value gained through
the permanent staying at the point. Our definition of an admissible motion permits such
staying (=stationary strategy) directly.

Theorem 2.1 For continuous control system and profit density on the circle, the max-
imum infinite horizon averaged profit can always be provided by a level cycle or by a
stationary strategy.

The theorem is proved in Section 3. Note that there can exist a number of different
optimal motions. For example, the change of an optimal motion on any finite interval
of time preserves its optimality. Besides if there are both an optimal stationary strategy
and an optimal (cyclic) level motion, then the ”combined” motion designed as the cyclic
motion which stops periodically at the corresponding equilibrium point for arbitrary long
duration is also optimal. Such a situation is possible as we will see later.
When the control system and profit density depend on parameters, the optimal strategy

can vary depending on the parameters and the best averaged profit, as a function of the
parameters, can have singularities. For example, this profit can be discontinuous, even
when the families of control systems and densities are smooth [2]. Theorem 2.1 gives us
the possibility to subdivide these singularities into three groups in order to analyze them,
namely, the singularities for optimal stationary strategies, for optimal level cycles and
for the transitions between optimal stationary strategies and level cycles. The respective
results are formulated in the following subsections.

2.2 Singularities of the profit for optimal level cycles

Theorem 2.2 [10] On a circle for a generic smooth one parameter family of pairs of
profit densities and control systems with positive velocities only, the germ of the maxi-
mum averaged profit at any parameter value is the germ at the origin of one of the seven
functions listed in the second column of Table 1 up to the equivalence pointed out in the
third column and under the conditions given in the fourth one. Besides, for a generic pair
and any one sufficiently close to it, the graphs of their maximum averaged profits can be
transformed one to another by a smooth Γ-equivalence close to the identity.

To make this statement more clear we must give a few explanations. Γ-equivalence
admits diffeomorphisms of the graph space preserving the natural foliation over the func-
tion’s domain. R+-equivalence which permits diffeomophisms of the domain space and the
adding of smooth functions is a particular case of it.
The maximum (minimum) velocity of a family of control systems on the circle is the

maximum (minimum, respectively) of the respective family of vector fields with respect to
the control parameter. When the family’s parameter is one dimensional such a maximum
is either smooth or can have generic singularities of three types, namely its germ is R+-
equivalent to the germ at the origin of one of the following three functions

1) |u|, 2) max{v, |u|}, 3) max{−w4 + uw2 + vw |w ∈ R}, (2.1)

for the minimum we have to change the sign of these functions [4], [6], [7]. Here u and
v are local coordinates in the space of the phase variable and the parameter. Note that
these functions are not the normal forms for the germs of the vector fields themselves. A
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Table 1:

Nsup0 Singularity Equiv Conditions

1 0 R+ #U ≥ 2
2 (|p|3/2+ p2)(1 + signp) Γa #U ≥ 2, transition through a lo-

cal minimum of the profit density

3 (|p|3/2− p2)(1 + signp) Γa #U ≥ 2, transition through a lo-
cal maximum of the profit den-
sity

4 |p|3/2(1 + signp) Γ #U ≥ 2, transition through a
tangent double point of the ve-
locity used

5 p|p| R+ #U ≥ 3, transition through a
triple point

6 |p|3 R+ #U ≥ 2, switching at a double
point

7 |p|7/2(1 + signp) Γ dimU > 0, transition through a
swallow point

point with singularity 1), 2) or 3) we will call double, triple or swallow point, respectively.
Transversality theorems imply that for a one dimensional parameter in a generic case
the closure of the set where the minimum or maximum of a family of functions has such
singularities (=Maxwell set) is either empty or is
– a smooth curve when the number #U of different control parameter values is equal

to 2, or
– a smooth curve with triple points when #U = 3, the triple points for minimum and

maximum velocities are the same and Maxwell set near each of them is the union of three
pairwise transversal smooth curve, or else
– a smooth curve with triple (and swallow) points with transversal self-intersection

outside them when #U > 3 (dimU > 0, respectively), and triple and swallow points for
minimum and maximum velocities are different.
Besides, this set is stable, namely, for a generic family of control systems and any one

sufficiently close to it such sets can be reduced one to another by a smooth diffeomorphism
close to the identity (see [4], [6], [7], [9]). Hence in a generic case this set has a typical
replacement with respect to the natural foliation of the ambient space over the family’s
parameter space. Consequently the Maxwell set of a generic family of control systems can
be tangent to fibers of this foliation only at points where it is smooth and exactly with
first tangency order. Besides for any value of the parameter, at the phase space there
is no more then one double point with such tangency (=tangent double point), triple or
swallow point, or else a point of self-intersection of this set. A point where the Maxwell
set is smooth and which is not a tangent double point, is called regular. At last in Table 1
– the notation Γa is used for a Γ-equivalence which is affine along the profit axis,
– transition through a local extremum of the profit density means the coincidence

of the maximum averaged profit with a local value of the density at the corresponding
parameter value,
– transition through a tangent double (triple or swallow) point means , for the respec-

tive parameter value, the using of a velocity with such a singularity on some interval of
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the optimal motion, and
– switching at a double point means that the optimal motion switches between maxi-

mum and minimum velocities at a regular point of the Maxwell set.
Denote by T and P the functions of the period of a c-level cycle and the profit along

it, respectively, T = T (c) and P = P (c). The proof of Theorem 2.2 is mainly based on the
following statement.

Theorem 2.3 ([10]) For a differentiable profit density with a finite number of critical
points and a control system with maximum and minimum velocities coinciding at isolated
points only, the best averaged profit is the unique solution c0 of equation

c− P (c)/T (c) = 0, (2.2)

if this profit is provided by a level cycle. Besides the left hand side of equation (2.2) is a
differentiable function of c near this solution.

2.3 Singularities of the profit for optimal stationary strategies

The stationary domain S is the union of all equilibrium points. For a continuous system
this domain is closed. The maximum averaged profit As over the stationary strategies
is the solution of the following extremal problem As(p) = max{f(x, p) | x ∈ Sp}, where
Sp = {x | (x, p) ∈ S}.
Thus to classify the generic singularities of this profit one can firstly study the generic

singularities for the stationary domain and prove their stability up to small perturbations
of a generic family of systems, and then analyze the generic profit singularities themselves
as solutions of this extremal problem.

Theorem 2.4 For a generic smooth one-parameter family of control systems on the circle,
the germ of the stationary domain at any of its boundary points is the germ at the origin
of one of the seven sets from Table 2 in an appropriate smooth coordinate system foliated
over the parameter. Besides,
• the number of different values of the control parameter must be no less then 2 for

singularities 1 and 2, no less then 3 for singularities 3 and 4 and equal to 2 for singularity
5 and
• the stationary domains for a generic family of systems and any one sufficiently close

to it can be carried one to another by a C∞-diffeomorphism that is close to the identity
and preserves the natural foliation over the parameter.

Table 2:

1 2± 3 4 5±
x ≤ 0 p ≥ ±x2 p ≤ |x| x ≥ −|p| ±(p2 − x2) ≤ 0

We omit the proof of this theorem. It is based on the transversality theorems and is
simple enough.

Remark 1 In a generic case the maximum and minimum admissible velocities have dif-
ferent signs inside the stationary domain, and on the boundary of this domain at least one
of them vanishes. Besides, outside singularities of type 2± the vanishing velocity always
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has both one sided derivatives and they are different from zero. For the case of polidy-
namical systems (when the number of different values of the control parameter is finite)
Theorem 2.4 was proved by Célia Moreira [8].

Theorem 2.5 For a generic smooth one-parameter family of pairs of control systems and
profit densities on the circle and any value of the parameter admitting equilibrium points,
the germ of the best averaged profit over the stationary strategies at such a value is the
germ at the origin of one of the five functions in the second row of Table 3 up to the
equivalence from the third one. Besides, the graphs of the best averaged profits provided by
stationary strategies for a generic pair and any one sufficiently close to it can be reduced
one to another by a Γ-equivalence which is close to the identity.

Table 3:

Type 1 2 3 4 5

Singularity 0 |p| p|p| √p, p ≥ 0 max
{

0, 1 +
√
p
}

Equivalence R+ R+ R+ R+ Γ

The proof of Theorem 2.5 is done in Section 4.

Remark 2 The singularity 1 from Table 3 appears when the profit As is attained at an
unique equilibrium point, which is either a nondegenerate local maximum of the profit
density inside the stationary domain, or a boundary point of this domain with a type 1
singularity from Theorem 2.4 where fx 	= 0. The singularity 2 corresponds either to the
nondegenerate competition of two singularities of type 1 from Table 3 or to the case of
the profit As being attained at an unique point which is a boundary point of the stationary
domain with the singularity 4 or 5− from Theorem 2.4 and where fx 	= 0. The singularity 3
arises with the outgoing of the optimal stationary strategy from the interior of this domain
to its boundary. In a generic case that takes place at a point with a type 1 singularity
from Theorem 2.4 and with fx = 0 	= fxx. Finally, the singularities 4 and 5 from Table
3 occur when the (unique) optimal strategy is a boundary point of the stationary domain
with singularity 2+ from Theorem 2.4: when locally on one side of the respective parameter
value there are no stationary strategies we get singularity 4, otherwise we have singularity
5.
All singularities from Table 3 are well known in the parametric optimization theory [6],

[9], [12], [13]. Relating to the time averaged optimization they were found by V.I. Arnold
[2] as generic singularities of the profit for equilibrium points and level cycles. Here all of
them appear as generic singularities of the maximum profit for stationary strategies only.
All of them appear generically already in the case of bidynamical systems. In this case
they were found by Célia Moreira [8] who used the same definition of equilibrium point as
in this paper.

2.4 Transition between optimal strategies

A parameter value is called a transition value if in any neighborhood of it, the maximum
averaged profit can not be provided by one and only one type of strategy, namely, either
by level cycles or by equilibrium points.
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Theorem 2.6 For a generic smooth one-parameter family of pairs of control systems and
profit densities on the circle, the germ of the maximum averaged profit at a transition
parameter value is the germ at the origin of one of the two functions from the second
column of Table 4 up to R+-equivalence. Besides, the sets of transition parameter values
for a generic pair and any one sufficiently close to it can be carried one to another by a
diffeomorphism of the parameter space which is close to the identity and preserves the type
of the profit singularities at those values.

Table 4:

N sup 0 Singularity Type

1 |p| Stop at an interior point of the stationary
domain, fx(.) = 0

2 max
{

0, p
| lnp|(1 +H)

}

Stop at a boundary point of the stationary
domain with the singularity 1 from Table
2, fx(.) 	= 0

Remark 3 In this table H = h(p, p
| lnp|
, ln | lnp|
| lnp|

) with a smooth function h, h(p, 0, 0) ≡ 0.
The first singularity corresponds to the nondegenerate competition between the best aver-
aged profit among level cycles and a local maximum of the profit density inside the station-
ary domain which provides the profit As. The second one corresponds to the forthcoming
of a switching point between maximum and minimum velocities on the optimal level cycle
to the boundary of the stationary domain under the change of the parameter.

Theorem 2.6 is proved in Section 5.

3 Selected strategies: proof of Theorem 2.1

We begin to prove two useful statements.

Proposition 3.1 If an admissible motion of a differentiable control system comes in (or
outcomes from) a point in finite time, then at that point the maximum velocity in the
direction of the motion is positive.

Proof. It is clear that at such a point N0 the maximum velocity v in the direction of
the entrance or outcome of the motion has to be nonnegative, due to continuity of the
maximum velocity. But the maximum (minimum) velocity V of a differentiable control
system, having a closed smooth manifold or a disjoint union of closed smoothed manifolds
as the control parameter’s set, is a Lipschitz function. So if v vanishes at the point x0 then
near this point |v(x)− v(x0)| ≤ C|x − x0| with some positive constant C. Therefore it is
not possible to come in or walk out the point in finite time, because the function 1/x has
a nonintegrable singularity at zero. That contradicts the assumptions, and so the value
v(x0) must be positive. �

Proposition 3.2 If for a continuous control system and profit density, an admissible
motion x(t), 0 ≤ t < ∞, provides an profit A on the infinite horizon and some arc of its
trajectory between points x(t1), x(t2), with f(x(t)) less (greater) then A for all t ∈ [t1, t2],
can be crossed faster (slower, respectively) then the modified motion with the faster or
lower crossing, respectively, provides no worse averaged profit on the infinite horizon.
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Proof. We consider only the case of the faster crossing (the other case can be treated in an
analogous manner). Our proof is a modification of that of [11] for an analogous statement.
Without loss of generality we can assume that the profit density is positive, because the
addition of any constant to it leads to the addition of the same constant to the averaged
profit.
Denote C = max{f(x(t)), t ∈ [t1, t2]}. Due to the definition of averaged profit on the
infinite horizon there exists a sequence of times {Ti} such that Ti → ∞ and A(Ti) → A
when i→∞. Let us take i so big that Ti > t2 and A(Ti) > C. Denote by Δ, 0 < Δ < T ,
the economy of time when we pass the arc between x(t1) and x(t2) faster. Calculating
now the difference D between the averaged profits of the initial motion on the interval
[0, Ti] and the modified one on the interval [0, Ti−Δ] we get

D ≤ A(Ti)−
TiA(Ti)−CΔ
Ti −Δ

=
Δ

Ti −Δ
(C − A(Ti)) < 0.

So the motion with the faster crossing of the arc between x(t1) and x(t2) provides no worse
averaged profit on the infinite horizon then the initial one. �

Now let us prove Theorem 2.1 itself. Let f and A be the profit density and the
maximum averaged profit on the infinite horizon, respectively. If the domain {x : f(x) ≥
A} contains equilibrium points then the maximum averaged profit can be provided by the
respective stationary strategy.
If it does not, then for sufficiently small ǫ > 0 the closed domainD = {x : f(x) ≥ A−ǫ}

also does not contain equilibrium points due to continuity of the profit density and of the
maximum (minimum) velocity. In particular, in this domain these velocities have the same
sign and are separated from zero. So, any admissible motion on a connected component of
the domain D has to leave it in finite time and can income back to it only after a complete
rotation along the circle.
Hence the number of rotations along the circle of an admissible motion providing the

maximum averaged profit has to go to infinity as the time goes to infinity. Otherwise this
motion would have to spend a finite time in the domain D and an infinite one in the rest
part of the circle, where the density is less then A− ǫ. Consequently, the averaged profit
of the motion on the infinite horizon would be not greater then A − ǫ, what contradicts
the optimality of the motion.
On each cycle of the rotation the motion under consideration can be improved in the

stream of Proposition 3.2. In fact, the existence of such rotation permits us to conclude
by Proposition 3.1 that the maximum velocity in the direction of its motion is always
positive. In particular, it is separated from zero because of its continuity and compactness
of the circle. The A-level cycle uses it on the set f(x) ≤ A. On the rest part f(x) > A of
the circle the improved motion has to use the minimum velocity which is also separated
from zero on this part due to the absence of equilibrium points in its closure.
Thus the modified motion is the A-level cycle. Its averaged profit on the horizon is

not less than the one for the initial motion, e.c. no less than the value A. But it is also
not greater than this value due to the optimality of A.
Theorem 2.1 is proved. �

4 Proof of Theorem 2.5

To simplify language we say that a boundary point of the stationary domain is regular
if at that point the stationary domain has singularity 1 of Theorem 2.4. Otherwise it is
called singular. The following statement is useful.
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Proposition 4.1 For a generic smooth one parametric family of pairs of control systems
and profit densities on the circle

(a) at any point at least one of the derivatives fx, fxx and fxxx of the profit density
family f does not vanish,

(b) at any singular boundary point of the stationary domain, the derivative fx does
not vanish, and at a regular one at least one of the derivatives fx and fxx does
not vanish,

(c) for any parameter value the maximum averaged profit over the stationary
strategies can be attained at most at two different points.

We omit the proof of these statements because they follow easily from Thom transversality
theorem in the case (a) and (b) and from multijet transversality theorem in the case (c).

Now let us prove Theorem 2.5. Suppose firstly that at a parameter value p0 the
maximum As(p0) is provided by an unique equilibrium point Q = (x0, p0).
If Q is an interior point of the stationary domain, then fx(Q) = 0 and (a) implies

that in a generic case fxx(Q) < 0 because Q provides a local maximum of the profit
density f(., p0). Consequently for p near p0 we get As(p) = f(x(p), p) where x = x(p)
is the curve of local maxima of the densities f ·, p) near (x0, p0), namely, the solution of
equation fx = 0 near this point. This solution exists and it is unique and smooth due to
the implicit function theorem because fxx(Q) < 0. Thus the maximum averaged profit is
a smooth function near the point p0 and so it has the first singularity of Table 3 at it.
If Q is a regular boundary point of the stationary domain, then at this point the

derivative fx either vanishes or not. It is clear that in the second case near the point p0 the
function As coincides with the restriction of the family f to the boundary of the stationary
domain near the point Q and so is smooth. Thus, as above we get the first singularity of
Table 3. In the first case, when fx(Q) = 0, the derivative fxx is negative at Q by (b) and
due to the fact that Q provides a maximum of f(., p0). Besides, due to Thom transversality
theorem, generically the differential of the restriction of the derivative fx to the boundary
of the stationary domain does not vanish at Q. Hence at the point Q this boundary is not
tangent to the curve of local maxima of the family f with respect to x. In particular, near
the point Q this curve and the stationary domain take forms x = p and x ≤ 0 near the
origin, respectively, in appropriate smooth local coordinates foliated over the parameter.
In such coordinates, due to Hadamard lemma, the family of profit densities can be written
locally near the origin (= (0, 0) = Q) in the form f(x, p) = f(p, p) + (x− p)2h(x, p) with
some smooth function h; hxx(0, 0) < 0 because fxx(Q) < 0. Now it is easy to see that
near the origin the profit As is the maximum of the restrictions of the family f to the
stationary’s domain boundary x = 0 and to the part of the curve x = p of local maxima
of this family with respect to x which is inside the stationary domain. This maximum
near the point p0 coincides with the function f(p, p) + p

2h(p, p) when p ≥ 0 and with the
function f(p, p) when p ≤ 0. It is smooth near the origin except at the origin itself where
it is differentiable but has different one side second derivatives. Consequently the profit
As has the third singularity of Table 3 at the point p0.
If the point Q is a singular boundary point of the stationary domain, then in a generic

case fx(Q) 	= 0 due to statement (b) of Proposition 4.1 . Consequently, at such a point
the stationary domain can have only one of the singularities 2+, 4 or 5− of Theorem 2.4.
Indeed in the case of singularities 2− and 5+ the point Q is an interior point of Sp0 and
it can not provide the maximum of the averaged profit because fx(Q) 	= 0. Now simple
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calculations imply that if at (x0, p0) the stationary domain has singularities 4 or 5−, then
at p0, the maximum averaged profit As has the second singularity of Table 3. If at the
point P the boundary domain has singularity 2+, then the singularity type of As at the
point p0 depends on whether Sp0 contains points different from Q or not.
If there are no such points, then at p0 the profit As has the fourth singularity of Table

3. If there are points of this kind, then generically they must be either interior points
or regular boundary points of the stationary domain at which the derivative fx does not
vanish. In this case we conclude that the maximum averaged profit has the fifth singularity
of Table 3 at the point p0.
To complete the classification of singularities we only have to consider the case when

the best averaged profit As(p0) provided by two different equilibrium points. Multijet
transversality theorem implies that each of these points is either an interior point of the
stationary domain with fx = 0 < fxx or a regular boundary point with fx 	= 0. So the best
local stationary strategies near each of these two optimal strategies provide an averaged
profit which is smooth at the point p0. The respective two functions have the same value
at p0 but in a generic case, due to the multijet transversality theorem, they have different
derivatives at this point. Hence the profit As which is, near the point p0, the maximum
of these two functions has at the point p0 the second singularity from Table 3 in the case
considered.
Now it is easy to see that for a generic pair a singularity from Table 3 is defined by

the transversality of its jets or multijet extensions to submanifolds in the jet or multijet
spaces, respectively. That implies the stability of singularities, namely, the last statement
of Theorem 2.5. �

5 Strategy Transition: Proof of Theorem 2.6

Firstly we prove some useful statements and then study transitions.

5.1 Cyclic and transition values

Proposition 5.1 For a cyclic level c0 of the density at a value p0 of the parameter, the
close levels of the density are also cyclic for all sufficiently close values of the parameter,
if the families of profit densities and control systems are differentiable and for parameter
value p0 the density has only a finite number of critical points.

Proof. Due to Proposition 3.1 at the value p0 of the parameter the maximum velocity
V in the direction of the c0-level cycle is positive everywhere. That is also true for any
sufficiently close value of the parameter due to continuity of the maximum velocity for a
continuous family of control systems. Hence it is sufficient to show that for any pair (c, p)
near the pair (c0, p0) the domain {x : f(x, p) ≥ c} does not contain equilibrium points.
If it does then there exist sequences of equilibrium points {(xi, pi)} and of levels {ci}

with lim
i→∞
{(pi, ci)} = (p0, c0) and f(xi, pi) ≥ ci. But the circle is compact. So due to

Bolzano-Weierstrass theorem there exists a subsequence {xij} of points which converges
to some point Q of the circle. (Q, p0) is the equilibrium point due to continuity of the
family of systems, and the value of the profit density at this point is not less then c0
due to continuity of the family of densities. Due to positiveness of the maximum velocity
V (Q, p0) the minimum one has to be non-positive at this point.
Now if the level c0 is not the minimum of the density f(·, p0) along the circle then the

(c0 − ǫ)-level motion is not cyclic for a positive ǫ small enough. Really such a motion has
to use the minimum velocity near the point (Q, p0). But this velocity is either negative
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or it vanishes at this point and satisfies the Lipschitz condition due to differentiability of
the control system. In both these cases the motion can not cross the point Q. Really it
can not do that with negative velocity and can not income to the point in finite time with
the vanishing velocity satisfying the Lipschitz condition because the function 1/x has a
non-integrable singularity at zero. That implies that the value c0 is not cyclic, and we get
a contradiction to the proposition assumptions.
When the level c0 is the minimum of the density f(·, p0) along the circle then it is

a strong local minimum because the density has only a finite number of critical points.
Consequently, the c0-level motion uses the minimum velocity near the point (Q, p0) except
eventually in the point itself. Hence this motion can not cross the point as it was shown
just above, and again we arrive to a contradiction to the proposition assumptions.
Thus the set {x : f(·, p) ≥ c} does not contain equilibrium points for any point (c, p)

near the point (c0, p0), and the level c is cyclic for the parameter value p. �

Proposition 5.2 Suppose c0 is a cyclic level for the parameter value p0. Then for a
point (c, p) near the point (c0, p0) the measure of the symmetric difference between the
domains where the level cycles corresponding to these points keep the maximum (minimum)
velocities goes to zero when (c, p)→ (c0, p0), if the families of profit densities and control
systems are differentiable and for parameter value p0 the density has only a finite number
of critical points.

Proof. By Proposition 5.1 for (c, p) near (c0, p0) the c-level cycle for a value p of the
parameter is well defined. Only such pairs (c, p) are considered in this proof.
The level c0 of the density function f(·, p0) has only a finite number of different points.

Otherwise this function would have an infinite number of critical points due to Rolle’s
theorem. Thus for any positive ǫ this level can be covered by a finite number of open
intervals with total length less then ǫ. Deleting these intervals from the circle we get
some compact K. On this compact the continuous function |f(·, p0) − c0| is positive and
achieves a minimum which we denote by m. Due to continuity of the family of densities,
in the space of variables x, p the compact {(x, p0) : x ∈ K} has a neighborhood in which
|f(x, p)−c0| is not less then 2m/3. It is clear that this neighborhood contains the product
K×]p0 − δ, p0 + δ[ for a positive δ small enough. For any point (x, p) of this product we
have

|f(x, p)− c| ≥ |f(x, p)− c0| − |c− c0| > m/3

if |c− c0| < m/3. That implies that for a point (c, p) near the point (c0, p0) satisfying the
conditions |c−c0| < m/3 and |p−p0| < δ the measure of the symmetric difference between
the domains where the level cycles corresponding to these points keep the maximum
(minimum) velocities goes to zero when (c, p)→ (c0, p0). That proves the proposition. �

Proposition 5.3 The period of a level cycle and the (averaged) profit along it are contin-
uous functions of the level and the parameter at any point (c0, p0) such that c0 is a cyclic
value for the parameter value p0, if the families of profit densities and control systems
are differentiable and for the parameter value p0 the density has only a finite number of
critical points.

Proof. Due to Proposition 5.1, any point (c, p) close enough to the point (c0, p0)
provides a level cycle. Besides, the measure of the symmetric difference between domains
where the level cycles provided by these points use the maximum (minimum) velocities
goes to zero when (c, p) → (c0, p0), due to Proposition 5.2. All this, together with the
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continuity of maximum (minimum) velocities and of family of profit densities, implies the
statement of Proposition 5.3 as it is easy to see. �

Corollary 5.4 For a differentiable family of pairs of control systems and profit densities
and a transition parameter value p0 the best averaged profit As(p0) provided by stationary
strategies is not less then the upper limit Al(p0) of the best averaged profit provided by level
cycles under p→ p0, if the density f(., p0) has only a finite number of critical points.

Proof. Assume that As(p0) < Al(p0). It is easy to see that the level c0 = Al(p0) is cyclic
for the parameter value p0. Hence due to Proposition 5.1 any point (c, p) close enough to
the point (c0, p0) also provides a level cycle.
Due to Proposition 5.3 the averaged profit A along level cycles is a continuous function

of (c, p) at the point (c0, p0). Consequently c0 is the maximum averaged profit for the
parameter value p0. Also due to this continuity the profit A(c, p) is bigger then As(p0)
for a pair (c, p) close enough to (c0, p0). Hence near the parameter value p0 the maximum
averaged profit is always provided by level cycles because the function As is upper semi-
continuous. Thus p0 is not a transition value of the parameter. We arrive to a contradiction
and so As(p0) ≥ Al(p0). �

Proposition 5.5 For a generic smooth one parametric family of pairs of control systems
and profit densities on the circle As(p0) < Al(p0) if the profit As has at the point p0 one
of the two last singularities from Table 3.

Proof. In a generic case both these singularities are caused by the attainment of the best
averaged profit for stationary strategies at a point (x0, p0) where fx 	= 0 and at which
the stationary domain has a singularity 2+ from the list of Theorem 2.4. Let us take this
point for the origin of ne smooth coordinates with coordinate x increasing in the direction
of the motion along c-level cycle where c is a little bit greater then f(x0, p0). Such a level
c is really cyclic because fx(x0, p0) 	= 0, and so the profit density has values being bigger
then As(p0).
Due to the implicit function theorem, equation c = f(x, p) has a unique smooth solution

x = X(c, p) near the origin because fx(x0, p0) 	= 0. Selecting up to the sign this solution
as new coordinate along profit axis we reduce the function f to the form ±x near the
origin and the profit As(p0) to zero.
The singularity 2+ corresponds to the vanishing of the smooth minimum velocity v

at the point together with its first derivative vx when the second derivative vxx is not
zero. Due to Hadamard Lemma, on the fiber p = p0 the minimum velocity takes the form
x2h(x) near the origin with some smooth function h, h(0) > 0.
Now let us show that in a generic case, for the parameter value p0, a cyclic motion with

a small positive level provides a positive averaged profit. It is clear that this implies the
proposition statement. We consider the case ” + x” of the profit density near the origin.
The case ” − x” gives the same result and can be treated analogously. The following
statement is useful.

Lemma 5.6 For a generic smooth one parametric family of pairs of control systems and
profit densities, if (x0, p0) is a singular boundary point of the stationary domain, then
f(x0, p0) is not a critical value of the density f(·, p0), and except this point the level
f(x0, p0) of this density does not contains points of the Maxwell set and, additionally,
on the fiber p = p0 all other points of this set and boundary points of the stationary
domain are regular.
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We omit the proof of this lemma which follows easily from transversality theorems.
Now by Lemma 5.6 we conclude that the value f(x0, p0) is not critical of the function

f(., p0) in a generic case. Hence there exists a positive a such that all values of this function
from the interval [0, a] are not critical, because the set of critical values of a differentiable
function on the circle is closed.
Let us take a so small that for x ∈ [−a, a] the profit density and the minimum velocity

have the forms x and x2h(x), respectively. Consider now a c-level cycle with c ∈ (0, a).
Both the period of the cycle and the profit along it we subdivide into two parts corre-
sponding to the motion outside and inside the interval [−a, a]. The second ones have the
forms

c
∫

−a

dx

V (x)
+

a
∫

c

dx

x2h(x)
and

c
∫

−a

xdx

V (x)
+

a
∫

c

xdx

x2h(x)
,

respectively, where V is the maximum velocity near the origin. The first ones, T (a, c) and
P (a, c), are differentiable functions near zero because in a generic case all other points of
Maxwell set and for the function f(., p0) its f(x0, p0) is not critical and its level f(x0, p0)
does not contain points of this set [2], [10]. Consequently, the averaged profit for a c-level
cycle is provided by the expression

⎡

⎣P (a, c) +

c
∫

−a

xdx

V (x)
+

a
∫

c

xdx

x2h(x)

⎤

⎦

⎡

⎣T (a, c) +

c
∫

−a

dx

V (x)
+

a
∫

c

dx

x2h(x)

⎤

⎦

−1

It goes to zero and its derivative with respect to c goes to +∞, when positive c goes to
zero, as it is easy to verify by direct calculations. Hence, at the point p0 the best averaged
profit for level cycles is positive, and so Al(p0) > As(p0). �

Corollary 5.7 For a generic smooth one parametric family of pairs of control systems and
profit densities on the circle As(p0) = Al(p0) at any transition value p0 of the parameter.

Proof. At p0 we have As(p0) ≥ Al(p0) due to Corollary 5.4. If As(p0) > Al(p0) then the
profit As is not continuous at the parameter value p0, otherwise this value would not be a
transition value. Hence in a generic case this profit has at the point p0 one of the two last
singularities from Table 3 due to Theorem 2.5. But in such a case As(p0) < Al(p0) due to
Proposition 5.5, and we arrive to a contradiction.
The transition level is the maximum averaged profit at a transition parameter value.

Denote by m, m = m(p), the maximum of the family of densities with respect to x.

Proposition 5.8 For a generic smooth one parametric family of pairs of control systems
and profit densities on the circle and a transition parameter value p0, the averaged profit
provided by level cycles can be extended as a continuous function to the domain As(p) ≤
c ≤ m(p) for parameter values p close enough to p0. In particular, for the extended function
A we have [c−A](As(p0), p0) = 0.

Proof. Generically the profit As has at the point p0 one of the three first singularities
from Table 3 due to Proposition 5.5. So this profit is a smooth function in each sufficiently
small semi-neighborhood V of p0. Due to Remark 2 in a generic case the profit As(p) for
p ∈ V and close enough to p0 is attained at a point of the curve (X(p), p) either of local
maxima of the family of profit densities inside the stationary domain (except eventually
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the point (X(p0), p0) itself) or of boundary points of this domain. Here X is a smooth
function.
It is sufficient to show that the needed continuous extension near p0 exists ”over” the

semi-neighborhood V. Selecting new local coordinates c̃ and x such that c̃ = c−f(X(p), p)
and x(X(p), p) = 0, we reduce the profit As in V to zero and the curve (X(p), p) to the
p-axis.
Now near this axis the density function can be presented in the form f = xh(x, p), p ∈

V, due to Hadamard lemma, but the velocities used locally near this axis by the c-level
motion with c ≥ 0 can have a zero at most of first order on this axis. That implies that
the profit P is continuous near (As(p0) = 0, p0) for c ≥ 0 while the period T when c→ 0+
can have the same singularity as ln c at zero. Consequently for the averaged profit for level
motions can be continuously extended to the closure of the epigraph of As over V .
In the same manner these arguments work in the small semi-neighborhood V including

the point p0, when the profit As(p0) is attained at an unique point, namely, in the case
of singularities 1 and 3 from Table 3 or in the case of singularity 2 if it is caused by
the respective stationary domain’s singularity but not by the competition of different
stationary strategies.
For the case of singularity 2 from Table 3 when it is caused by the competition of

two stationary strategies, it is necessary to apply the same arguments locally near each of
these two strategies.
To end the proof we need to establish the equality [c − A](As(p0), p0) = 0 for the

extended profit. Because p0 is a transition parameter value there exists a sequence of
parameter values pi, pi → p0 when i →∞ such that at each of this values the maximum
averaged profit Al(pi) provided by level cycles is bigger then As(pi). Thus this profit is
provided by a ci-level cycle, ci = Al(pi), and the equality [c−A](Al(pi), pi) = 0 takes place
due to Theorem 2.3. But Al(pi) → As(p0) when i → ∞ by Corollary 5.7. Consequently
due to the continuity proved above we have the equality [c − A](As(p0), p0) = 0 in the
limit for the extended profit. �

Proposition 5.9 For a generic smooth one parametric family of pairs of control systems
and profit densities on the circle and any transition parameter value p0 the profit As is
attained at one equilibrium point only. This point Q is either a regular boundary point of
the stationary domain with fx(Q) 	= 0 or a nondegenerate local maximum of the density
lying inside the stationary domain with f(Q) < m(p0).

Proof. As we saw in the proof of the previous proposition after subtraction of As,
the profit P is well defined near (As(p0) = 0, p0) for c ≥ 0, while the period T can
have logarithmic singularities on c when c → 0 + . Consequently now the equality from
Proposition 5.8 can be rewritten in the form [cT − P ](As(p0), p0) = 0. In such a form the
equality is valid at a point of the graph of As exactly if and only if the profit P vanishes
at this point.
By small perturbations of the family of profit densities outside the local maxima of the

family of densities with respect to x and also outside the Maxwell set and the stationary
domain boundary one can remove the points of such vanishing from the set of singular
points of this graph, as it is easy to see. Note that such sufficiently small perturbations
do not change the profit As. New sufficiently small perturbations of the family of pairs
of systems and profit densities preserve the obtained situation because in a generic case
the averaged profit As and its singularities, as well as the profit P after subtracting As,
continuously depend on such a pair near singularities of type 2 and 3 from Table 3.
In addition, in a generic case, a parameter value where As has singularity 4 or 5 from

Table 3 can not be a transition one due to Proposition 5.5.
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Thus in a generic case the profit As is smooth near a transition parameter value. That
implies that the profit As(p0) is attained at one equilibrium point only, and this point
is either a regular boundary point of the stationary domain with nonzero derivative fx
or a nondegenerate local maximum of the density lying inside the stationary domain (see
Remark 2). In particular As(p0) < m(p0) otherwise As ≡ m near p0, and so p0 could not
be a transition parameter value. �

Proposition 5.10 For a generic smooth one parametric family of pairs of control systems
and profit densities on the circle and any transition parameter value p0, in the fiber p = p0
there is no tangent double, triple or swallow points, or selfintersection points of the Maxwell
set, or else double point in the level As(p0) of the profit density.

Proposition 5.11 For a generic smooth one parametric family of pairs of control systems
and profit densities on the circle and any transition parameter value p0 the density f(., p0)
has no critical points with the value As(p0) and has only one such a point if the profit
As(p0) is attained at the boundary or interior point of the stationary domain, respectively.

Indeed for a generic family of pairs both the Maxwell set and the set of critical values
of the densities are stable up to small perturbations of the family. Consequently the results
stated in Propositions 5.10 and 5.11 can be obtained by small perturbations in the same
manner as the one in Proposition 5.9. Due to that we omit the proofs.

5.2 Proof of Theorem 2.6

Now we are ready to proof Theorem 2.6. Due to Proposition 5.9 for a transition parameter
value p0 the profit As is attained at one point only, say Q, which is either a nondegenerate
local maximum with respect to x of the family of densities inside the stationary domain
with f(Q) < m(p0) or a regular boundary point of the stationary domain with fx(Q) 	= 0.
Consider these two cases subsequently.
In the first case, minimum and maximum velocities have different signs near the point

Q (see Remark 1). Consequently the c-level motion with c ≥ As(p) is well defined for a
value p close enough to p0 because it uses the maximum velocity near the point Q. So if we
do not permit any switching between maximum and minimum velocities near this point
we can extend the computation of functions of the period T and the profit P to all (c, p)
close enough to the point R = (As(0), 0). These functions and the respective averaged
profit Al are smooth near R due to Theorem 2.2 and Propositions 5.10, 5.11. Besides
Al(R) = As(p0) due to Corollary 5.7, (cT − P )(R) = 0 in the strength of Proposition 5.8
and also (P/T )c(R) = 0 due to the optimality of the level cycle provided by the point R.
Consequently equation (2.2) has a unique and smooth solution c, c = C(p) near the

point R due to the implicit function theorem. So near the point p0 the maximum av-
eraged profit is defined as the maximum of the functions As and C. The coincidence of
derivatives of these functions at the point p0 is excessive independent condition on the
transition parameter value and so it does not take place in a generic case. Consequently,
these derivatives are different and the maximum averaged profit has at the point p0 the
singularity 1 from Table 4 up to R+-equivalence.
In the second case the stationary domain boundary near the point Q has the form

either x ≤ 0 or x ≥ 0 near the origin in an appropriate smooth local coordinate near the
point Q which are foliated over the parameter and preserve the direction of of the growth
of x. Consider the first of these two subcases. The another is studied analogously.
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In the first subcase near the origin the minimum velocity v is smooth, negative in the
domain x < 0 (see Remark 1) and has a non-degenerate singular point at zero. Conse-
quently this velocity is reduced to the form xγ(p) with some smooth function γ by a new
choice of smooth x-coordinate near the origin [5] with the preservation of the form x ≤ 0
of the stationary domain; γ(0) > 0 as it is easy to see.
Further subtracting the profit As from the profit density near p = 0 we reduce to zero

this profit and the restriction of the family f to the stationary domain boundary x = 0.
Now due to Hadamard lemma this family can be presented near the origin in the form
f(x, p) = xh(x, p) with some smooth function h; h(0, 0) 	= 0 because fx(Q) 	= 0. Besides
h(0, 0) > 0 due to the existence of c-level cycles for small positive c for zero parameter
value.
Due to the implicit function theorem, equation c = xh(x, p) has a unique smooth

solution x, x = X(c, p) near the origin with X(0, p) ≡ 0 and Xc(0, 0) > 0. In new smooth
coordinate along the profit axis which depends on c and p and coincides with this solution
near the origin the profit density takes the form f(x, p) = x.
Now we take the positive values a and ǫ such that in the rectangle [−a, a]× [−ǫ, ǫ] the

stationary domain, the family of densities and minimal velocity have the forms x ≤ 0, x
and xγ(p), respectively. Then the functions of the period of a c-level cycle with 0 < c < a
and the profit along it for the values p, |p| < ǫ, have the forms

T ∗(c, p) +

∫ a

c

dx

xγ(p)
= T ∗(c, p) +

1

γ(p)
ln(
a

c
),

P ∗(c, p) +

∫ a

c

dx

γ(p)
= P ∗(c, p) +

a − c
γ(p)

,

respectively, where T ∗ and P ∗ correspond to the time of motion and the profit outside the
interval [−a, a]. Due to Proposition 5.11 the transition level As(0) is not a critical value of
the function f(., p0), and by Proposition 5.10 in the fiber p = p0 there is no double tangent,
triple or swallow points or selfintersection points of the Maxwell set, or else double point
in the level As(p0) of the profit density. Consequently the functions P

∗ and T ∗ are smooth
near the origin [2], [10], and so for selected values of levels and parameter if the values
a and ǫ are sufficiently small. Now we just have to analyse for parameter values near p0
which level cycles provide a positive averaged profit. The respective levels of best ones
must be the solutions of equation (2.2) , that is

c− [P ∗(c, p) + a− c
γ(p)

]/[T ∗(c, p) +
1

γ(p)
ln(a/c)] = 0

in our case. Simple transformations reduce it to the form

c lnc = F (c, p), (5.1)

where F (c, p) = cγ(p)T ∗(c, p)+c lna−γ(p)P (c, p) is smooth near the origin and F (0, p) =
−γ(p)P (0, p). Using Hadamard lemma we write the function F in the form F (c, p) =
cH(c, p)+pB(p) near the origin with some smooth functionsH and B, B(0) = −γ(0)Pp(0, 0).
The vanishing of the derivative Pp at the origin gives an excessive independent condition
on the transition and so it does not take place in a generic case. Consequently B(0) 	= 0
in a generic case. Changing eventually the sign of p we always can get B(0) < 0.
Now near the origin equation (5.1) has no solution for negative parameter values but

for positive ones its unique solution can be found in the form c = p
| ln p|
z with some function
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z of p. Substituting this form and the form of the function F in equation (5.1) we get the
equation

p

| lnp|z ln(
p

| lnp|z) =
p

| lnp|zH(
p

| lnp|z, p) + pB(p).

Dividing by p and making simple transformations we reduce it to the form

z

(

−1− ln | lnp|| lnp| +
ln |z|
| lnp|

)

− 1

| lnp|zH(
p

| lnp|z, p)− B(p) = 0.

Now it is easy to see that the value z(0) must be equal to −B(0), and so it is positive.
Introducing new variables r and s such that r = 1/| lnp| and s = ln | lnp|/| lnp| we get
that the left hand side of last equation is a smooth function of p, z, r and s near the
point (0,−B(0), 0, 0). Besides its derivative at this point with respect to z is equal to −1.
Consequently near this point this equation has a unique smooth solution z = Z(p, r, s)
with Z(0, 0, 0) = −B(0).
That implies that equation (5.1) has the solution c = p

| ln p|
Z
(

p, 1

| lnp|
, | ln p|
ln | lnp|

)

. The

change of c, c̃ = c/Z(p, 0, 0), reduces the function Z to the form Z = 1+H
(

p, 1

| lnp|
, | ln p|
ln | lnp|

)

with H
(

0, 1

| lnp|
, | ln p|
ln | lnp|

)

≡ 0. Hence the maximum averaged profit has at the point p0
singularity 2 from Table 4 up to R+-equivalence.
Theorem 2.6 is proved.
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