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Abstract

The evolution of markets on which network externalities prevail can be expected to differ

from “classical markets” where no such externalities exist. We suggest a flexible formal

model that describes the dynamics of both types of markets. This leads to a stochastic

version of the well known replicator dynamics. Based on this approach we analyze the

limit behaviour of different market types where consumers use stochastic decision rules.

We show that the market shares converge to the set of equilibria with probability one,

where, even under network externalities, several technologies can coexist. On the other

hand, even if no network externalities prevail it is possible that only one technology stays

in the market. This paper contributes to the work on generalized urn schemes and path

dependent processes going on at IIASA.

JEL-Classification: D43, D62, D83

Keywords: Network Externalities, Increasing Returns, Lock-In, Replicator Dynamics.
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Network Externalities and the

Dynamics of Markets

Max Keilbach (keilbach@cs.tu-berling.de)

Martin Posch (martin.posch@univie.ac.at)

1 Introduction

The phenomenon of network externalities has received wide attention in the economic

literature. Rohlfs [1974] showed that this type of externalities play an important role in

the market of telecommunication where the utility of joining a communication network

is positively related to the number of its members. This result was confirmed by Callon

[1993] and Capello [1994]. However, what has been said for this market holds also for the

market of consumption and investment goods of high technological level (henceforth called

complex technologies). This is due to two interdependent reasons:

First, complex technologies usually require some complementary investment that puts

the technology to work. Think of training costs or of some linked product like computer

software: once a buyer has chosen a certain technology and realized the corresponding co-

investment he very probably sticks to his decision since the co-investment is experienced

as sunk cost.1

Second, through this procedure, the market of complex technologies is linked to some

extent to the market of complementary goods. This implies that ease of access to com-

plementary products influences the preference a buyer has for a technology standard as

such. If one technology standard dominates the market, its co-products can be expected

to be cheaper and easier to obtain. Moreover, it can be expected that the variety among

co-products is higher and thus more attractive for a new buyer. Think of access to software

or to persons who are trained on a certain technology.2 Thus, the decisions of buyers are

linked through the market of co-products which leads to an investment network. Hence,

the market exhibits network externalities. As an outcome of this “market failure”, the

dynamics of a market of such complex technologies can be expected to be fundamentally

1See David[1985] and Arthur[1983], Arthur, Ermoliev and Kaniovski [1987].
2This topic has been extensively discussed in the literature. See again David [1985] who discusses this

relation for typewriters and the “market of secretaries”. Cowan[1990] tells a similar story for the market

of energy providing systems. Katz and Shapiro[1985, 1986] dealt with the question of network externalities

for a market that exhibits investment networks. Their studies are based on a comparative static approach

involving the assumption of rational expectations. Church and Gandal [1993] analyzed technology–co-

product relations by explicitly considering “hardware-software relations” in a general-equilibrium context.
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different to “classical markets”. Our aim is to present a simple model that describes the

dynamics of markets where network externalities prevail, neither assuming rational expec-

tations nor using a general equilibrium framework. We assume the agents to use a simple

stochastic decision rule based on demand functions that depend on prices and market

shares. This leads to a stochastic version of the well known replicator dynamics.

In the following section we define the model and introduce the market dynamics. In

the subsequent section we give some general results on the convergence of market shares.

Finally we illustrate this approach for a limited number of goods.

2 The Evolution of Markets with Network Externalities

2.1 A Decision Process under Network Externalities

Consider a market characterized by investment networks. Several types of technologies

compete that all fulfil the same task but have different technological characteristics and

hence they work with different standards3. When a potential buyer decides which type of

technology to purchase he or she looks at its relative price, at its market share, and at the

availability of its co-products.

Suppose at a certain time instant all competing technologies have the same market

share and are sold at the same price. We would expect a potential new buyer to be in-

different. Maybe he is indifferent and his decision is random. Or he prefers one of the

technologies, for which the reasons can be manifold: he may prefer certain special charac-

teristics that are attractive only to a small group of users. Or the outcome of the decision

is due to the bounded rationality of consumers: they might not be aware of all prices

and market shares, just imitate a friend, or do not like to follow the majority.4 Due to

the manifoldness of influences we do not expect the consumers’ initial choice to appear

deterministic. Instead, the outcome of the decision process appears random to us5. Once

the buyer made his first choice, he sticks with this initially chosen system (even in the

case of replacing investment) since otherwise the co-investment would be useless and the

sunk costs would be lost.

The consequence of a consumers’ decision is twofold. First, the market share of the

product increases. This increases the market of co-products and thus makes them easier

available. This again increases the probability that the next buyer chooses the same tech-

nology. Hence, via the market of co-products we can expect a positive demand feedback

on the market of technologies. We will describe this phenomenon with a parameter called

network-elasticity. Second, the producers, now confronted with new market shares, might

change the product-prices. Several reasons can play a role in this regard. Producers with

high market shares are confronted with less costs and might reduce the price or they can

3Think e.g. of different computer systems, of digital cassette recorders (DAT and DCC-systems) or –

on another scale – different energy providing systems[Cowan, 1990].
4Their motivation might be a “search for diversity”. See the discussion in Dosi and Kaniovski [1994].
5For a similar argument see Arthur[1983]
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use their advantage in the market to increase it.6 Price fluctuations change the consumers’

propensity to buy a product. The direction as well as the extent of this change are given by

the price-elasticity. This elasticity is usually expected to be negative but we do not exclude

positive price elasticities from our analysis. Thus, we can model negative and positive de-

mand feedbacks with respect to prices.7 Note that on a market with network externalities

a negative feedback from price dynamics might be traded off against a positive feedback

from market shares (see the discussion below).

2.2 The Model

Consider a market with K ≥ 2 firms, each producing one technology. We assume a perfect

correlation between the market of technologies and the market of co-products.8 Thus, we

can limit the analysis to the market shares of the base-technologies. Let ntk be the number

of units of technology k in the market at time t. Hence, the market share stk of technology

k at time t is given by stk = n
t
k/
∑K
i=1 n

t
i . We assume that initially all technologies are

present in the market, i.e. n1k > 0 for all k.

At each time t we assign a demand vector (Dt1, . . . , D
t
K) of non-negative numbers to

the technologies. The demand Dtk for technology k is a measure for the confidence the

buyers have in this technology.9 We assume that the demand for each technology depends

on its present market share. This maybe due to network externalities as well as pricing

policies that rely on market shares. Thus, for each technology k there is a demand function

Dk(·) : (0, 1]→ IR
+ such that

Dtk = Dk(s
t
k), t > 0.

Note that t is not chronological time but is defined by the sequential moments of

buying. The probability that the t-th buyer purchases a certain product is given by the

relative propensity to buy this product, defined as

dk(s
t) =

Dk(s
t
k)

K
∑

i=1
Di(sti)

, 1 ≤ k ≤ K, (1)

where st = (st1, s
t
2, . . . , s

t
K) ∈ ∆ = {s|s ∈ IR

K , si ≥ 0,
∑K
i=1 si = 1}. Thus, the k-th

component of d(s) = (d1(s), . . . , dK(s)) ∈ ∆, which we call relative demand or preference

function, specifies the conditional probabilities of choosing technology k given the current

6See also the discussion in Dosi and Kaniovski [1994] and Dosi, Ermoliev and Kaniovski [1994].
7This issue has been discussed in a number of papers. See e.g. Arthur[1983], Arthur et al.[1987], David

[1985] or Dosi and Kaniovski [1994].
8This implies that a certain technology cannot use co-products that fit a different standard. This

assumption is straightforward for all types of technical co-products. The correlation can be less than one

in the case of human skills.
9This corresponds to the concept of strength in Arthur[1993].
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market shares of all technologies (i.e. given the vector st).10 This formalizes the decision

process discussed in section 2.1.11 Let nt = (n1t , . . . , n
t
K). Then the evolution of the market

is given by

nt+1 = nt + βt(st), (2)

where βt(s) denotes a sequence of K-dimensional independent random vectors whose

distribution depends on s in such a way that P{βt(s) = ek} = dk(s), 1 ≤ k ≤ K, where

ek, 1 ≤ k ≤ K denotes the k-th unit vector.

If network externalities are present the demand of the consumer that buys at time t+1

depends not only on the price of the product at time t but also on the present market

share. A quite general class of demand functions that depend on the market share and on

price is given by

Dk(s
t
k) = (s

t
k)
σk · [pk(s

t
k)]
ρk, (3)

where ρk denotes the elasticity of demand for technology k with respect to its price and

σk stands for its elasticity with respect to its market share. In the remainder of this paper

we will refer to σk as network elasticity. Let us assume that the pricing policy of firm k

can be described through a share-response function that is denoted by pk(s
t
k).
12

It should be noted that the number of variables that can have an influence on the choice

– like different technological characteristics or influences of friends – can be implicitly

included in this demand function. Note that by equation (3) the demand does not shift if

the price rises (falls) but the market share falls (rises) simultaneously.

3 Market Dynamics and the Replicator Equation

The dynamics of market shares can be interpreted as an urn scheme of the type studied in

Arthur [1983], Arthur et al. [1987], Dosi and Kaniovski [1994], Dosi et al. [1994]: Consider

an urn of infinite capacity with balls of K different colors. At each time step a ball is

added. The color is chosen randomly and the probability for each color is given by a so

called urn function q(·) : ∆→ ∆ which is a function of the present distribution of balls in

the urn. The application to the market dynamics is straightforward. The urn is associated

with the market. Consumers choice among technologies corresponds to adding of a ball.

The market shares are identified with proportions of balls in the urn. Finally, the urn

10The concept of function (1) is very closely related to the notion of allocation function used by Arthur

et al. [1987], Dosi and Kaniovski [1994], Dosi et al. [1994].
11Another interpretation is the following: assume that Dtk gives the number of potential buyers that

prefer technology k at time t. At every time t, indicating a moment of buying, a buyer is randomly chosen

from the set of potential buyers and buys the preferred technology. Thus, the probability that at time t

technology k is chosen is again given by dk(s
t).

12For a further discussion of this behaviour see section 4.
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function is just the relative demand function d(s). In the following analysis we extend

some standard results on urn processes, i.e. on the limit distribution of balls when the

number of additions goes to infinity.13

First we formulate the market dynamics for shares and establish the connection to

replicator dynamics. Then we prove that the market shares converge almost surely to a

random vector living on the fixed points (Theorem 1) of the dynamics. In Theorem 2 we

distinguish attainable and unattainable fixed points, i.e. fixed points to which the process

converges with positive resp. zero probability. Finally, we handle two special cases, where

the elasticity of the demand functions with respect to market shares is always greater

(resp. less) than 1. We give here only sketches of the proofs. The exact proofs are given in

the appendix. Writing equation (2) in terms of market shares the evolution is given by14

st+1 = st +
1

n+ t

[

βt(st)− st
]

, (4)

where n = n11 + n
1
2 + . . .+ n

1
K denotes the initial number of goods in the market. Adding

and subtracting the term 1
n+t d(s) =

1
n+t (d1(s), d2(s), . . . , dK(s)) to equation (4) yields

st+1 = st +
1

n+ t

[

d(st)− st
]

+
1

n+ t

[

βt(st)− d(st)
]

. (5)

Since E (β(s)) = d(s) we have E(st+1|st) = st + 1
n+t

[

d(st)− st
]

and, consequently, on

average system (5) shifts from a point s at time t by 1
n+t [d(s)− s]. Hence, the limit points

of the system (if any) belong to the set of zeros of d(s)− s. At these points the expected

motion is 0. We call these points the fixed points of the system. The limit dynamics of

the stochastic process (5) is closely related to the asymptotic behaviour of the differential

equation

ṡ = d(s)− s,

which can be written as

ṡk =
Dk(sk)

∑K
j=1Dj(sj)

− sk, k = 1, . . . , K. (6)

To prove convergence of the market dynamics we have to introduce some smoothness condi-

tions for the demand functions. For all s > 0 they have to be positive and twice continuosly

differentiable. For technical reasons we assume additionally that D(0) := lims→0Dk(s) ex-

ists or Dk(s)→∞ for s→ 0 (then we set Dk(0) =∞) and that lims→0Dk(s)/s exists or

Dk(s)/s→∞ for s→ 0 (in the latter case we write D
′
k(0) =∞). The fixed points of (6)

are points s̄ ∈ ∆ such that Dk(s̄k) <∞ and
Dk(s̄k)∑K
i=1Di(s̄i)

= s̄k for all k.

13See Arthur [1983], Arthur et al. [1987], Arthur, Ermoliev and Kaniovski [1988a, 1994], Pemantle [1990]

and Posch[1994].
14See Arthur et al. [1987], Dosi and Kaniovski [1994], Dosi et al. [1994].
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Replicator Dynamics By Hofbauer and Sigmund [1988, p. 92] the phase portrait of

differential equation (6) does not change if we multiply it by a positive factor. Thus,

multiplying by
∑K
j=1Dj(sj), we get the new differential equation

ṡk = Dk(sk)− sk

K
∑

j=1

Dj(sj), k = 1, . . . , K. (7)

We see that the market share of technology k increases (decreases, remains constant)

if Dk(sk) > sk
∑K
j=1Dj(sj) (respectively “<” or “=”). We now define the fitness of

technology k by

Gk(sk) :=
Dk(sk)

sk
for all sk ∈ (0, 1] and k = 1, . . . , K. (8)

For the boundary we set Gk(0) = limsk→0Gk(sk) ∈ IR ∪ {∞}. In the interior of ∆ and all

boundary faces where the fitnesses are finite, equation (7) becomes

ṡk = sk (Gk(sk)− Ḡ(s)), k = 1, . . . , K, (9)

where Ḡ(s) =
∑K
j=1 sj G(sj) gives the average fitness. (9) restricted to ∆ is a well studied

replicator equation (see Hofbauer and Sigmund[1988] and Hofbauer, Schuster and Sigmund

[1981]).

Hence, the dynamics of the market corresponds to a replicator dynamics, where the

“fitness” of a product is given by the ratio of demand and market share. We see from

equation (9) that, if the fitness of a technology is greater (smaller) than the average fitness

(which is equal to the sum of absolute demand), its market share increases (decreases).

Thus, the fitness of a product is its capacity to stay in the market or even to take over

the whole market.

Note that even a technology with a low absolute demand can have a high fitness. Thus,

a low absolute demand does not automatically lead to extinction of the technology. Also a

high absolute demand for a technology does not assure that it will survive. Additionally,

even if the relative demand for a product increases with its market share, its fitness might

decrease, if the absolute demand grows slower than the market share. Also, if σk = 1 for

all k (i.e. if network externalities are present!), the fitness of a technology depends only

on its price level (see (3) and (8)).

Stochastic processes of the type studied here may not converge but exhibit a cyclic

behaviour.15 However, for the market dynamics we can show the following Theorem:

Theorem 1 Let Z denote the set of fixed points of (7) and assume that Z is finite. Then

the market shares converge almost surely and P (limt→∞ s̄
t ∈ Z) = 1.

15See Posch[1997], Barucci and Posch[1996], Benäım[1996].
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The argument exploits that (7) is a Shashahani gradient system[Hofbauer and Sigmund,

1988] and thus, all solutions of the differential equation converge to fixed points. To refor-

mulate this result to the stochastic process we need an extension of standard stochastic

approximation results to handle demand functions that go to infinity at the boundary (as

e.g. the demand function given by (3)).

Not all fixed points of (7) are attained in the limit with positive probability. Denote

the share elasticity of Dk with respect to s, by δk(s) =
D′k(s)
Dk(s)

s. If, at a fixed point s̄ in

the interior of ∆, all δk(s̄k) are less than 1 then the fixed point is attained with positive

probability. If two or more of these elasticities are larger than 1 then the fixed point is

attained with probability 0. If exactly one elasticity is less than one then the fixed point

can be attainable or unattainable depending on a more complicated condition. This is

summarized in the following theorem.

Theorem 2 Let s̄ ∈ Z be a fixed point and set supp(s) = { k | sk > 0, 1 ≤ k ≤ K }.

Assume that:

(a) δk(s̄k) 6= 1, for all k ∈ supp(̄s),

(b) D′k(s̄k) 6=
∑K
l=1Dl(s̄l), for all k /∈ supp(̄s),

(c) the term in (10) is not zero.

Then the necessary and sufficient conditions that P (limt→∞ s
t = s̄) > 0 are D′k(0) <

∑K
l=1Dj(s̄l), for all k /∈ supp(̄s), and

1) δk(s̄k) < 1 for all k ∈ supp(̄s), or

2) there exists exactly one l ∈ supp(̄s) such that δl(s̄l) > 1 and

∑

k∈supp(s̄)

s̄2k
Dk(s̄k) (δk(s̄k)− 1)

> 0. (10)

The argument exploits that the sinks of the differential equation correspond to the maxima

of the potential. By theorem 8 in (Posch[1994]) sinks are attained with positive probabil-

ity.For the non-convergence part, that is saddles and sources, we extend results of Arthur

et al. [1988a] and Pemantle [1990]. Namely, we prove that unstable fixed points on the

boundary of the simplex, i.e. where the share of one color is zero, are attained in the limit

with probability zero (Arthur et al. [1988a] and Pemantle [1990] looked at interior points

only).

In the next two statements we discuss the special case where the share-elasticity of

all demand functions is greater (resp. less) than 1 on the whole interval (0, 1]. Then there

exists at most one fixed point in the interior of ∆. If these elasticities are all less than 1 this

fixed point is attained with probability one. Thus the outcome of the market dynamics is

deterministic in this case. If the demand functions for all technologies are the same, the

fixed point is in the interior of ∆. Hence, in the limit all technologies coexist.
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Theorem 3 If for all s in the interior of ∆, δk(sk) < 1, k = 1, . . . , K then there exists

an s̄ ∈ ∆ such that P (limt→∞ s
t = s̄) = 1.

If D′k(0) = D
′
l(0), 0 ≤ k, l ≤ K then s̄ is in the interior of ∆.

In the opposite case where all share-elasticities are greater than 1 the market dynamics

converges to one of the vertices of the simplex ∆. Hence, in the limit only one technology

survives. If the demand functions for all technologies are identical, each vertex is attained

with positive probability. Thus, the market outcome is random and path dependent.

Theorem 4 Assume that for all s in the interior of ∆, δk(s) > 1, k = 1, . . . , K.

Then P (limt→∞ s
t ∈ E) = 1, where E = {e1, . . . , eK} denotes the set of vertices.

If D′k(0) = D
′
l(0), 0 ≤ k, l ≤ K, then P (limt→∞ s

t = ek) > 0 for all k = 1, . . . , K.

In the proofs of theorems 3 and 4 we adapt a result on replicator dynamics in Hofbauer

et al. [1981] and show that the potential of (7) has a unique extremum.

4 Dynamics of Markets Under Different Scenarios

So far the model has been formulated for K goods. Let us now illustrate the dynamic

behaviour of a market with network externalities where three commodities compete (K =

3). In Section 2.1 we argued that firms change the price of their products as market shares

change. That is we assume that the pricing policy of firm k can be described by a share-

response function that we denote by pk(s
t
k).
16 This implies the assumption that firms

base their price settings on their average costs (which includes “normal profit”, i.e. the

opportunity costs of production) such that the minimum price of the product equals its

average costs. Moreover, we assume that with increasing market share firms can extend

their production capacity and hence they experience a sinking long-term average cost

function17. A simple specification of this behaviour is that the price is just the reciprocal

value of the market share:18

pk(sk) =
ak
sk
, (11)

where ak are constants. We call function (11) a share-response function and assume for

simplicity that this function is identical for all K firms, i.e. ak = a. Fig. 1 gives a graphical

representation of the domain ∆ projected on the plane.
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Figure 1: Graphical representation of the domain ∆ (projected on the plane) where the

dynamics of shares evolves.

σ

ρ0
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σ−ρ=1σ−ρ>1

σ−ρ<1

Figure 2: Graphical representation of the three scenarios in the ρ-σ-space. For parameters

in the bright region only one technology survives in the limit. For parameters in the dark

region all technologies coexist in the limit with equal market shares. On the line separating

the regions the technologies coexist in the limit – their limit market shares are however

random.
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4.1 The Scenarios

Let us analyze the market behaviour under different elasticity parameters ρ and σ. Ba-

sically, four areas of the (ρ, σ)-space are conceptually interesting (see Figure 2)19. We

consider the demand to be

a) price- and network-inelastic: ρ ∈ (−1, 0], σ ∈ [0, 1),

b) price-inelastic and network-elastic: ρ ∈ (−1, 0], σ > 1,

c) price-elastic and network-inelastic: ρ < −1, σ ∈ [0, 1),

d) price- and network-elastic: ρ < −1, σ > 1.

The cases where ρ = −1 (resp. σ = 1) are of special interest since then demand is neither

price- (resp. network-) elastic nor inelastic. We therefore will refer to intermediate elastic-

ity.20 Additionally, the cases where one of the elasticities vanishes is of special interest: if

σ = 0 this corresponds to a “classical” market without network externalities and if ρ = 0

to a market where consumers are indifferent with respect to prices. To investigate the

dynamics for different elasticities we insert function (11) into (3) to obtain

Dk(sk) = a
ρ sσ−ρk . (12)

4.2 Emerging Market Dynamics

Since the elasticity of (12) with respect to market share is σ−ρ, the above mentioned four

cases can be analyzed by considering the following three scenarios: σ − ρ = 1, σ − ρ > 1

and σ − ρ < 1. We show in which of these scenarios all three technologies coexist in the

time limit and in which only one technology survives. A summary of the results is given

in Figure 2.

I. Let us start with σ−ρ = 1, which encompasses the two reference cases ρ = −1, σ =

0, i.e. a “classical” market with intermediate price elasticity and σ = 1, ρ = 0,

i.e. intermediate network externality and no price elasticity. The demand functions

simplify to Dk(sk) = a
ρsk and by (1) the relative demand for k equals the existing

proportion of k in the market (i.e. dk(s) = sk). The fitnesses of the technologies are

constants and independent of market shares.

16We could also assume that the price depends on the market shares of the other technologies or is also

stochastic. To simplify the subsequent analysis we assume that it depends only on its market share. A

similar approach was chosen by Dosi and Kaniovski [1994] and Dosi et al. [1994].
17The model studied here is intrinsically dynamic. Since the production structure, hence costs, is subject

to change with time we consider the long-term average cost function (see e.g. Varian, 1995).
18A more complex price function is analyzed in Keilbach and Posch [1997]. See section 5 for a brief

discussion of the results.
19In the following discussion we consider neither positive price elasticities nor negative network elasticities

explicitly. Note however that these cases may be derived from the analysis given in section 4.2.
20Some economic textbooks refer to unitary elasticity. See e.g. Pinola and Sher[1981].
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In this case the shares converge with probability one.21 Moreover, the limit of shares

is (conditional on the initial condition) Dirichlet-distributed with the density func-

tion

fD(s) =

{

c · s
n1
1
−1

1 s
n1
2
−1

2 s
n1
3
−1

3 for s ∈ ∆

0 else
(13)

where n11, n
1
2, n

1
3 ≥ 1 are the initial numbers of products of each technology in the

market and c = Γ(n1+n2+n3)
Γ(n1)Γ(n2)Γ(n3)

. Thus, we cannot predict to which point in ∆ the

market shares converge. This implies, that even under positive network externalities

(namely in all cases where σ = 1 + ρ), all three technologies coexist in the limit.

If n11 = n
1
2 = n

1
3 = 1 the limit distribution is uniform on ∆ (see Figure 3.I for

an illustration). Note that this case is not generic, i.e. small deviations from the

condition σ − ρ = 1 will lead to different market behaviours. This will be discussed

in turn.

II. σ−ρ > 1. This scenario encompasses the scenarios b), c), d) and half of the parameter

space of scenario a) (see Figure 2). In these cases the share elasticity δk(·) of the

demand functions is greater than one. Thus, by theorem 4 the process converges

with probability one to one of the vertices and each vertex, i.e. the point (1,0,0)

and its permutations, is attained with positive probability. Thus, the market locks

into one technology but we cannot predict into which one. To this case (illustrated in

Figure 3.II) the discussion on path-dependence and “lock-in” usually refers. However,

network externalities are not a necessary condition for lock-in and the emergence of

a monopoly. It can also be a result of the price dynamics if the price elasticity is less

than −1.22

III. σ − ρ < 1. This encompasses the other half of region a) where both parameters are

inelastic. It also includes conceptually less plausible cases where σ < 0 and ρ > 0.

Now the share elasticities δk(s) are less than one. Thus, by Proposition 3 there is

an interior fixed point s̄ such that P (limt→∞ s
t = s̄) = 1. By symmetry we have

s̄ =
(

1
3 ,
1
3 ,
1
3

)

. See Figure 3.III for an illustration.

This result is somewhat counterintuitive since it encompasses the cases σ ∈ [0, 1), ρ=

0. That is technologies will coexist although positive network externalities prevail

on the market. This is due to the fact that the demand for a technology increases

slower than its market share. Hence, its fitness actually decreases with market share.

Thus, positive network externalities do not automatically imply lock-in effects.

21See Arthreya[1969].
22One might argue that a firm will modify its pricing behaviour to stay in the market. However, as firms

base their pricing behaviour on average costs, small firms may be driven out of the market due to higher

cost of production. Thus, a monopoly emerges with probability one.
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Figure 3: Probability distribution of market shares at t = 30 given share response function

(11), n11 = n
1
2 = n

1
3 = 1 and the three scenarios: (I) σ − ρ = 1, (II) σ − ρ > 1, (III)

σ − ρ < 1.
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Also if σ = 0 and the price response is inelastic (ρ > −1) no monopoly emerges in

our model. Note finally that scenario III includes also the case ρ = σ = 0, i.e. where

consumers do not respond to any signal from the market. Although admittedly

implausible it is interesting to observe that such a behaviour will equally lead to

coexistence of all technologies.

5 Summary and Outlook

This paper deals with markets where different technologies compete that all fulfill the

same task but have different characteristics. We analyze the behaviour of such markets

for different levels of price- and network-elasticities. To this purpose we specify demand

functions that depend not only on the price of a technology but also on its market share.

Based on these functions we define conditional probabilities of buying a certain technology.

Assuming that firms decrease their prices if their market share increases we can identify

the dynamics and limit states of these markets.

We illustrate this for a market where three goods compete under several constellations

of elasticity parameters. The model thus encompasses “classical” markets, i.e. markets

where no network externalities prevail. Several interesting results are obtained. First, if

no network externalities exist and demand is inelastic, none of the technologies is pushed

out of the market and all technologies have in the limit identical market shares. If however

demand is elastic only one of the technologies survives, i.e. monopoly emerges. If demand

is “intermediate” (i.e. neither elastic nor inelastic) all technologies coexist but it is not

possible to predict the distribution of market shares.

Second, even if network externalities prevail all technologies may coexist in the market

if the demand is network inelastic. Thus, a market dynamic as we know it from the story

of the QWERTY-keyboard or the market of video recorders (as discussed in section 2.1)

can only emerge in a relatively limited area of the parameter space. Thus – to come back

to the question asked in the title – it is not certain that Bill Gates’ operating system will

oust the others from the market.

In Keilbach and Posch[1997] we analyze the model for a different share response func-

tion. Here, firms first decrease their prices with market share but increase it once a certain

critical market share is passed. Here we obtain a whole spectrum of possible market out-

comes. We show that even if network externalities prevail on a market it is possible that

several (but not necessarily all) technologies coexist. Our approach is not restricted to

simple continuous share-response functions. On the contrary, the flexibility of the chosen

approach allows for integration of arbitrary (or even stochastic) share-response behaviour.

The choice of this function is of course of decisive influence on the market dynamics.

At present, we run an empirical investigation of the model. Once econometric estimates

of the demand functions and of the share response behaviour are obtained the approach

we suggest here should allow for empirical investigation (i.e. prediction) of markets where

network externalities prevail.
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Appendix

A note on the notation Since the dynamics given by (9) leaves the simplex ∆ invariant,

we have stK = 1 −
∑K−1
k=1 s

t
k, ∀t > 0. Thus, the system can be reduced to the first K − 1

dimensions. Then we get a dynamics on ∆̄ = {s ∈ IRK−1 | si ≥ 0,
∑K−1
i=1 si ≤ 1}. In

the literature on urn processes mainly the K − 1-dimensional notation is used, while

the analysis of the replicator equation was mainly done in the K−dimensional setting. To

apply the results on urn processes (including proposition 1) we have to translate the results

between the two setups. While the characterization of fixed points is the same in both

setups, the stability conditions have to be adapted. Let ṡ = g(s) denote a vector field on ∆

that leaves ∆ invariant. Hence,
∑K
k=1 gk(s) = 0, ∀s ∈ ∆. The equivalent K−1 dimensional

system is then given by ṡk = gk(s1, . . . , sK−1, 1−
∑K−1
l=1 sl), k = 1, . . . , K−1 and is defined

on ∆̄. Thus, the tangent space of each interior point in ∆̄ is given by IRK−1. The tangent

space for interior points in ∆ for ṡ = g(s) restricted to ∆ is {ξ ∈ IRK |
∑K
k=1 ξk = 0}.

Denote the Jacobian of g(·) by Dg, the one of
(

gk(s1, . . . , sK−1, 1−
∑K−1
l=1 sl)

)K−1

k=1
by

Dḡ. Hence, a fixed point s ∈ ∆ is a linearly stable fixed point of ṡ = g(s) restricted to ∆

if

〈Dg(s), ξ, ξ〉 < 0, ξ ∈ {ζ ∈ IRK |
K
∑

k=1

ζk = 0}

which holds if and only if

〈Dḡ(s1, . . . , sK−1, 1−
K−1
∑

l=1

sl) ξ, ξ〉 < 0, ξ ∈ R
k−1,

i.e. that (s1, . . . , sK−1) is hyperbolically stable for ṡk = gk(s1, . . . , sK−1, 1−
∑K−1
l=1 sl), k =

1, . . . , K − 1 .

Proposition 1 Let st be an urn process with a C1 urn function d as specified in (2) and
let s̄ ∈ ∆ be a hyperbolically unstable fixed point of the vector field ṡ = d(s)− s restricted
to ∆.
Then

P ( lim
t→∞
st = s̄) = 0.

Proof Let I = { i |̄si = 0}. By (if necessary) relabeling technologies we can assume that
I ⊂ {1, . . . , K − 1}. Hence,

K−1
∑

k=1

s̄k < 1. (14)

For the proof we use the K − 1 dimensional notation. For simplicity we denote the
K−1-dimensional vectors again by s̄ = (s̄k)

K−1
k=1 and the K−1 dimensional vector field by

ṡ = f(s). Now, s̄ ∈ ∆̄ is a hyperbolically unstable fixed point of the K−1 dimensional vector
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field f . If s̄ lies in the interior of ∆̄ then the non-convergence follows from proposition 1
in Pemantle [1990]. Thus, we assume in the following that s̄ lies on the boundary of ∆̄.
For the proof we have to consider two cases. First, we assume that at least one of

the eigenvectors corresponding to an eigenvalue with positive real part points away from a
boundary surface of ∆̄ (lemma 2). Second we consider the remaining case where all such
eigenvectors lie in one of the boundary surfaces (lemma 3). To make this exact we use the
notion of saturated fixed points, introduced by Hofbauer (1990).
Definition: s̄ is said to be a saturated fixed point if all eigenvalues of the matrix

A :=
(

∂fi
∂sj
(̄s)
)

i,j∈I
have non-positive real part.

Lemma 1 If s̄ is not saturated then there is a d > 0, a neighbourhood U of s̄, and a vector
v ∈ IRK−1, vi ≥ 0 i = 1, . . . , K − 1, vi = 0 ∀i /∈ I, ||v|| = 1 such that for all s̄ ∈ U

〈f(s), v〉 > d 〈s, v〉 (15)

This is shown in the proof of proposition 1 of Hofbauer (1990).

Lemma 2 Assume s̄ is not saturated. Then P (limt→∞ s
t = s̄) = 0.

Proof: Assume to the contrary that P (limt→∞ s
t = s̄) > 0. Choose a neighbourhood U

of s̄, a vector v, and a d > 0 as specified in lemma 1. Then there exists a T > 1 such that
P ({limt→∞ s

t = s̄} ∩ {st ∈ U, t > T}) > 0 Let τ be the following stopping time

τ =

{

min t > T : st /∈ U, if there is a finite t > T s.t. st /∈ U ;
∞ otherwise

.

We show that

P ( lim
t→∞
〈st, v〉 = 0 | τ =∞) = 0. (16)

Since vi > 0 for at least one i such that s̄i = 0 this proves the proposition. We first show
that

P ( lim
n→∞

〈nt, v〉 =∞| τ =∞) = 1. (17)

Let Jv = { i | vi > 0}. Then (17) holds if P (limt→∞
∑

i∈Jv
nti =∞|τ =∞) = 1. Since the

nti are monotonically increasing, we get

sti =
nti
n+ t

≥
n1i
n+ t

≥
1

n+ t
, i = 1, . . . , K − 1. (18)

By (15), (18), and since ||v|| = 1 we get for all t > T

P (
∑

i∈Jv

βti(s
t) = 1) ≥ E

(

∑

i∈Jv

βti(s
t)
∣

∣

∣F t
)

≥ E
(

〈βt(st), v〉
∣

∣

∣F t
)

≥ E
(

〈βt(st)− st), v〉
∣

∣

∣F t
)

≥ d 〈st, v〉 ≥
d

n+ t

By construction of βt there exists a sequence of independent random variables χt, t ≥ 1
such that

∑

i∈Jv
βti(ȳ

t) ≥ χt ≥ 0 and P (χt ≥ 1) ≥ d
n+t for all sequences ȳ

t ∈ U satisfying

ȳti >
1
n+t , i = 1, . . . , K − 1. Since

∑∞
t=1 P (χ

t ≥ 1) =∞, by the Borel-Cantelli lemma we
get

∑∞
t=1 χ

t =∞ a.s. Hence (17) holds true.
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For a t > 0 let Et denote the set of all paths where 〈nt, v〉 > 1d , i.e. E
t = {〈nt, v〉 > 1d}.

Note, that Et is F t-measurable and since nt is increasing in t, for all t′ > t we have
Et

′

⊇ Et. Hence, by (17) we have limt→∞ P (E
t | τ =∞) = 1.

Now we prove (16) by contradiction. Assume that P (limt→∞〈s
t, v〉 = 0 | τ = ∞) > 0.

Then there is a T ′ > T such that

P (ET
′

∩ {τ =∞} ∩ { lim
t→∞
〈st, v〉 = 0}) > 0. (19)

Let Gt = {t < τ} ∩ ET
′

. We claim that 1Gt
1

〈st,v〉 is a supermartingale. By (18) we have

sti > 0 for all t and thus,
1

〈st,v〉 is finite for all t. Let t > T
′ be arbitrary but fixed. On the

F t-measurable set Gt the process is not equal to zero and thus, by (2)

1Gt E
( 1

〈st+1, v〉
−

1

〈st, v〉

∣

∣

∣F t
)

= 1Gt E
(n+ t+ 1

〈nt+1, v〉
−
n+ t

〈nt, v〉

∣

∣

∣F t
)

= 1Gt E
(〈st, v〉 − (n+ t) 〈βt, v〉

〈st, v〉 〈st + βt, v〉

∣

∣

∣F t
)

≤ 1Gt
1

〈nt, v〉

(

1−
n+ t

〈st, v〉+ 1
E
(

〈βt, v〉
∣

∣

∣
F t
)

)

(20)

On Gt we have st ∈ U , and thus, by (15) we get 1Gt E
(

〈βt, v〉
∣

∣

∣F t
)

≥ 1Gt d 〈st, v〉.

Substituting st by n
t

n+t we get by (20)

1Gt E
( 1

〈st+1, v〉
−

1

〈st, v〉

∣

∣

∣F t
)

≤ 1Gt
1

〈nt, v〉

[

1−
(d+ 1) 〈nt, v〉

〈nt, v〉+ 1

]

≤ 0.

Since Gt is F t-measurable and Gt+1 ⊂ Gt, we proved that

E
(

1Gt+1
1

〈st+1, v〉
− 1Gt

1

〈st, v〉

∣

∣

∣F t
)

≤ 0,

and hence 1Gt
1

〈st,v〉 is a non-negative supermartingale. Thus, the limit s
∗ = limt→∞

1
〈st,v〉 ·

1Gt exists a.s. Now, by the Fatou lemma we have

E(s∗) ≤ lim inf
n→∞

E
(

1Gt
1

〈st, v〉

∣

∣

∣F t
)

≤
1

〈sT ′ , v〉
<∞.

Hence, s∗ < ∞ a.s. and thus, P (ET
′

∩ {τ = ∞} ∩ {limt→∞〈s
t, v〉 = 0}) = 0, which

contradicts with (19). 2

Lemma 3 Assume s̄ is saturated. Then P (limt→∞ s
t = s̄) = 0.

Proof: Let E+ denote the eigenspace corresponding to the eigenvalues of A with pos-
itive real part. We apply proposition 1 in Pemantle [1990], checking conditions (i)- (iv).
Conditions (i), (ii) and (iv) are straightforward. Condition (iii) reads:

There exists a neighbourhood U of s̄, a c > 0 such that for all unit vectors
θ ∈ E+, all s ∈ U and all t > 1

E
(

〈(βtk(s)− sk)
K−1
k=1 , θ〉

+
∣

∣

∣F t
)

≥ c,

where 〈 ., .〉+ = max(0, 〈 ., .〉).
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(Pemantle actually requires this inequality to hold for all θ in the tangent space of ∆̄.
However, in the proof he uses only the above weaker condition). Choose a unit vector θ in
E+ and set ǫ = mini/∈I s̄i. Since s̄ is a fixed point, for all i = 1, . . . , K−1, P (βi(̄s) = 1) =
s̄i. Thus,

E
(

〈βt(̄s)− s̄, θ〉+
∣

∣

∣F t
)

=
K−1
∑

i=1

P (βi(̄s) = 1)



θi −
K−1
∑

j=1

s̄jθj





+

+

(

1−
K−1
∑

i=1

s̄i

)



−
K−1
∑

j=1

s̄jθj





+

≥ ǫ
∑

i/∈I



θi −
∑

j /∈I

s̄jθj





+

+

(

1−
∑

i/∈I

s̄i

)



−
∑

j /∈I

s̄jθj





+

. (21)

Since θ lies in the tangent space of E+ we have θi = 0, ∀i ∈ I and θ
∗ := maxi/∈I θi 6= 0.

If θ∗ > 0 then the first term in (21) is positive, since by (14)
∑

j /∈I s̄j < 1. If θ
∗ < 0 then

the second term is positive.
By continuity there is a neighbourhood U of s̄ and a c > 0 such that for all s ∈ U

E
(

〈(βtk(s)− sk)
K−1
k=1 , θ〉

+
∣

∣

∣F t
)

> c.

2

This completes the proof of proposition 1. In the following we use again the K-dimen-
sional notation. Let int∆ denote the interior of ∆ in the relative topology.

Proposition 2 Let s̄ ∈ int∆ be a fixed point of (9) such that
∑K
k=1

1
G′k(s̄k)

> 0 and

G′(s̄i) 6= 0 for all i.

1. If G′(s̄k) < 0, k = 1, . . . , K or

2. if there is exactly one l s.t. G′l(s̄l) > 0 and
∑K
k=1

1
G′k(s̄k)

> 0,

then s̄ is a sink. Otherwise s̄ is a saddle or source.
Proof: By Hofbauer and Sigmund [1988] (9) is a Shashahani gradient system for the

potential V (s) = −
∫ 1
s1
G1(t) dt −

∫ 1
s2
G2(t) dt− · · · −

∫ 1
sK
GK(t) dt. Thus, the fixed points

of (9) in int∆ are the critical values of V (·) restricted to ∆. To see this, let Ξ = {ξ ∈
IRK |

∑K
k=1 ξk = 0} denote the tangent vector space of ∆. Then for all fixed points s̄ ∈ int∆

〈∇V (̄s), ξ〉 =
K
∑

k=1

Gk(s̄k) ξk = G1(s̄1)
K
∑

k=1

ξk = 0, ∀ξ ∈ Ξ,

holds. The maxima of V (·) restricted to ∆ are the asymptotically stable points of (9). Since
(9) is a gradient system s̄ is a sink, if and only if for the Jacobian DV(·) of V (·) we have

〈DV(̄s) ξ, ξ〉 < 0, ∀ξ ∈ Ξ. (22)

If there is a ξ ∈ Ξ such that the inequality in the other direction holds then s̄ is a saddle
or source. DV(·) is a diagonal matrix given by DV(̄s) = (δijG

′
i(s̄i))ij. Thus, if condition

1 of the proposition holds (22) follows immediately.
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If condition 2 holds then assume w.l.o.g. that G′1(s̄1) > 0 and G
′
k(s̄k) < 0 for k > 1.

We give a proof by contradiction. Assume there exists a ξ ∈ Ξ such that 〈DV(̄s) ξ, ξ〉 > 0
we have |ξ1| > 0 and hence

G′1(s̄1) +
K
∑

k=2

G′k(s̄k)
ξ2k
ξ21
> 0.

Set ξ′k =
ξk
ξ1
and note that |

∑K
k=2 ξ

′
k| = 1. Hence,

max
x∈IRK, |

∑K
k=2 xk|=1

G′1(s̄1) +
K
∑

k=1

G′k(s̄k)x
2
k = G

′
1(s̄1) +

1
∑K
k=2

1
G′k(s̄k)

> 0 (23)

A straightforward calculation shows, that (23) holds if and only if
∑K
k=1

1
G′k(s̄k)

< 0. This

is a contradiction to condition 2. Hence s̄ is a sink. With the same argument we see that
if
∑K
k=1

1
G′k(s̄k)

> 0, s̄ is not a local maximum of V (·) restricted to ∆ but a saddle or

minimum, and hence its a saddle or source for (7).
Finally, assume there exist k, l, k 6= l such that G′k(s̄k) > 0 and G

′
l(s̄l) > 0. For ξ ∈ Ξ

such that ξl = 1, ξk = −1 and ξj = 0, j 6= k, j 6= l we have 〈DV(̄s) ξ, ξ〉 > 0, and hence
the fixed point is a saddle or source.

2

Proposition 3 Let I ⊂ {1, . . . , K} and ∆I = { s | si = 0, ∀ i ∈ I } denote a boundary
face. Assume that Gi(0) < ∞ for all i ∈ I. Then ∆I is an invariant set. If s̄ ∈ ∆I is a
sink for (9) restricted to ∆I and

1. for all i ∈ I, Gi(0) <
∑K
j=1 s̄j Gj(s̄j) =: Ḡ(̄s) then s̄ is a sink for (7) on ∆.

2. there exists an i ∈ I such that Gi(0) >
∑K
j=1 s̄j Gj(s̄j) then s̄ is a saddle.

Proof: 1. By (if necessary) relabeling technologies we can assume that
s1 > 0, . . . , sm > 0, sm+1= · · ·=sK=0 for some m. Then the gradient ∇V is given by
∇V = (Ḡ, ..., Ḡ, Gm+1(0), ..., GK(0))

T . The tangent vector space at the boundary face ∆I
is given by ΞI = {ξ ∈ IR

K |
∑K
k=1 ξk = 0, ξi ≥ 0, ∀i ∈ I}. Thus, if Gi(0) < Ḡ, ∀i ∈ I then

〈∇V, ξ〉 ≤ 0 for all ξ ∈ ΞI . The inequality is strict for all ξ ∈ ΞI such that ∃i ∈ I, ξi > 0.
By our assumptions s̄ ∈ ∆I is a sink for (9) restricted to ∆I and hence a maximum of V
restricted to ∆I . It follows, that s̄ is a local maximum of V restricted to ∆. It remains to
show that s̄ is a hyperbolic fixed point. Since (9) is a gradient vector field, all eigenvalues
of its Jacobian are real. Thus, it suffices to show that the determinant is not zero. This
follows straightforward. The proof of statement 2. is analogous and thus omitted. 2

For every set A ⊂ IRK and ǫ > 0 set Uǫ(A) := {s̄ ∈ ∆ | D(̄s, A) < ǫ}, where D(̄s, A) =
inf s̄′∈A ||s−s

′||. The following lemma is a modification of proposition 7.3 in Nevel’son and
Has’minskii [1973].

Lemma 4 Let D ⊂ ∆ and consider the sequence

st+1 = st +
1

n+ t
f(st) +

1

n+ t
ξt (24)



Appendix 21

where st ∈ ∆, ∀t > 0. Assume there is a random time instant τ1 such that a.s. s
t ∈ D

for all t > τ1 and τ1 < ∞ a.s., that f : int∆ → IR
K is bounded and continuous, and ξt

is a sequence of uniformly bounded random vectors such that E
(

ξt
∣

∣

∣
st
)

= 0. Let c > 0

and assume that V is a strict C2 Liapunov function on A = {s | 0 < V (s) < c } ∩D. Let
E = D/A.
Then, for all ǫ > 0 there is a random time τ2 such that s

t ∈ Uǫ(E), ∀t > τ2 and τ2 <∞
a.s.

Proof: We extend the definition of V by setting V (s) = c, ∀s ∈ ∆/{s|V (s) < c}. Let
φ(x) be a positive monotone C2 function such that φ(x) = c, ∀x ≥ c and such that φ
is strictly monotone for all x < c. Then φ(V (s)) is again a C1 Liapunov function. To
simplify notation we set V (s) = φ(V (s)) in the following. Note that 〈∇V (s), f(s)〉 ≥ 0 for
all s ∈ D. A Taylor expansion gives for t > 0

V (st+1) ≥ V (st) +
1D(s

t)

n+ t

[

〈∇V (st), f(st)〉+ 〈∇V (st), ξt〉
]

−
L 1∆/D(s

t)

n+ t
−
L

t2
,

where 1D(s
t) is the indicator function of D, and L is an upper bound for |〈∇V (st), f(st)+

ξt〉| and the absolute value of the second order terms in the Taylor series. Then, for all
T2 > T1 we have

V (sT2) ≥ V (sT1) +
T2−1
∑

t=T1

1D(s
t)

n+ t
〈∇V (st), f(st)〉+

T2−1
∑

t=T1

1D(s
t)

n+ t
〈∇V (st), ξt〉

−
T2−1
∑

t=T1

L 1∆/D(s
t)

n+ t
+
L

t2
.

The process
∑T2−1
t=T1

1D(st)
n+t ξ

t is an L2 martingale and converges a.s. for T2 → ∞. Also
∑T2−1
t=T1

L1∆/D(st)
n+t + L

t2
converges almost surely, since from some time on the process stays

in D a.s. Since V (s) is bounded
∣

∣

∣

∣

∣

∣

∞
∑

t=T1

1D(s
t)

n+ t
〈∇V (st), f(st)〉

∣

∣

∣

∣

∣

∣

<∞, a.s.

Hence, almost surely the paths of the process (24) are of the form

st+1 = st +
1

n+ t
f(st) + ǫt, (25)

where ǫt is a deterministic vector sequence such that
∣

∣

∑∞
t=1 ǫ

t
∣

∣ <∞,

∣

∣

∣

∣

∣

∣

∞
∑

t=T1

1D(s
t)

n+ t
〈∇V (st), f(st)〉

∣

∣

∣

∣

∣

∣

<∞, (26)

and for each path there exists a T3 such that s
t ∈ D for all t > T3.

Now let ǫ > 0 and set U cǫ := D/Uǫ(E). Assume that a path stays from some time T1
onward in U cǫ . Let d = mins∈Ucǫ 〈∇V (s), f(s)〉. Then, d > 0 and

∣

∣

∣

∣

∣

∣

∞
∑

t=T1

1Ucǫ (s
t)

n+ t
〈∇V (st), f(st)〉

∣

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣

∞
∑

t=T1

d

n+ t

∣

∣

∣

∣

∣

∣

=∞,
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which is a contradiction with (26) since U cǫ ⊂ D. Hence, after a finite random time the
path leaves the set U cǫ . Now we prove that the path cannot enter the set U

c
2ǫ infinitely often.

Assume it would. Then there are times T3 < tl < t̄l < tl+1 such that s
t̄l ∈ Uǫ, s

tl ∈ U c2ǫ
and st ∈ U cǫ for all t̄l ≤ t ≤ tl+1. Choose an l0 > 0 such that for all t > t̄l0 we have
|
∑∞
l=t ǫ

l| ≤ ǫ
2 . Thus, there is a C1 > 0 such that for all l > l0

ǫ ≤ |stl − st̄l | ≤

tl+1−1
∑

t=t̄l

1

n+ t
|〈∇V (st), f(st)〉|+

ǫ

2
≤ C1

tl+1−1
∑

t=t̄l+1

1

n+ t
+
ǫ

2

Hence, ǫ
2C1
≤
∑tl+1−1

t=t̄l+1
1
n+t . Thus, we obtain

∞
∑

t=T3

1Ucǫ (s
t)

t+ n
〈∇V (st), f(st)〉 ≥

∞
∑

l=l0

tl+1−1
∑

t=t̄l+1

1

n+ t
〈∇V (st), f(st)〉

≥
∞
∑

l=l0

d

tl+1−1
∑

t=t̄l+1

1

n+ t
≥
∞
∑

l=l0

d
ǫ0
2C1

=∞.

This gives again a contradiction with (26). 2

Let J = {i |Gi(0) =∞}.

Lemma 5 Consider the vector field (6) and let I ⊆ J. Then for all ǫ > 0 there is a δ > 0
such that for all s ∈ UI(ǫ, δ) = { s |

∑

i∈I si < δ, sj > ǫ, ∀ j ∈ J/I } ∩∆

∑

i∈I

ṡi ≥
∑

i∈I

si.

Proof: Let ǫ > 0. We distinguish two cases. First, assume that there is an i∗ ∈ I such
that Di∗(0) > 0. Let L1 := sups∈∆

∑

i/∈J Dj(sj). Then, L1 <∞ and for s ∈ ∆ we get by
(7)

∑

i∈I

ṡi =

(

∑

i∈I

si

) [

∑

i∈I Di(si)
(
∑

i∈I si
)
∑K
i=1Di(si)

− 1

]

≥

(

∑

i∈I

si

) [

∑

i∈I Di(si)
(
∑

i∈I si
) (
∑

i∈I Di(si) + L1
) − 1

]

(27)

Set L2 = infs∈∆

∑
i∈I Di(si)∑

i∈I Di(si)+L1
. Since Di∗(0) > 0 we get L2 > 0. Now, let δ =

L2
2 .

Then, continuing (27), we get for all s ∈ UI(ǫ, δ)

∑

i∈I

ṡi ≥

(

∑

i∈I

si

)

[

L2
∑

i∈I si
− 1

]

≥
∑

i∈I

si

Now consider the case where Di(0) = 0 for all i ∈ I. Let L3 = sups∈UI(ǫ,1)
∑K
i=1Di(si).

We have L3 <∞. Choose a δ > 0 such that
Di(s)
s > 2L3 for all s < δ and all i ∈ I. Then,

for s ∈ UI(ǫ, δ) we get by (7)
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∑

i∈I

ṡi =

(

∑

i∈I

si

) [

∑

i∈I Di(si)
(
∑

i∈I si
)
∑K
i=1Di(si)

− 1

]

≥

(

∑

i∈I

si

) [

2L3
∑K
i=1Di(si)

− 1

]

≥
∑

i∈I

si

2

For I ⊂ {1, . . . , K} define BdI = { s ∈ ∆ | ∃i ∈ I s.t. si = 0 } and let J = {1 ≤ k ≤
K |Gk(0) =∞}. Thus, BdJ is the union of all boundary faces where at least one product
has infinite fitness. For all ǫ > 0 and I ⊆ J let δ(I, ǫ) > 0 be a number such that on
UI(ǫ, δ(I, ǫ)) we have

∑

j∈I ṡj ≥
∑

j∈I sj. Set ∆I = {s ∈ ∆ | si = 0 ∀i ∈ I}.

Lemma 6 Let I ⊆ J, and let V ⊆ BdJ/I . Assume there exists a neighbourhood U of V
such that on U ,

∑

i∈J/I si is a Liapunov function. Then

P ( lim
t→∞
〈st, v〉 = 0) = 0,

where v is a vector such that vi = 1 for all i ∈ J/I and zero otherwise.

Proof: This follows by the arguments for step (16) in lemma 2. 2

Proposition 4 Let D(s, BdJ) denote the distance between s and BdJ . Then

P{lim inf
t→∞

D(st, BdJ) = 0} = 0

Proof: For simplicity we assume that J = {1, . . . , K}. The other case follows by
analogy. In a first step we cover BdJ with sets of the form UI(ǫ, δ), defined in the above
lemma.
Let 0 < ǫ1 < 1 and set δ1 = mini∈J(δ(J/{i}, ǫ1), ǫ1). Note, that

WJ/{i} := UJ/{i}(ǫ1, δ1)

is a neighbourhood of the i-th vertex ∆J/{i}. For a finite set H, denote by |H | the cardinality
of H.
Let k > 1. Assume we have covered the edges ∆J/I , I ⊂ J, |I | = k with the neigh-

bourhoods WJ/I :=
⋃

H⊆I,|H|≤k UJ/H(ǫ|H|, δ|H|). Now choose an ǫk+1 < δk and set δk+1 =
1
2 minI⊆J,|I|=k+1 (δ(I, ǫk+1), (δk − ǫk+1)). Then for all sets I ⊆ J such that |I | = k + 1 we
have

∆J/I ⊆WJ/I :=
⋃

H⊆I,|H|≤k+1

UJ/H(ǫ|H|, δ|H|).

Thus, using this procedure iteratively we get neighbourhoods W{i} covering ∆{i}. The union
W = ∪i∈JW{i} covers BdJ .
To prove that the process does not approach the boundary BdI , we show by induction

in k, that from some time onwards the process does not belong to the sets WJ/I for all
I ⊆ J, |I | = k.
k = 1. Let i ∈ J be fixed. By lemma 5 V (s) =

∑

j∈J/{i} sj is a linear Liapunov function
on the setWJ/{i} = {s |

∑

j∈J/{i} sj < δ1}. There is an ǫ > 0 such that f is also a Liapunov
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function on A := {s ∈ ∆ |
∑

j∈J/{i} sj < δ1+ǫ}. Hence, by lemma 4 the process a.s. either
converges to the edge ei or it leavesWJ/{i} and does not return from some time onward. By
lemma 6 the process converges to ei with probability 0. Thus, a.s. from some time onward
the process does not belong to WJ/{i}.
Induction step. Let k > 1, Assume that for all I ⊂ J, |I | = k − 1 from some time

onward the process is not in WJ/I . Let I ⊆ J, |I | = k.
By the induction assumption from some time onward the process belongs to D =

∆/ ∪I⊂J,|I|=k−1 WJ/I . Since δk <
1
2(δk−1 − ǫk) there is an ǫ > 0 such that on A :=

D ∩ UJ/I(ǫk, δk + ǫ) = D ∩ {s̄ | V (̄s) ≤ δk + ǫ} the function V (s) =
∑

j∈J/I sj is a strict
Liapunov function. By lemma 4 the process converges either to the set BdJ/I or it leaves
the set WJ/I . By Corollary 6 the former occurs with probability 0. This rights the result.2
Proof of theorem 1: Assume first that all Gk, k = 1, . . . , K can be extended to

continuous functions on the whole interval [0, 1]. Then, by Hofbauer and Sigmund [1988]
(9) is a Shashahani gradient system for the potential V (s) = −

∫ 1
s1
G1(t) dt−

∫ 1
s2
G2(t) dt−

· · ·−
∫

sK
GK(t) dt. Thus, V is a strict C

1 Liapunov function for (7). Now, the result follows
by proposition 1 in Arthur et al. [1988b].
If some Gk cannot be continuosly extended to the whole interval by the conditions on the

demand functions it follows that lims→0Gk(s) =∞. By proposition 4 P (limt→∞ d(s
t, BdJ) =

0) = 0. Thus, there is an Ω′ with P (Ω′) = 1 such that for every elementary outcome ω ∈ Ω′

there exists an ǫ > 0 and a T > 0 such that for all t > T we have D(st(ω), BdJ) > ǫ. Addi-

tionally, since
(

∑T2
t=1

1
n+t

[

βt(st)− d(st)
]

)

is an L2 martingale we can choose Ω′ such that

every path in Ω′ can be written as st+1(ω) = st+ 1
n+t f(s

t(ω))+ǫt(ω), where f(s) := d(s)−s
and ǫt(ω) is a deterministic sequence of vectors such that ||

∑∞
t=1 ǫ

t|| < ∞. Let Uǫ(BdJ)
denote an ǫ-neighbourhood of BdJ . Since the vector field f is C

2 in ∆− Uǫ(BdJ) we can
apply proposition 1 in Benäım [1993] to deduce that the limit sets are chain recurrent.
Since f is a gradient vector field on ∆−Uǫ(BdJ ) the only chain recurrent sets are the fixed
points. 2

Proof of theorem 2: Since G′k(sk) =
s2k

Dk(sk) (δk(sk)−1)
by propositions 2 and 3 s̄ is a

sink for (7) if and only if the above conditions hold, otherwise it is a source or saddle. In
the former case by proposition 8 in Posch [1994] we have P (limt→∞ s

t = s̄) > 0. In the
latter cases we apply proposition 1 and get P (limt→∞ s

t = s̄) = 0 2

Proof of theorem 3: Adapting the proof of proposition A in Hofbauer et al. [1981] we
prove the result. If the elasticity of Dk is less than one, then the fitnesses Gk are strictly
decreasing functions. Without restricting generality we assume that G1(0) ≥ G2(0) . . . ≥
GK(0) ≥ 0. We first compute the fixed point s̄ and show that there exists a unique C ≤
G1(0) and a unique s̄ ∈ ∆ such that

G1(p1) = · · ·= Gm(pm) = K

and p1 > 0, . . . , pm > 0, pm+1 = 0, . . . , pK = 0, where m is the largest integer k with
Gk(pk) > C.
Let G−1k (·) be the inverse of Gk(·) defined on [Gk(1), Gk(0)). For s > Gk(0) we set

G−1k (s) = 0. The function

H(c) =
K
∑

k=1

G−1k (c)

is defined for c ∈ [max1≤k≤K Gk(1), G1(0)) and strictly decreases from some a ≥ 1 to 0.
Thus, there exists a unique constant C ≤ G1(0) such that H(C) = 1. Let

s̄k = G
−1
k (C), k = 1, . . . , K.
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Then
∑K
k=1 s̄k = 1. If Gk(0) ≤ C then s̄k = 0, if Gk(0) > C then Gk(0) = K and

s̄k > 0. It follows straightforward that s̄ is a fixed point. It is the unique fixed point on the
set {s ∈ ∆ | s1 > 0, . . . , sm > 0}. In particular, if all Gk(0) are equal, s̄ is in the interior
of ∆.
Since (9) is a gradient system all solutions of the differential equation converge to a

fixed point. It remains to study the stability of all fixed points. We show that s̄ is a sink
and all other fixed points are saddles or sources.
Since Gk(0) < K for all k ≤ m and Gk(s̄k) = K for all k > m we have

Gk(0) <
K
∑

l=m+1

slGl(s̄l) =
K
∑

l=1

s̄lGl(s̄l).

Since additionally δk(s̄k) < 1, by theorem 2 s̄ is a sink.
Now let s′ be another fixed point. If Gk(s

′
k) = ∞ for some k, by proposition 4 s

′ is
attained with probability 0. Assume now that all G′k(s

′
k) are finite. Note that s

′ lies in some
boundary face where sl = 0 for some l ≤ m. Now we consider the system restricted to this
boundary face, and set

H ′(c) =
∑

k∈{l|s′l>0}

G−1k (c).

We have H ′(·) ≤ H(·). There is a unique C′ such that s′k = G
−1
k (C

′), k ∈ {l|s′l > 0}. Since
C′ ≤ C,

Gl(0) > C > C
′ >

K
∑

k=1

s′kG(s
′
k)

and by theorem 2 it follows that s′k is a saddle. 2

Proof of theorem 4 By theorem 1 the process converges a.s. to a fixed point of (7).
Since δk(sk) > 1, by theorem 2 all interior fixed points are attained with probability 0. This
argument also holds for fixed points in the interior of a boundary face. (Here we consider
the dynamics of (7) restricted to that boundary face.) Thus, the process converges a.s. to
one of the vertices.
If D′k(0) = D

′
l(0), 0 ≤ k, l ≤ K then all vertices are sinks. Let 1 ≤ k ≤ K be arbitrary

but fixed. Since the elasticities are greater than 1, we have Dl(0) = 0, 1 ≤ l ≤ K and that
Gk(sk) is monotonically increasing. Hence,

D′l(0) = D
′
k(0) = Gk(0) ≤ Gk(1) = Dk(1), l = 1, . . . , K.

Thus, by proposition 3 ek is a sink, and by proposition 8 in Posch[1994] it is attained with
positive probability. 2


