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In human societies, cooperative behaviour in public goods interactions is usually en-

forced through institutions that impose sanctions on free-riders. Many experiments on

public goods games have shown that in the absence of such institutions, individuals are

often willing to punish defectors, even at a cost to themselves, effectively ’taking the law

into their own hands’1–11. Theoretical models confirm that social norms prescribing the

punishment of deviant behaviour are stable: once established, they prevent invasion by

dissident minorities12–15. But how can such costly punishing behaviour gain a foothold

in the population? A surprisingly simple model shows that if individuals have the option

to stand aside and abstain from the public goods interaction, this paves the way for the

emergence and establishment of cooperative behaviour based on the punishment of defec-

tors. Thus the freedom to withdraw from the public enterprise leads to a self-enforcing

prosocial norm. Paradoxically, the option of individual autarky may be an important step

for the emergence of institutions punishing the non-cooperation of their members. Con-

versely, public goods interactions which are obligatory rather than voluntary are unlikely

to gain a foothold in the population.

An impressive body of evidence shows that many humans are willing to pay a personal

cost in order to punish wrong-doers1–10. In particular, punishment is a very effective mecha-

nism to ensure cooperation in public goods interactions. All human populations seem willing

to use costly punishment to varying degree, and their willingness to punish correlates with the

propensity for altruistic contributions11. This raises an evolutionary problem: in joint enter-

prises, free-riding individuals who do not contribute, but exploit the public goods, fare better

than those who pay the cost of contributing. If successful behaviour spreads, these defectors

will eventually take over, until there is nothing left to exploit. Punishment reduces the defector’s

payoff, and thus may solve the social dilemma. But since punishment is costly, it also reduces

the punishers’ payoff. This raises what has been called a ’second order social dilemma’. Costly

punishing is an altruistic act. Individuals who contribute, but do not punish, are better off than

the punishers. The frequency of punishers will dwindle and the defectors return.
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This second order defection can be punished in turn, and prevented to spread. Thus a free-

riding minority will be seriously harmed in the case of altruistic punishment (while it will

be pampered in the case of altruistic cooperation). Any social norm that includes the rule to

punish those who deviate is evolutionarily stable: once established, it cannot be displaced by

an invading minority of dissidents12. But how can such punishing behaviour gain a foothold in

the population? The trait has to be rare, initially, and thus will incur huge costs by ceaselessly

punishing. The emergence of altruistic punishing behaviour is acknowledged to be a major

puzzle in the evolution of cooperation. ”We seem to have replaced the problem of explaining

cooperation with that of explaining altruistic punishment”16.

We will show that the puzzle disappears if one assumes that individuals can voluntarily

decide whether to take part in the joint enterprise or not. If they do not participate, they can

obtain an autarkic payoff independent of the other players’ behaviour. Thus we consider four

strategies. The loners are those who do not participate in the public enterprise (they need not

be solitary individuals: they just abstain from the public goods game). Those who participate

include the defectors, who do not contribute but exploit the contributions of the others; the

cooperators, who contribute, but do not punish; and the punishers, who not only contribute

to the public good, but punish the defectors, and possibly also those who fail to punish the

defectors. In such a model, punishers will invade and take over. In the absence of the loner’s

option, however, they will often not be able to invade, and the population will be dominated

by defectors. This means that if participation in the joint enterprise is voluntary, cooperation-

enforcing behaviour emerges. If participation is obligatory (i.e. loners are excluded), then the

defectors will win.

This intriguing result was originally presented by Fowler17. But his argument was based on

a model with serious shortcomings, which does not justify the conclusions18. Here we propose

a model vindicating Fowler’s intuition. If individual autarky is an option, social norms enforc-

ing cooperation through punishment will emerge and come close to fixation, whereas obligatory

participation in the public goods game leads to take-over by defectors. These theoretical find-

3



ings agree well with the results of recent experiments, and may offer a solution to one of the

most persistent problems in the evolution of cooperation.

We consider a well-mixed population of constant size M . From time to time, a random

sample of size N is selected and offered the option to participate in a public goods game.

Those who agree to do so can decide whether or not to contribute an investment of value c to

themselves. The individual contributions are added up and multiplied with a factor r > 1. The

resulting sum is then divided equally among all participants of the public goods game. After

this interaction, each contributor can impose a fine β upon each defector, at a personal cost γ

for each fine. Moreover, those who punish can also impose a fine on those who contributed, but

failed to punish non-contributors. We shall assume for simplicity that for this second type of

punishment, fines and costs are reduced by a factor α, with 0 ≤ α ≤ 1. By x we denote the

total number of cooperators (who contribute in the public goods game but do not punish), by y

that of defectors (who participate in the public goods game but do not contribute), by z that of

loners (unwilling to participate) and by w the number of punishers (who contribute, and punish

the defectors as well as the cooperators who did not punish the defectors in their group). Thus

M = x + y + z + w. We do not consider more complex strategies (basing their decision, for

instance, on the size and composition of the group, or on past experience).

Each loner receives a constant payoff σ. Among the random sample of size N , there will

be Nx cooperators, Ny defectors, Nz loners and Nw punishers. These are random variables dis-

tributed according to a multivariate distribution which describes sampling without replacement.

The group of those willing to participate in the public goods game has size S := Nx +Ny +Nw.

If S ≤ 1 then the public goods game does not take place. A player who volunteered for it

receives the loner’s payoff σ. If S > 1, each participant of the public goods game obtains an

income r(Nx +Nw)c/S. The payoff for the contributors (i.e. the cooperators and the punishers)

is reduced by c. The payoff for the defectors is reduced by βNw. The payoff for the cooperators

is reduced by αβNw, provided Ny > 0 (if there are no defectors in the group, non-punishing

behavior will go unnoticed). The payoff for punishers is reduced by γNy and, if Ny > 0, by
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αγNx.

This concludes the description of the strategic interaction18. We next specify how strategies

are transmitted within the population19. We define each players’ fitness as 1−s+sP , the convex

combination of the ’baseline fitness’, which is normalised to 1 for all players, and the payoff

P from the optional public goods game with punishment. The relative importance of each

component is determined by the selection strength s: small s means weak selection. We shall

assume that occasionally, a randomly chosen player can change strategy by adopting the strategy

of a player picked with a probability proportional to that player’s fitness. This mimics a learning

process similar to the Moran process describing natural selection: more successful players are

copied more frequently. In addition, we shall assume that with a small probability µ, a player

can switch to another strategy irrespective of its payoff (this ”mutation term” corresponds to

blindly experimenting with anything different).

The analysis of the corresponding stochastic dynamics is greatly simplified in the limiting

case µ → 0. The population consists almost always of one or two types at the most. This holds

because for µ = 0 the four monomorphic states are absorbing, and for very small µ the fate of a

mutant (i.e. its elimination or fixation) is settled before the next mutant appears. The probabili-

ties ρij that a single i-player in a population of j-players reaches fixation can be calculated for

i, j ∈ {x, y, z, w} (see online supporting material). This defines a transition matrix among the

four monomorphic states of the system, and hence a unique stationary distribution. For small

mutation rates µ, this distribution specifies how likely the system is to be in the corresponding

pure state, or in its vicinity. Computer simulations show that the approximation also holds for

larger mutation rates (on the order of 1/M ).

The outcome is striking: in the limit of rare mutations, the system is most of the time in the

homogeneous state with punishers only, irrespective of the initial composition of the population.

For large populations (M = 1000 can be considered large for most of our prehistory) and small

mutation rates, the system spends more than 80 percent in or near the punisher state. This

prevalence diminishes only for very small selection strengths (Fig. 1).
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In the case of an obligatory public goods game, i.e. in the absence of the loner’s option, the

situation is very different: in the limit of rare mutations, the system spends most of the time in

or near the state with defectors only. For the same parameter values as before, the state is for

90 percent of the time dominated by defectors, and there is hardly any economic benefit from

the public good (Fig. 2a). If all contributors punish (i.e. cooperators are excluded), the result

remains essentially the same: even if defectors prevail for obligatory public goods games, they

are eliminated if the public goods game is voluntary.

Volunteering in the absence of the punishment leads to a more cooperative outcome than for

the obligatory game but not to the fixation of the cooperative state. The system exhibits a strong

tendency to cycle (from cooperators to defectors to loners and back to cooperators). Roughly

speaking, almost half of the time the state is dominated by loners. An outcome dominated

by cooperators is almost as likely, whereas domination by defectors is relatively rare. In the

limiting case of weak selection, the population even cooperates most of the time (Fig. 2b).

Whereas the limiting case of small mutation rates can be studied analytically (c.f. Figs.

1, 2, and the supplementary information), the case of substantial mutation rates can only be

handled by numerical simulations. Complementing interactive online tutorials are provided at

http://homepage.univie.ac.at/hannelore.brandt/publicgoods/ and the VirtualLabs at

http://www.univie.ac.at/virtuallabs. These show that the outcome is robust within a wide range

of parameter values. With cooperators, loners and defectors only, the latter do worst, whereas

the former two perform comparably well. With cooperators, punishers and defectors, but no

loners, punishers do not prevail, except for large mutation rates. In that case, the mutational

drift supplying defectors keeps the punishers active and prevents them from being undermined

by cooperators. If all four types are admitted, punishers prevail.

In an obligatory public goods game with cooperators and defectors only, the latter obviously

win. The loner’s option allows cooperators to persist (although they cannot dominate for a

substantial period). The reason is a simple rock-paper-scissors mechanism20–22. If there are

many defectors, loners will spread. When loners abound, many of the random samples will
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result in only small groups of players willing to participate. If the groups are sufficiently small,

the average payoff for cooperators will be larger than that for defectors, despite the fact that

within each group, the latter have a higher payoff than the former; it even pays for the individual

defector to switch to cooperation. Thus if the group is sufficiently small (S < r), there is no

social dilemma. This is a fleeting state only: quickly, cooperators spread, group size increases

and the social dilemma returns. But the recurrent eclipse of the social dilemma allows punishers

eventually to step in and take over (see Fig. 3).

We have assumed in our model that a punisher faced with twice as many defectors metes

out twice as many fines. This assumption can be modified without affecting the conclusions. As

it stands, it makes the life of a rare punisher particularly difficult. It is all the more remarkable

that punishers can invade nevertheless.

Whether cooperators who fail to punish are punished or not plays a surprisingly small role.

The parameter α has little influence on the numerical simulations, and does not show up in

the formulas (see supplementary information). The reason is that in the limiting case (µ very

small), the three types of punishers, cooperators and defectors rarely co-exist: hence punishers

cannot hold cooperators to account for not punishing defectors. In the case α = 0, the second

order social dilemma always holds: punishing is costly, and contributors failing to punish can

get away with it. Nevertheless, punishing behaviour can emerge and prevail, because the first

order social dilemma occasionally breaks down. It is of interest in this context that experimental

evidence for the punishment of non-punishers (i.e. for non-vanishing α) seems to be lacking13.

For weak selection, an analytical condition for the dominance of punishers in the absence

of loners can be derived: 3(N − r) < N(N − 1)(β − γ) (see supplementary information).

This condition is satisfied in Fig. 2a and is reflected in the dominance of punishers for small

s. Moreover, if defectors are allowed to retaliate (in which case β is as large as γ) punishers

never dominate the population and loners are needed to establish cooperation. However, also

note that for strong selection it is clear that defectors always dominate because selection acts

against invasion attempts of cooperators as well as punishers (see Fig. 3 and supplementary
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information).

We could also assume that punishers penalise non-participants. The fine could be δβ and

the cost to the punisher δγ, with 0 ≤ δ ≤ 1. Again, this has no great effect on the outcome. If

loners are frequent, many samples will contain no punisher. If punishers are frequent, defectors

are kept in check and non-participants do poorly, with or without being punished. The most

significant difference seems to be that if punishers pay a heavy cost for penalising loners (high

δ and γ), then cooperators are needed to overcome the dominance of loners and catalyse the

take-over by punishers.

Differences between first and second order social dilemma have been pointed out before in

a model14 based on a group selection scenario and exploiting the fact that when punishers are

common, individual level selection against them is weak and may be overcome by selection

among groups. Several other models confirm that the punishment of defectors is stable, if it is

the prevalent norm. For example by assuming some degree of conformism in the population15:

individuals preferentially copy what is frequent. Similarly, cooperation can also be stabilised

through indirect reciprocity23, but in each of these cases, the emergence of the pro-social norm

remains unclear24,25.

Our model, in contrast, shows that even when initially rare, punishing behaviour can be

selectively advantageous, and is likely to become fixed. We consider the most challenging sce-

nario, namely a single well-mixed population whose members imitate preferentially what fares

better, not what is more common. The effects of group selection and conformist transmission

will further the maintenance of this pro-social norm, once it is established.

The spread of initially rare punishers is also the outcome in Ref. 14. But that model, based

on an infinitely large population, assumes that single cooperators can play the public goods

game, and obtain a payoff which is higher than that of loners (as high, in fact, as if the whole

population contributes to the public good). This neglects the fact that contributing to a public

goods game is a risky investment whose return depends on what other players are doing. By

contrast, our model leads, in the limiting case of an infinitely large population, to a bistable
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outcome18. Depending on the initial condition, the state either ends up in a Nash equilibrium

consisting of cooperators and punishers only, or leads to endless oscillations of loners, defectors

and cooperators, without any punishers. Bistability also holds for the reputation-based model

26. Both approaches do not favour the spread of a minority of punishers. Their emergence is

boosted, in finite populations, by stochastic effects. Voluntary participation, by reducing group

size if defectors abound, promotes these stochastic effects.

Recent experiments show that if players can choose between joining a public goods game

either with or without punishment, they prefer the former27. The interpretation seems clear:

whoever freely accepts that defection is punished is unlikely to be a defector. It is thus less

risky to join such a group. Players voluntarily commit themselves to sanctioning rules. This

voluntary submission to a sanctioning regime is not always immediate, however: in the majority

of cases it requires a few preliminary rounds. Many players appear to have initial reservations

against a sanctioning regime and need a learning phase. In another series of experiments, it has

been shown that threatened punishment can decrease the level of cooperation in trust games28.

Moreover, players reduce their punishing behaviour if they have a less costly option (such as

excluding defectors from indirect reciprocity networks), but they do not give it up: rather, they

punish in a more focussed way29. Experimental evidence for altruistic punishment can also be

found in the ultimatum game (rejecting an unfair offer is costly to both players)2 and in indirect

reciprocity (by not helping defectors, players reduce their own chances of being helped)30.

Reports from present-day hunter-gatherer societies often stress their egalitarian and ’demo-

cratic’ features: individuals have a great deal of freedom31. This creates favourable conditions

for voluntary participation. Opting for the ’loner’ strategy does not mean living an eremit’s life;

it means not participating in a collective hunt, for instance, but collecting mushrooms instead.

On the other hand, ostracism was probably an early form of severe punishment. There seems to

be a smooth transition between choosing not to take part in a joint enterprise and being excluded

from it. Together, these two alternatives may explain the emergence of rule-enforcing institu-

tions promoting pro-social behaviour - following Hardins recipe for overcoming the tragedy of
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the commons: mutual coercion, mutually agreed upon32. However, we must emphasise that

there are public good games where no one can stand aside: the preservation of our climate is

one example33. In such games, participation is obligatory – and defection widespread.
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Figure 1: Punishment and abstaining in public goods games in finite populations. In the limit

of rare mutations (µ → 0), the dynamics is restricted to transitions between the four homoge-

neous states with all cooperators (blue), defectors (red), loners (yellow) or punishers (green).

The two panels depict the probabilities of each state as a function of the selection strength

s for population sizes M = 100 (a) and M = 1000 (b). Simulation data for small muta-

tion rates confirms the analytical results (colored dots). In contrast to the analysis, the fit-

ness of individuals in the simulations is determined by a single random interaction rather than

the average. This is source of stochasticity and, together with the mutation rate, is responsi-

ble for the small differences between analytical results and the simulation data. Parameters:

N = 5, r = 3, σ = 1, γ = 1, β = 2, α = 0.1, smax = 0.151; Simulations: a mutation rate µ = 10−4,

sampling time T = 107, b µ = 10−3, T = 106.
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Figure 2: Punishment in obligatory public goods games (a) and voluntary participation in public

goods games without punishment (b). In the limit of rare mutations, the dynamics reduces to

transitions between homogeneous states with all cooperators (blue), defectors (red), punishers

(green) or loners (yellow). The probabilities for each state are shown as a function of the

selection strength s. In the limit of neutral evolution (s = 0) the strategic differences disappear

and all three respective states become equally likely. In a the system is usually found in a state

with all defectors, except for weak selection where punishers manage to get the upper hand.

In contrast, in b, the system spends significantly more time in the cooperator or loner states

than in the defector state. Parameters: N = 5, r = 3, σ = 1, γ = 1, β = 2, α = 0.1,M = 100; a

smax = 0.151; b smax = 0.714.
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Figure 3: Schematic dynamics for a obligatory public goods games with punishment, b volun-

tary public goods games, and c the combined effects of volunteering and punishment in finite

populations. In the limit of rare mutations, the dynamics is reduced to transition probabilities

between the homogeneous states with all cooperators (C), defectors (D), loners (L) or punish-

ers (P). The three panels depict all transition probabilities > 0.01% together with the relative

time τ spent in each state for maximal selection strength. a In the absence of loners, defectors

dominate despite punishment. The cooperator and punisher state are connected by a neutral

edge with a transition probability of 1/M in either direction (dashed line). The defector state is

essentially stable with transition probabilities to the cooperators state of < 10−4 and still many

orders of magnitude smaller to reach the punisher state. b In voluntary public goods games

the transition probabilities illustrate the cyclic dominance of the three strategies and illustrate

that the system spends little time in the defector state because of the large transition proba-

bility D → L. c Combining the two mechanisms illustrates the pivotal role of loners where the

system can embark on another cooperator-defector-loner cycle or switch to the punisher state.

Parameters: N = 5, r = 3, σ = 1, γ = 1, β = 2,M = 100, s = 0.151.
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