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Short title: Skipping of reproduction in herring 

 

Summary 

A common assumption in fish studies is that iteroparous fish, once mature, normally reproduce in all 

consecutive seasons. Analysis of scales from Norwegian spring-spawning herring collected between 1935–

1973 revealed strong under-representation (47% of expected) of second-time spawners on the spawning 

grounds. This reduction is not explained satisfactorily by possible errors in scale-reading, suggesting that 

the second reproductive season is frequently skipped. Skipping a season may relate to trade-offs between 

growth, current and future reproduction, and survival, which are likely to be particularly strong for young 

adult herring. 

 

Keywords: Clupea harengus; current and future reproduction; fishery management; life-history trade-off; 

migration cost; survival. 
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1. INTRODUCTION 

 

Each reproductive season, adults of iteroparous species face an important life-history decision: 

reproduce now, or delay reproduction until next season? Investment in reproduction can reduce growth and 

survival and thereby expected reproductive success later on. Large body size is often advantageous in terms 

of survival, mating success, and quality and number of offspring. This life-long trade-off between growth, 

reproduction, and survival strongly influences the life-history decision whether to reproduce in a given 

season. Theoretically, skipping of reproduction is expected when the loss in fecundity this season is more 

than balanced by increased fecundity in the future, discounted by the survival probability up to that point 

(Roff 2002).  

The extent to which reproduction is skipped is potentially an important factor affecting reproductive 

potential, and thereby sustainable yield, in commercially exploited fish populations. Nevertheless, the 

possibility of skipped reproduction has received only sporadic attention among fisheries biologists (Ivanov 

1971; Oganesyan 1993; Burton et al. 1997; Rideout et al. 2000; Jørgensen et al. 2004). 

This paper challenges the conventional idea of strictly annual reproduction for Norwegian spring-

spawning herring, the largest stock of Atlantic herring (Clupea harengus). In this population, individuals 

mature at ages of 3–9 years and have a maximum life-span above 20 years. The adult herring undertake 

long annual migrations between productive summer feeding areas in the Norwegian Sea, overwintering 

areas off northwestern Norway, and spawning areas off western and southwestern Norway. The spawning 

migration incurs considerable energetic costs. The spawning grounds more to the south (favourable for 

offspring survival) are mainly reached by the larger, older herring, while the smaller, first-time spawning 

herring tend to spawn further north (Slotte & Fiksen 2000). Our results suggest, however, that a significant 

fraction of adult herring may skip the second spawning migration altogether. 

 

 

2. MATERIAL AND METHODS 

 

Age, age at maturation (here, age at first spawning), and number of post-maturation years (i.e., years completed since 

first spawning) were obtained from scales of 84 116 adult Norwegian spring-spawning herring, sampled randomly 

during January–March of 1935–1973 in the spawning areas by the Institute of Marine Research (for details see 

Engelhard et al. 2003). Experienced scale readers distinguished between three types of growth layers (Runnström 

1936; Engelhard et al. 2003): relatively wide ‘coastal’ and ‘oceanic’ rings, corresponding with the early and late 

immature stages, respectively; and narrow ‘spawning’ rings, corresponding with years after the first spawning event. 

For adult herring, the number of ‘coastal’ and ‘oceanic’ rings thus equals age at maturation, and the number of 

‘spawning’ rings equals the number of post-maturation years. 

 We examined the hypothesis that after maturation, herring return annually to the spawning areas. For a given 

year-class, numbers of spawners sharing the same age at first spawning should then decrease in each consecutive 

spawning season solely as a function of mortality. Post-maturation survival was modelled based on the numbers of 
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fish (n) sampled in consecutive years y and y + 1 and with respectively p and p + 1 post-maturation years. Log-

transformation allows using the linear model: 

 

log (np + 1,y + 1) ~ log (np,y) + log (Ny + 1 / Ny) + cp ,    (1) 

 

where np,y and np + 1,y + 1 are the sampled numbers of fish of a given year-class and given age at maturation with p and 

p + 1 post-maturation years, respectively, and cp is the pth element in a vector of survival coefficients, corresponding 

to the logarithm of change in numbers from p to p +1 post-maturation years. Ny and Ny + 1 are the sampled numbers of 

fish of all year-classes and maturation ages included to reduce noise due to variable sampling effort.  

Survival coefficients estimated with model (1) were similar for most transitions, except for those from 0→1 and 

1→2 post-maturation years. This suggested constant annual survival and under-representation of fish with 1 post-

maturation year in samples. Model (1) was therefore modified as follows: 

 

log (np + 1,y + 1) ~ log (np,y) + log (Ny + 1 / Ny) + c0 + cI Ip ,   (2) 

 

where c0 is a mean survival coefficient, cI is a coefficient of under-representation, and Ip is an indicator variable with 

 

Ip = 1  if p = 0 post-maturation years,  

Ip = –1 if p = 1 post-maturation year, and 

Ip = 0  otherwise. 

 

Mean annual post-maturation survival is thus estimated as ec0, and the fraction of fish skipping the second spawning 

season as 1 – ecI. 

 

 

3. RESULTS 

 

Figure 1a shows the numbers of Norwegian spring-spawning herring sampled in the spawning area for 

different numbers of post-maturation years. As expected, the samples show highest numbers of fish with 0 

post-maturation years (first-time spawners) and exponentially declining numbers of fish with increasing 

numbers of post-maturation years, indicating constant annual survival. Remarkably, however, the samples 

contain much fewer fish with 1 post-maturation year (second-time spawners) than expected. This is 

illustrated in figure 1b, showing proportional change in numbers of spawners between consecutive post-

maturation years. In fact, numbers increase from 1→2 post-maturation years, indicating that processes 

other than survival must also be invoked to explain the observations. Applying model (2)—assuming 

constant survival but allowing for skipping of the second spawning season—it was found that 47% of 

potential second-time spawners were missing in the samples (cI = –0.63, SE 0.06). This fraction was 

significantly different from zero (F = 126, P<0.0001). Mean annual post-maturation survival was estimated 

at 76% (c0 = –0.28, SE 0.02). 
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 Skipped reproduction occurred throughout the time-series: frequency distributions by decade (figure 

1c) show a consistent (albeit noisier) pattern of under-representation of fish with 1 post-maturation year in 

relation to the expectation of exponentially decaying numbers if survival alone was to explain the 

distribution. Higher noise may be attributed to highly unequal sampling effort between years, large 

differences in year-class strength, and possible variations in the extent of skipped reproduction. Applying 

model 2 by decade suggested significant (P < 0.0005) under-representation of second-time spawners for 

the decades 1935–44, 1945–54, and 1965–73 (estimated fraction skipping respectively 53%, 32%, and 

52%), but not for 1955–64 (P = 0.191; estimated fraction skipping 29%). 

 Figure 1d splits the results shown in 1b between year-classes that, as first-time spawners, showed 

either lower- or higher-than-average mean weights. The discrepancy in the transitions from 0→1 and 1→2 

post-maturation years compared to later transitions appeared more marked for the low-weight group. This 

suggests that reduced weight of first-time spawners may be related with increased frequency of skipped 

second spawning seasons, even though the difference in under-representation was not statistically 

significant (low-weight group: cI = –0.72, SE 0.07, estimated fraction skipping 51%; high-weight group: cI 

= –0.50, SE 0.10, estimated fraction skipping 39%; F = 3.047, P = 0.081). 

 

 

4. DISCUSSION 

 

This study suggests that almost one in two adult Norwegian spring-spawning herring may skip the second 

reproductive season. Skipping of later spawning seasons may also occur, but in our data this would easily 

go undetected: if skipping becomes unsynchronised after the second potential spawning season, absence of 

fish due to skipping cannot be separated from absence due to mortality. 

 How could extensive skipping of spawning have gone unnoticed? Skipping becomes visible in our 

data if (and only if) analysed by maturation cohorts: as maturation of a single year-class of herring is spread 

over several years, frequent skipping of the second spawning season will not result in an easily detected 

reduction in number of spawners in any single year. Furthermore, data collection on Norwegian spring-

spawning herring has traditionally been concentrated in or near spawning areas where fish skipping 

reproduction could only be observed indirectly, through their absence. 

 An alternative explanation is that the finding is simply artifactual. Although a team of experts made 

scale-readings, errors are inevitable. An apparent under-representation of second-time spawners would 

ensue if herring with one post-maturation year would frequently have their first spawning ring 

misinterpreted as the last oceanic ring. This should be visible as first-time spawners having larger last 

oceanic rings than second-time spawners. This is not the case, nor do ring widths suggest any other obvious 

irregularities (figure 2). Thus, if misinterpretation had been frequent, it would have had to occur in a very 

specific manner leaving average ring widths independent of post-maturation years. We consider this 
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unlikely; yet, this possibility cannot be excluded without independent validation of ring patterns (e.g., trace 

element analysis). 

 Where are the fish that skip spawning? In recent years, surveys have been conducted in the coastal 

overwintering areas of the mature part of the stock. Analysis of these data shows an anomaly in post-

maturation years similar to that in the spawning grounds (unpublished). Do the fish that skip join the 

schools of late immature fish, which overwinter oceanically in the Norwegian Sea (Dragesund et al. 1980)? 

The ultimate demonstration of skipped spawning in herring would require finding the non-reproducing, 

mature herring.  

 Why would herring not return to spawn the year after first spawning? Obviously, reproduction implies 

costs, affecting future reproduction and survival. In Norwegian spring-spawning herring, predation risk is 

high in spawning areas because of a range of coastal predators targeting herring (Fernö et al. 1998). 

Moreover, since herring do not feed while migrating, only fish with sufficient energy stores are able to 

migrate and spawn successfully (Slotte & Fiksen 2000). Furthermore, bioenergetics of swimming favour 

large fish (Ware 1978). Due to these costs and trade-offs, participation in spawning migrations may only 

pay off in terms of fitness if individuals are sufficiently large and in sufficient condition to both migrate 

and spawn. We suggest that older, repeat-spawning herring, advantaged by large size, may normally be 

able to spawn annually. By contrast, first-time spawners which due to small size rely more heavily on 

condition, may often need an extra year to re-gain the energy stores required for reproduction. This is in 

accordance with the tendency of stronger under-representation of second-time spawners for year-classes 

that had shown lower-than-average mean weights as first-time spawners (figure 1d), and agrees with 

models on cod (Gadus morhua) predicting skipped reproduction to be particularly frequent the year after 

first spawning (Jørgensen et al. 2004).  

 Skipped reproduction has been observed in a range of reptiles, birds, and mammals (e.g., Reiter & Le 

Boeuf 1991, Danchin & Cam 2002, Broderick et al. 2003). While skipped reproduction has also been 

reported for fish (Ivanov 1971, Dutil 1986, Oganesyan 1993, Burton et al. 1997, Rideout et al. 2000, 

Fredrich et al. 2003), it is usually treated more like an anomaly—a mere response to poor feeding 

conditions. The present study is, to our knowledge, the first one to empirically demonstrate that skipped 

reproduction may be an integral part of life-history of a commercially important fish. Moreover, the 

possibility of extensive skipped reproduction having gone unnoticed in such a well-studied stock suggests 

that it may occur more frequently than commonly believed—an important consideration in fishery 

management, given that fishing typically shifts the adult composition of stocks towards younger ages where 

skipping reproduction may be most prevalent. 
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Figure captions 

 

Figure 1. (a) Total numbers of herring sampled in the spawning area during 1935–73 at different numbers 

of post-maturation years. First-time spawners have zero post-maturation years. (b) Proportional change 

(with SE) in numbers of herring, present in the spawning area, from p to p + 1 post-maturation years 

(estimated with model 1). Dotted line indicates mean annual survival, estimated with model (2). (c) 

Frequency distributions of herring with different numbers of post-maturation years by decade. (d) 

Proportional change (with SE) in numbers of herring, present in the spawning area, from p to p + 1 post-

maturation years (estimated with model 1), shown separately for year-classes with lower- or higher-than-

average mean weight as first-time spawners (overall mean, 213 g). 

 

Figure 2. Comparison of second-last and last oceanic, and first and second spawning rings (mean, SD) 

between herring with identical ages at maturation (5 years, the most common age at maturation) but 

different numbers of post-maturation years (i.e. caught at different ages). For each ring type, ring widths 

are consistent, suggesting consistency of the interpretation of ring patterns, and thereby, of the estimated 

numbers of post-maturation years. 
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Figure 1 
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Figure 2 
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