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|[IASA STUDIESIN ADAPTIVE DYNAMICS NO. 118

The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.

Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.

EEP Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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Abstract

A focus on the eco-evolutionary feedbantinually operating between a population’s evo-
lution and its environment helps to appreciatedbnerality of ESS theory. Here we illustrate,
through a sequence of four examples, how respecting such feedback in the evolutionary dy-
namics of quantitative traits may result in qualitatively unexpected outcomes. Reviewing
existing insights and complementing these with new results, we show (1) that evolutionary
matrix games are fundamentally degenerate and allow a natural unfolding, (2) that selection-
driven extinction may not be rare in nature, (3) that evolutionary epidemiology should not rely
on Ry maximization, and (4) why the occurrence of Hardy-Weinberg proportions generically
requires an evolutionary explanation.
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1 Introduction

ESS theory provides the link between evolutionary mechanisms and natural history. Its
strength lies in asking and answering deep tipues about readily observable biological phe-
nomena, be they ecological, behavioral, physiological, or morphological. ESS theory does so
by concentrating on the phenotype and its role in the interaction among organisms, while ne-
glecting genetic detail. It is through this simjgigition and focus that ESS theory facilitates a
fruitful interplay between evolutionary modedj and experimental and observational biology.

ESS theory originally arose from attempts to understand the evolutionary underpinnings of
behavioral phenotypes. In such contexts, the need to account for the phenotypes of other indi-
viduals that a focal individual will interact with was particularly evident (Maynard Smith and
Price, 1973; Maynard Smith, 1982). In this way, ESS theory helped emphasize the importance
of frequency-dependent selection for understamahatural evolutionary change: in models
for the evolution of behavior, the fitness of individuals is bound to depend on a population’s
phenotypic composition.

Approaching the feedback between a population’s composition and the underlying selec-
tion pressures from a more population dynamical angle, research in the 1970s also made
important progress in the analysis of evolutionary outcomes under density-dependent selec-
tion (Roughgarden, 1971, 1979). As it turned out, the method of predicting evolutionary
outcomes by optimizing a suitably chosen fitness function could be extended from problems
with density- and frequency-independent selectmthose with purely density-dependent se-
lection. In the former case, all fitness values are constant over time, while in the latter case
they vary with (and only with) a population’s density.

For almost two decades, these alternative approaches remained curiously disparate. Stu-
dents of evolution could either rely on optimipat methods, if they felt they could safely
ignore frequency-dependent selection, or on methods broadly referred to as ‘game theoreti-
cal,’ if they had a hunch that frequency dependence was germane to the evolutionary question
at hand. This state of affairs, however, waseaatimsatisfactory: not only did it prevent the
transparent and accurate analysis of evolutionary problems in which density- and frequency-
dependent selection both played a role, butsib &stered the hopeful belief that most prob-
lems in life-history evolution could be solvéltrough optimization methods, if only suitable
fitness functions could be identified (e.g., Stearns, 1992; Roff, 1992).

The impasse in bringing together models of evolution under density- and frequency-
dependent selection was overcome gradually. Two key ideas played a role in this process. The
first idea, already foreshadowed in the context of game theoretical and optimization methods,
is to envisage fitness always as a function of both phenotype and environment. To fully ap-
preciate this point and make it operationasugable formal definition of ‘environment’ had
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to be established. Since the environment experienced by an individual is bound to depend on
the current state of its population, this environment may be affected, first, by the population’s
phenotypic composition, and second, for an unstructured population, by the population’s total
abundance. The first dependence applies whenever selection is frequency-dependent, and the
second one whenever selection is density-dependent. (In structured populations, the neat di-
vide between the two types of selection becorleirred whenever densities of life stages
affect phenotypes differentiallyln general, the evolutionary environment of an individual is
to be described such that all outside infllesnonpinging on any individuals contributing to
the dynamics of the focal population, now and in the future, are covered. The evolutionary
environment thus defined differs from the argtaneous environment familiar from describing
population dynamics. For the latter, only the current influences on the individuals in the focal
population are considered. Both formal notions of environment have been inspired by the the-
ory of physiologically structured populations (Metz and de Roos, 1992; Metz and Diekmann,
1986; Diekmann et al., 2001, 2003). The second fideiitating a merger of game theoretical
and optimization methods is to derive the fitness functions to be analyzed from an individual-
based view of the underlying population dynamids earlier work, such functions had often
been instead assumed a priori. Taken togethese ideas motivated the introduction of the
so-called invasion fitness of a given phenotype in a given environment, defined and derived —
analytically, numerically, or epirically — as the phenotype’s asymptotic exponential growth
rate in the considered environment (Metz et al., 1992).

The characteristic idea of ESS theory iattthe phenotypes currently present in a commu-
nity are continually challenged by variants appearing in such small numbers that they do not
perceivably perturb the community’s attractor. An ESS is a phenotype, or set thereof, that
cannot be invaded by any such rare variants.siowgfitness helps to predict the dynamics of
invasion attempts. In an ecologically stationary community, the invasion fitness of all present
phenotypes equals zero by definition (otherwise, the community would not be stationary). By
contrast, rare phenotypes with positive invasion fithess may invade (usually after many un-
successful trials, owing to demographic ststitéty in the invader population), while those
with negative invasion fithess cannot invadaléss the invaded population as a whole is so
small that it is subject to considerable demographic stochasticity). In principle, the fate of
variants with zero invasion fithess would haeebe determined from higher-order terms —
however, as we shall argue in Section 2, the case of variants that possess zero invasion fitness
and are not equal to a present phenotype is so non-generic that it can safely be neglected for
most intents and purposes.

Nothing said so far is overly new. Not only that, there are many earlier studies that have
implicitly shared these ideas and have contributed to their practical development. Yet it seems
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that the unifying potential resulting from the perspective established above remains underex-
ploited. The key notion here is that of the eco-evolutionary feedback loop, continually
operating between a population’s evolution and its environment: while the environment de-
termines current selection pressures, these pressures change a community’s phenotypic
composition, which in turn alters its environment. Under such feedback, fitness landscapes are
varying in shape as evolutionary changes unfeidexplicitly introducing this feedback loop,
based on a suitable formal notion of environmardny disparate evolutionary investigations
and phenomena can be brought under one heading, thus unifying the analysis of large classes
of model families. Perhaps even more importantly, the evolutionary properties of realistically
complicated models are often becoming more accessible through this natural conceptual de-
composition of the ecological theatre.

ESS theory today has clearly moved beyond earlier models based on ad hoc payoff matri-
ces or unproven optimization principles. In thische we tout the idea that the full generality
of ESS theory can best be brought out by concepts and tools designed to analyze eco-
evolutionary feedback. By firmly rooting evolutionary predictions in the underlying popula-
tion dynamics, fairly realistic ecological scenarios can be tackled. Below, we will highlight a
range of evolutionary surprises resulting froratsenhanced levels of ecological realism. The
examples presented in the following four sections are also meant to illustrate some of the
technical principles that, in our opinion, underlie the generalization of ESS theory.

2 The fundamental degeneracy of matrix games can be unfolded

The straightforward tractability of matrix games and ESS conditions has enabled game theory

to become an important and popular framework for modeling phenotypic evolution. This suc-

cess, however, has come at a price, for two reasons:

= First, beyond stylized games of behavior, continuous strategies usually offer a more con-
vincing rendering of real evolving traits than discrete strategies. By contrast, in game
theoretical models of biological evolutioopntinuous strategies are typically introduced
and analyzed merely as mixtures of pure strategies.

= Second, for many questions in evolutionary ecology it is necessary to consider the full
population dynamical effects of strategies. In models based on matrix games, an attempt is
made, instead, to infer the effects of stragegdn fitness directly from payoff matrices.
Such an approach also complicates the integration of realistic types of density regulation
into models based on matrix games.
Whenever applications of evolutionary gatheory consider mixed strategies in matrix

games, a peculiar degeneracy raises its ugly head. This degeneracy directly follows from how



matrix-game payoffs of mixed strategies are determined. Let us consider a resident population
with mixed strategyx. Here, the components of the vectordescribe the probabilitieg

with which the resident players follow any one kf pure strategies =1...,k, with

Y. x =1. The component$V, of the payoff matrixw describe the payoff received by a
player adopting the pure strategyagainst a player using the pure stratggyThe average
payoff of players with a rare variant strategy is x, Wx (where' denotes transposition), so

that their excess payoff relative to a resident playefr(is,, X) = x, Wx— x'Wx. Since it is as-
sumed that variants witlf >0 can invade, while those with <0 cannot, the sign off

carries the same information as that of invasion fithess in models with explicit population dy-
namics. It is already clear from this observation that the game-theoretical case is rather
special: whereas invasion fitness functions may be (and usually are)emonhmxed strate-

gies in matrix games inevitably lead to functiohghat are linear in botlx andx, .

It is instructive to explore the consequences of this degeneracy by considering games with
just two pure strategies. Fdk =2, a single adaptive trait sufficesy= (p,1-p) and
X, =(p,,1-p,),

£(p, P) = [P, PW, + P, L= PW,, + AL p,) PV, + A p, )(L— PIVL,]

~[pW,, + pl— pPW,, + (L p) pW,, + (L~ p)*W,,] (1)

= (P, = PPy —W,;) + (- p)(W, — W5, )] .
From this we can see thatf(p,p)=0 for p,=p and for p=p with
p =W, —W,) /W, -W, +W,, —-W,,) . Figure 1a illustrates the resultant pairwise invasibil-
ity plot for 0< p" < 1. This plot highlights two geometric consequences of the linearitly:of
the non-diagonal zero-contour curve 6f at p=p is both straight and vertical. In other
words, in a population of players following the mixed stratggy all variant strategies are
strictly neutral, f (p,, p') = Ofor all p,. This neutrality extends to the effect that all mixtures
of mixed and/or pure strategies resulting in a population with strapeggre evolutionarily
neutral as well. These observations reflect mega result of game theory, widely known as
the Bishop-Cannings theorem (Bishop and Qagsi 1978). It is thus immediately clear that,
when viewed in a broader context, the treatment of mixed strategies in matrix games is struc-
turally unstable: the slightest variation in model structure is likely to destroy the degenerate
geometry depicted in Figure 1a, by bendind/antilting the non-diagonal zero-contour curve
away from a straight and vertical line. At the same time, these variations remove the evolu-
tionary neutrality of mixtures with population strategy.

Below we show how the described degeneracy is readily overcome when invasion fitness
is derived from population dynamics into whiclalistic aspects of ecological interactions are
incorporated. To keep these discussions as concrete as possible, we focus on the classical
hawk-dove game for illustration (Maynard Smift982). In this game, players adopt interac-
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tion strategies that are either selfish (hawk) or cooperative (dove). When a hawk plays against
a dove, the hawk gains a reward of vaWie 0, while the dove gains nothing. When two
doves play against one another, they share the reward, each gaihirBy contrast, when

two hawks interact, both of them galfv —C) on average, wher€ >0 measures the cost

of hawkish encounters. Witlp and p, denoting the probabilities with which the hawk strat-

egy is used by resident and variant playesspectively, the rare variant's excess payoff is
given by

f(p,, P)=%(p, - PV - pC) , )
implying p' =V /C. Thus, whenever the co§€ exceeds the reward , evolution is ex-
pected to converge on the mixed stratggy(for C <V, evolution will instead increase
up to p=1). Again, oncep’ is resident, all variants are neutral.

We now examine three slight variations of the classical hawk-dove game. First, we con-
sider a simple population dynamical embedding of the game; second, we relax the assumption
that rewards are fixed; and third, we relag #tssumption of fixed interaction rates. For sim-
plicity, we consider discrete-time models witbn-overlapping generations. We assume that
each individual has an intrinsic reproduction raf& 0, which is enhanced by payoffs from
the hawk-dove game and diminished by density regulation. For a rare variant sprategy
resident population with strategy at population dynamical equilibrium, this results in a re-
production ratio of R+ r[V(1- p+ p,)—Cpp,]}/ F(p), wherer >0 is the per generation
rate at which individuals interact by engagin the hawk-dove game. The density-regulating
factor F is obtained from observing that the resident’s own reproduction ratio etjadls
population dynamical equilibrium, which givés(p) = R+1 r[V —Cp®]. Notice that the den-
sity dependence thus considered is selectively neutral, in that it affects all phenotypes alike.
Consequently, the hawk-dove game’s degeneimqyeserved in this simple population dy-
namical embedding. Based on these assumptiwaxbtain the model’s invasion fithess as
the logarithm of the variant’s reproduction ratio,

R+3rV({1-p+p,)-Cppl
R+1rV -Cp’] '

f(p,, p)=In ®3)

It is straightforward to verify #t (3) is sign-equivalent to (2).

As a further variation, we now relax the assumption that rewards in the hawk-dove game
are strictly fixed. In realistic ecological settings, it is likely that such rewards are fluctuating
between generations, reflecting, for exampleiat@ns in environmental conditions between
years. To keep the treatment transparentcavisider the simplest such fluctuation by assum-
ing that the reward can switch between just two valies, (L+c)V andV, = (L+c)'V,
where c> 0 measures the contrast between these two rewards. In each generationy,values



and V, are attained with equal probability. Whereas this perturbation of the original model
thus leaves the geometric mean of the reward invariant, the model’s invasion fitness, obtained
from the geometric mean of the reproductiotioraesulting for the two reward values, is
changed to

2 R+ 3rV,(L- p+ p,)-Cpp,]
L R+1r[V, - Cp’] '

Figure 1b illustrates a resultant pairwise invasibility plot. It turns out that the slightest reward

(P P)=3In @)

contrast removes the formerly obgedl degeneracy. Specifically, for agy- 0, the slope of

the non-diagonal zero-contour curve éf is negative (i.e., the curve is tilted counter-
clockwise), while its curvature is positive (i.e., the curve is concave from the right). Accord-
ingly, the previously existing plethora of evolutionarily neutral mixtures has collapsed to a
unique monomorphic attractor. This delicate gesty underscores the structural instability

of the original model.

So far, we have assumed that the natat which individuals interact through the hawk-
dove game is strictly identical for all playetdowever, in ecologically realistic circum-
stances, it is quite likely that players are subtly or significantly more or less likely to engage
in such interactions, depending on their telgg. Doves may avoid interactions and hawks
may seek out engagements, or vice versa. To explore the consequences of such variation with
some generality, we expand theeraction rate$or strategiesp up to second order around
p,

r(p)=ro+(p-pPIn+(p-p)°r (5a)

with r, >0, and update the model’s invasion fitness accordingly,

R+37(p,. PIVA-p+p,)-Cppl (5b)
R+ir(p)V -Cp?]

Here the choice of (p,, p) =+/r(p,)r(p) reflects the assumption that engagements are initi-

f(p,,p)=1In

ated bilaterally and symmetrically. Figure 2 illustrates the resultant pairwise invasibility plots.
As can be seen, the slightest departure frotfiorm interaction rates removes the game-
theoretical degeneracy. Notice that in thisdtvariant of the model the non-diagonal zero-
contour curve off can have either positive or negative slope, and also its curvature can ei-
ther be positive or negative.

More in general, the third model variant shows how the degenerate game-theoretical case
serves as the organizing center (Golubitskgl &chaeffer, 1985) of a rich bifurcation struc-
ture. Since the signs of both slope and curvature of the non-diagonal zero-contour curve of
invasion fitness qualitatively affect evolutiogigredictions, the local unfolding of the game-
theoretical degeneracy always requires vanmatf at least two model parameters. Using the
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non-diagonal zero-contour curve’s slope and curvaturp-atp as generic local unfolding
parameters, the degeneracy’s unfolding can be depicted as shown in Figure 3. Notice that, in
this unfolding, transitions from negative to positive slopes are of particular relevance, since
these correspond to the transformation of an ¢ieolarily stable strategy into an evolution-
ary branching point (Metz et al.,, 1996; @eret al., 1997). Consequently, expected
evolutionary outcomes fundamentally differ on either side of such a transition: for an evolu-
tionarily stable strategy, a monomorphic mixed strategy is expected to evolve, whereas
evolutionary branching points may give rise to population-level dimorphisms of strategies.

Interestingly, the members of the dimorphisms eventually emerging after evolutionary
branching may both be either pure or mixed strategies. A full analysis distinguishing the vari-
ous cases then enables a much more conclusive prediction of the eventual evolutionary
outcomes than is possible based on matrix games. Unfolding the degeneracy of mixed strate-
gies in matrix games thus results not only in the removal of a perilous structural instability,
but also offers an additional conceptual benefit: whereas, in matrix games, mixed strategies
realized probabilistically at the level of inttiuals or polymorphically at the level of popula-
tions are indistinguishable, instructive insights into the interplay between these biologically
rather different realizations of diversity candsned once the game-theoretical degeneracy is
overcome.

In this section we have shown how a more extensive population dynamical embedding and
the addition of salient elements of ecologieslism help to unfold a fundamental degeneracy
of evolutionary matrix games. We suggest ttie only features of an evolutionary game
likely to be biologically relevant are those that stay intact under such an unfolding.

3 Selection-driven extinctions need not be rare

For a long period during the @&nd 28" century, evolution was thought to operate so as to
benefit the affected species. Accordingly, it was widely expected that, for example, life-
history evolution would always enhance a pagioh’s viability. Such was Darwin’s confi-
dence in this prowess of adaptive evolution that he suggested “we may feel sure that any
variation in the least degree injurious would be rigidly destroyed” (Darwin, 1859, p. 130) and
"Natural selection will never produce in a being anything injurious to itself, for natural selec-
tion acts solely by and for the good of each” (Darwin, 1859, p. 228).

Notions of optimizing seleain are underlying landmarks of evolutionary theory devel-
oped during the Modern Synthesis, like Fisher's so-called fundamental theorem of natural
selection (Fisher, 1930), or Wright's notion of hill climbing on genotypically or phenotypi-
cally defined fitness landscapes (Wright, 198267). Also Levins’s fithess-set approach to



the study of bivariate evolution (Levins, 1962, 1968), still enjoying widespread recognition in
life-history evolution (Yodzis, 1989, pp. 324-351; Case, 1999, pp. 175-177; Calow, 1999, p.
758), is based on the assumption that, within a set of feasible phenotypes defined by a trade-
off, evolution will maximize a population’s fitness.

The perception that evolution worked for the good of the species was also common among
field biologists, often based on implicit or explicit ideas of group selection, which found their
culmination in the work by Wynne-Edwards (1962). By the 1970s, explaining adaptations in
terms of species-level benefits had falleto idisrepute (Williams, 1966). While most biolo-
gists are thus aware that adaptive evolution, in principle, can undermine a population’s
viability, and while such phenomena are regularly discussed in the context of the ‘tragedy of
the commons’ (Hardin, 1968), the evolutionadtruism (e.g., Axelrod and Hamilton, 1981),
or the evolution of sex (e.g., Maynard Smith7&) the role of adaptive life-history evolution
in causing extinctions has received but limited attention to date.

A notion still lingers in the biological community that it should be only under very excep-
tional circumstances that adaptive evolution worsens a population’s lot to the extent of
causing extinction. Earlier ESS theory (e.g., Maynard Smith, 1982) did not address this issue,
since classical matrix games are not concerned with the impact of strategies on population
density. Also modern applications of ESS ttyelsased on the replicator equation (Taylor and
Jonker, 1978; Schuster and Sigmund, 1983; Hofbauer and Sigmund, 1998) tend to focus at-
tention on changes in the frequencies, rather than the density, of strategies. For an alternative
approach to game dynamics that aimeim@tiding densities, see Cressman (1990).

While classical ESS theory, then, does not easily lend itself to the study of selection-driven
extinction, frequency-dependent selection, astsiently emphasized aspect of ESS theory,
plays an important role in such processesgiency-dependent selection is crucial for under-
standing selection-driven extinction becauseallows the invasion of populations by a
strategy that is beneficial to individuals asdaas that strategy is rare, while ruining the popu-
lation’s viability once that strategy has coeme common. Models of selection-driven
extinction cannot do without density-dependeealection either: if fitness values are inde-
pendent of density, equilibrium population ndéies, and thus extinctions, cannot be
predicted. It thus becomes clear that modelseadéction-driven extinction need to include
both frequency- and density-dependent selectionther words, they must incorporate a suf-
ficient degree of ecological realism.

A verbal and lucid example of a mechanisrpatae of causing selection-driven extinction
comes from considering overtopping growth iargs. Taller trees gehore sunlight while
casting shade onto their neighbors. As selactiauses the average tree height to increase,
fecundity declines, as more of the tree’s energy budget is diverted from seed production to
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wood production. Under such circumstances iy miao take longer for trees to reach matur-

ity. Thus, arborescent growth as an evolutionary response to selection for competitive ability
can cause deterioration both in a population’s carrying capacity and in its intrinsic growth
rate. The logical conclusion of such a process may be population extinction, as was first ex-
plained by Haldane (1932). Various later authors have explored eco-evolutionary models of
selection-driven extinction based on similar edjents. Below we provide a review of three
salient studies.

Matsuda and Abrams (1994a) analyzed a Lotka-Volterra model in which individuals are
subject to asymmetric competition and a carrying capacity that depends on their body size.
Specifically, the competitive impact expamced by an individual with body size, in a
population with mean body size was assumed to bg€x,, X) = exp(h, (X, — X)), and the
carrying capacity of a population monomorphic in body sizg, was
K(X) = K, expth, (X,)) . The nonlinear functiorh, preserved the sign of its argument, and
the non-negative functioh, went to infinity when its argument did. Matsuda and Abrams
(1994a) concluded that, under these circumstarackEptive evolution continues to increase
body size indefinitely — provided the advantage of large body size (as describgdl ibybig
enough and the cost of increased body size (as described)by small enough. Since large
body sizes resulted in small carrying capacities, adaptive evolution thus perpetually dimin-
ished population density, a phenomenon Mad#s and Abrams (1994a) called ‘runaway
evolution to self-extinction’. Since populationrdgy in this model never vanished (it just
continued to deteriorate), additional stochagdictors were required to explain extinction.
Mathias and Kisdi (in press) modeled such extinctions explicitly.

In a model by Dercole et al. (2002), the per capita growth rate in a monomorphic popula-
tion with adult body sizex and population densityN(x )as a logistic component
r(x) —a(0O)N(x), with the monotonically decreasing functioiix capturing the negative
influence of larger body size on fecundity, and witfD)N(x) measuring the extra mortality
caused by intraspecific competition betweenviiials of the same body size. As in the pre-
vious model, the functionr measured the competitive impact between individuals: for
phenotypesx and x,, the competitive impact ok on x, is a(x—X,)N(x), wherea in-
creases withx— x,, implying asymmetric competition. Dercole et al. (2002) also incorporated
an Allee effect by reducing per capita growth rates in proportiod ()° /[1+ N(x)* . Thip
Allee effect caused bistability in equilibrium population densifiex : fo) low x, only a
high-density equilibrium existed, for higk, only a low-density equilibrium existed, and for
intermediatex, the two stable equilibria coexisted. The selection pressure @ayuld be de-
rived from the assumptions summarized here and turned out to possess two antagonistic
components: the assumed shape davored small adult body size, whereas the asymmetry
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of competition favored larger body size. Consagly, strong competition at the high-density
equilibrium increased body size evolutionarily,ilwihe dominance of the fecundity effect of
body size at the low-density equilibrium decreased body size. The interplay of ecology and
evolution in this model thus brought about an evolutionary hysteresis: body size increased at
the high-density equilibrium until the populatidnopped to the low-deitg equilibrium, at

which point body size decreased until the population switched back to the high-density equi-
librium. At the low-density equilibrium, demographic or environmental stochasticity was
expected to result in a greatly elevated extinction risk.

Also a model developed by Gyllenberg and Parvinen (2001) was based on asymmetric
competition and the incorporation of an Allee effect. Their model is similar to the previous
one, except for three features: fecundi)x) was assumed to be peaked at an intermediate
value of body sizex, a trait- and density-independent mortaldywas considered, and the
Allee effect reduced fecundity by the factbi(x) /[1+ N(x . JJhe model's invasion fithess
was thus given by

F(%,,%) = b4 )N (x) /[1+ N* (x)] - d — ar(x— X, )N"(x) . (6a)
The invasion fitness yields the model’s equilibrium density and selection gradient. The equi-
librium density N*(x )is inferred from f(x,x) = Q

N* (%) =0, {b(x) - d - (0) £ /[b(x) - d — a(0)]* — 4de(0) [} /[2ex(0)] (6b)
The extinction equilibriumN*(x) = Qvas stable for alkk. For intermediate values of, two

positive equilibria coexisted, with the high-density one being stable, separated from the ex-
tinction equilibrium by an unstable low-density equilibrium. The model’s selection gradient,

909 =5 (6, X, _, =D (IN"() /[L+ N ()] - &' ON"(¥) (6¢c)

was positive for allx, provided thatz'(0) was sufficiently negative, i.e., whenever competi-
tion was sufficiently asymmetric. The adaptive dynamics of body sizéhus drove the
population to the threshold at which the two positive equilibria vanished by collision: above
this threshold, only the stable extinction equitibn remained. In this model, therefore, adap-
tive evolution did not reduce population density gradually to zero, as in the two previous
examples, but instead caused the population to go extinct abruptly. Figure 4 illustrates this
scenario.

Such abrupt transitions to extinction, caused by directional selection, have been termed
‘evolutionary suicide’ by Ferriere (2000). More precisely, evolutionary suicide is defined as a
trait substitution sequence driven by mutatand selection that takes a population toward
and across a boundary in a population’s trait space beyond which the population cannot per-
sist. Once the population’s traits have evdhaose enough to this boundary, variants can
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invade that are viable as long as the curresitieat trait value abounds, but that are not vi-
able on their own. When these variants start to invade the resident population, they initially
grow in density; once they have become sufficiently abundant, concomitantly reducing the
former resident’s density, the variants bring about their own extinction.

It thus appears that the ecological requirements for selection-driven extinction are easily
met. Whenever competitive ability trades off strongly with longevity or fecundity, and com-
petition is sufficiently asymmetric, directional selection on traits underlying competitive
ability is expected to reduce population density. If the resultant densities fall below the
threshold density of an Allee effect, or if they imply a much elevated risk of accidental extinc-
tion, the population is doomed. The potentiaiquity of selection-driven extinctions is
underscored by other examples of extinctions edsy adaptation in different traits, includ-
ing anti-predator behavior (Matsuda andrdths, 1994b), sexual traits (Kirkpatrick, 1996;
Kokko and Brooks, 2003), dispersal rates (Gylleghat al., 2002), mutualism rates (Ferriere
et al., 2002), cannibalistic traits (DercoledaRinaldi, 2002), maturation reaction norms (Er-
nande et al., 2002), levels of altruism (Lell@ed et al., 2003), and selfing rates (Cheptou
2004); see also the review by Parvinen (2066)ythermore, Dieckmann and Ferriére (2004)
showed, by examining ecologically explicit multilccmodels featuring either diallelic loci or
continua of alleles, that the incidence of evioludiry suicide is by no means restricted to phe-
notypic models of asexual evolution, but robusttgurs also when sexual inheritance is taken
into account.

It is not accidental that two of the exampldescribed in some detail above involved dis-
continuous transitions in population density at caittrait values. In the context of a model of
dispersal evolution in metapopulations, Gyllerg et al. (2002) proved that discontinuous
transitions to extinction, implying catastrophifuncations, are a prerequisite for evolutionary
suicide. This finding applies more generally: wherever a population goes to extinction
through a continuous transition, it cannot undergo evolutionary suicide (Gyllenberg and Par-
vinen, 2001). This is easily shown for cases in which a population’s deMsdapd adaptive
trait x are both one-dimensional (Dieckmanrddrerriere, 2004). The generic continuous
transition to extinction then is the transcritical bifurcation, in which a positive equilibrium and
the extinction equilibrium collide and exchange their stability at a critical trait value the
vicinity of x., population dynamics can always be written-@8l =[(x—x.)— N/K]rN,
where K >0 scalesN andr >0 scalesZ N (up to redirection ofx; Guckenheimer and
Holmes, 1997, p. 145). With the per capita growth rate of a variant with trait xalirean
environment with population densitd thus being given by(x, —x.) — N/K]r, and with
the equilibrium population density of a resident population with trait valaes, vanishing,

N =0, we obtain the invasion fitnes$§(x,, x.) = (X, —X.)r for the rare variant competing
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with the critical resident. Indalition, the consistency conditiorf(x,x) =0 for ecological
equilibrium has to be fulfilled for alk. When making the generic assumption tHk, , x )
has a leading linear order arourgx = x_, i.e., f(x,,X) = ¢ X, +cX, the coefficientsc, and
c can be determined from the two constraintéx,,x.)=(x, —x)r for all x,, and
f(x,x) =0 for all x, which yields f(x,,x) =(x, —X)r. The selection gradient operating on
the adaptive traik is thus given byZ- f(x,, x)|yV:X =r, which is always positive. This means
that adaptive evolution takes away fromx, by making it larger, thus increasing the equilib-
rium population density fromN"(x,)=0 to N'(x)=(x—-x)K. Therefore, adaptive
evolution in this system can never cause evolutionary suicide by drviogvard the critical
trait value x_. Similar conclusions were reached by Gyllenberg and Parvinen (2001) and by
Webb (2003).

In this section we reviewed how the proper population dynamical embedding of models of
adaptive life-history evolution, including both frequency-dependent and density-dependent
selection pressures, results in predictions tgfcs@n-driven extinction under a wide range of
ecologically plausible scenarios. We proposa the commonly accepted null hypothesis of
population extinctions in the fossil record to have resulted from ecological or externally im-
posed environmental changes needs to be reconsidered: at the present state of knowledge,
adaptive evolution cannot be ruled out as a potentially widespread agent of population extinc-

tions.

4 Evolutionary epidemiology cannot rely on Ro maximization

In this section, we provide a concrete illugta of the very general, and hence unavoidably
abstract, concept of the environmental feedback loop, by analyzing a few simple but exem-
plary cases. By focusing on the evolution of virulence, these examples also demonstrate the
potential for mutual illumination between applied and abstract ESS theory.

For a long time, it was close to dogma in epidemiological theorizing (e.g., Anderson and
May, 1982, 1991) that the main basis for the study of virulence evolution should be sought in
the maximization ofR,, defined as the number of secondary infections engendered by a pri-
mary infection in an otherwise infection-free population. To this éfdis considered as a
function of the disease’s demographic parametengh in turn are envisaged as functions of
some underlying trait vector that is supposed to be under evolutionary control.

At the opposite extreme of the abstractioactpum, Metz et al. (1996b), extending results
by Mylius and Diekmann (1995), proved that #88Ss to be characterizable in terms of an
optimization principle it is necessary and sufficient that
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(A) there exists a functiog: RxE — R, with R denoting the real numbers afdthe
realizable environmental conditions, incseey in its first argument, and a function
v X — R, with X denoting the set of potential values of the trait vector, such that

signp(x,, E) =signg(w(x,),E) (@)
with p(X,,E) denoting invasion fitness, defined as the asymptotic per capita rate of popula-
tion increase of a variant with trai in a resident environmeri .
Metz et al. (1996b) also proved (A) to be equivalent to
(B) there exists a function: X xR — R, decreasing in its second argument, and a func-
tion ¢: E — R such that

sign p(x,, E) =signzn(x,,¢(E)) . (8)

Conditions (A) and (B) can be paraphrased #evis: (A) means that the trait values af-
fect fitness effectively in a one-dimensional monotone manner, and (B) means that the
environment acts effectively in a one-dimensional monotone manner. The reason for the epi-
thet ‘effectively’ is that the one-dimensionalness and monotonicity only need to pertain to the
range of fitness values that matter in E®8stderations, i.e., to those surrounding the change
from negative to positive values.

Relations (7) and (8) can be related to eablkrdby the observation that, if an optimization
principle exists,

(C) it is possible to choose the functiopgnd i such that

signp(x,, E) =sign(y (x,) - 4(E)) , €)
where ¢ and i are connected through the relation
y (X) = #(Er (X)) (10)

with E
nity dynamics for the parameter vector This of course implies that a suitable functign

.(X) denoting the environment engendered by any attractor attained by the commu-
will yield the same value for all the attractors that may possibly by attained Wyith this
additional notation in place, we can also be more precise about tBeddatalizable envi-
ronmental conditionst = E_,, (X). For environments outside this set, invasion fitnesaay
assume any shape, just as the supposed existence of an optimization principle does not impose
any restrictions orp except locally around the subsettok X for which p(x,,E) = 0.

To better connect with the notation used in the previous two sections, it may be helpful to
observe that the environment-dependent andleasitrait-dependent notions of invasion fit-
ness (denoted throughout this article pyand f , respectively) are related to each other by
f(Xx,,X) = p(X,, E,, (X)), for any variant traitx, and resident traik .

14



Naturally, results (A) to (C) hinge on the interpretation of the term ‘optimization princi-
ple’. The latter is defined by Metz et al. (B89 as a function from trait values to real
numbers such that, for any possible constrainthentraits, the ESS(s) can be calculated by
maximizing this function. The proviso in theepious sentence mirrors the usual practice of
combining an optimization principle, derivdm the population dynamics, with a discussion
of the dependence of the evolutionary outcanethe possible constramtDetails of these

considerations may be found in Metz et 4996b), available at http://www.iiasa.ac.at/cgi-
bin/pubsrch?WP96004Vhat matters here is that, while condition (A) is close to trivial, the
equivalent condition (B) and relation (10) inndition (C) provide a useful tool for either de-

riving optimization principles or proving theon-existence of such principles, for large
collections of population dynaral models. Below we will demonstrate their application by
means of some simple examples.

Just as evolution maximizes the functipnappearing in (A), it minimizes the functigh
in (B). Therefore, and sincg can be interpreted as a measaf environmental quality, the
latter has been dubbed a pessimization principle by Diekmann and Mylius (1995): in the end,
the worst attainable world remains, together with those types that can just cope with it.

As an aside, it may be worth pointing out that the pairwise invasibility plots for eco-
evolutionary models allowing an optimization principle exhibit an immediately recognizable,
very special geometry, as illustrated in Figure 5. This geometry is a direct consequence of the
linear pre-order established by any optimizagwimciple and illustrates, in a visually easily
recognizable manner, the structural instability of optimization models.

The epidemiological models that we consibelow have been chosen for the simplicity of
the calculations they engender. In particular, their community dynamics possess unique inter-
nal point attractors (which is almost a sine qua non for obtaining analytical results). That these
models also allow explicit solutions for the equilibria is a boon (when no explicit solutions are
available, the same results can usually be derived through an implicit differentiation of the
equilibrium equations). For a discussion oé tepidemiological implications and a similar
analysis of another suite of models see Dieckmann (2002).

We start out by giving a full population dynamical description of the ecological context,
before reverting to considerations focusing diected individuals. It is the individual-based
dynamics of the latter that provides the basis for the classification of the environmental feed-
back loop based on its consequences for tB&sEof disease traits. The details of the
population dynamics surrounding infected individualeelevant only in séar as it acts as an
environment affecting the population dynamisahavior of the infected individuals.

To characterize the potential instantaneous environmental conditions to which infected in-
dividuals may be exposed, we follow standard notation by letEirdenote the density of
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susceptible individuals, whilé denotes the density of infected individuals. After specifying

the dynamics of this instantaneous environment, the corresponding evolutionary environments
can be calculated from the attractors of thisatdyics. Infections occur according to the sim-

ple law of mass action, with a fixed rate constgntinfected individuals do not recover but

die at a per capita rate, acting on top of the per capita death rate experienced by susceptible
and infected individuals alike. In the absence of the disdasé),, the population grows in a
density-dependent manner, with per capita birth bgteh, (S,0 angd per capita death rate

d, +h,(S0), with b,>d,>0. The functions h, and h, both increase inS, with

h, (00) = h, (00) = 0. The full population dynamical equations are then given by

ds dl
E:[b(S,I)—d(S,I)—ﬂI]S,E:[ﬁS—a—d(S,l)]l , (11a)
with
bS,1)=b,—h,(S,1), d(S,1)=d, +h,(S,I) . (11b)

(The implicit assumption that infected individuals are not allowed to reproduce greatly simpli-
fies the proofs of the attractivity of the equilibria, but can probably be relaxed.) The
parametersy and g are assumed to be under evolutionary control by the disease (evolution in
host-controlled traits is not consiéer here). As usual, we assumeand S to be connected
by a constraint;3 cannot become too high and simultaneously not too low, which can be
expressed ag(a,) <m with g increasing ing and decreasing i&. As evolution acts to
increasef and decreaser, it will quickly run into this constraint. From there on, evolution
will effectively be restricted to the curve(e,f)=m, alternatively parameterized as
p=p(a), or as(a(x), f(x)) for some scalar physiological trait

Within the general class of models (11), we consider four exemplary cases,

@ hGS)=x(S+1),h(S,1)=0, (i) h,(S,1)=0,h,(S,1)=%S,

2 . (11c)
(iii) h,(S,1)=0, h,(S,1) =457, (iv) h(S,1)=0,h(S,1)=x(S+1).

These model families have been rigged so thatmodel (i) andi{) the environmental
feedback for the disease is one-dimensional monotone. According to conditions (A) and (B),
these models thus support an optimization principle. For model (i) the optimization principle
is equivalent (i.e., monotonically related) &y, while for model (ii) this is not the case. For
model (iii) the environment feedback acteeatimensionally but nahonotone, and for model
(iv) it acts two-dimensionally. It should be understood that the specific examples in Equation
(11c) are chosen primarily for didactical purposes. For their individual-based underpinning
one may think of population regulation through figgt For models (i) and (iv) fighting may
be initiated by all individuals, whereas for models (ii) and (iii) infected individuals are as-
sumed to suffer from fights without being able to initiate such fights themselves. Model (iii) is
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based on the assumption of aggression incredisi@arly with aggressor density. Fighting, of
course, may here be replaced by amepform of interference competition.

Since we only have to deal with point atttors of the community dynamics, we can use
R, the lifetime per capita production of newselise cases by a variant disease case, as a
proxy for invasion fitness. We start by expressi@s a general function of the variant traits
X, =(a,,p,) and of the variablesS(l) parameterizing the potential environmental condi-

tions,
H . _ ﬂvS HH . _ ﬂvs
(i) R(av,ﬂv,S,l)—av+do ) R(a”’ﬂ“’s’l)_—av+do+;<s’ .
en___ AS . o .S
(”I) R(av’ﬂv1sll)_av+d0+’(sz ’ (IV) R(awﬂvisll) OCV+dO+K'(S+I).

It is only later that we will confine attention to the realizable environments, given by the equi-
librium values(S' (a, 8),1” (a, B ))produced by the possible residents (., 8 . )

To derive firm conclusions from (12), we hatwemake sure that the dynamical equations
(11) indeed have unique equilibrium points asirtlonly internal attractors. This appears in-
deed to be the case for models (i), (ii), and. (Ar model (iii), bistability can occur, with the
state space divided into the basin of an intelolly stable equilibrium and the basin of the
disease-free boundary equilibrium. Since theestants about ESSs to be made below are
predicated on the presence of the diseassetistay true, though wsaus, in the absence of
that disease. All conclusions to be derived from (12) will thus be valid.

For model (i), R increases withS. So the optimization principle can be constructed di-
rectly from (10). MinimizingS<', which can easily be seen from (11) to yi€ld= (a +d,)/,
should thus be equivalent to maximizipga, ) =—S =—(a + d,)/A3. To calculateR, for this
model, we observe thaR,(a,f) = R(a,5;$,,0)= S /(e + d,), with S denoting the equilib-
rium value for € in the absence of the disease. It is not difficult to see Rhand they
resulting from our general construction are indegshotonically related, independently of the
value of S;.

For model (i), R is again monotone irg. With S =(a+d,)/(f—«), we find that two
equivalent optimization principles can be constructed as counterparts in trait space of mini-
mizing S y=—(a+d)/(f-«x) and y=(B-«)/(a+d,). However, neither of these is
equivalent to maximizingR, = S, /(a + d, + kS;) = S(b, — d,) /[x(a + b,)], where we used
S, =(b,—d,)/x as for model (i). To see this non-equivalence, it suffices to observe that the
contour lines, defined bR («,f) = Ry(«,,5,) and w(a,p) = (e, p,) for given (a,,5,), dif-
fer, as can be seen from the lack of coincidence in their derivatieg,#}), calculated via
an implicit differentiation of the defining relationde/df = (ke + b,) /(B,x) for R,, which
differs fromde /dg = (a, + d,) (5, — k) for w.
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The fact that invasion fitness in model (iii) is non-monotone in any possible single scalar
summary of the condition of the environment, and that the evolutionary environment in model
(iv) is essentially two-dimensional, can ady be guessed from (12). However, to prove
these statements, we have to deal with the fact that, for instance, in modelgfiguld be
non-monotone relative to whatever summary variable, if its domain is restricted to the realiz-
able values ofS and in addition to an infinitesimal neighborhood of those combinations of
(a,,B,) and S (a,p) for which R(e,, 5,;S (a, §)) = L Doing so involves many technicali-
ties. These are collected in Appendix A. The reason for going through the motions there is
that the utilized techniques are representative for a class of techniques that allow dealing with
much more difficult problems of a similar ilk.

For the more biologically oriented reader, we add a small dessert in the form of a fifth
model. The fact that for models (i) torfithe ESS cannot be calculated by maximizRg
may not pass the naive practitioner unnotjceslin these models maximization Bf gives
the counterintuitive result that the outcome of the maximization depends in an essential man-
ner on the value of,. So theR,-maximization strategy seems harmless: just maxirfize
and if you cannot do so independentlySf start thinking a little better. Our last example is
specifically geared to deatith this potential objection against our denouncemenRgpf
maximization (for further corroborative examples, see Dieckmann, 2002). The fifth model is
defined by

V) §=[b(s,l)—do—ﬂ|]3 %:[ﬁs—ama)—do]l, (13a)

with

bS, 1) =by[1- KS+1)], (13b)
i.e., here the disease-dependent mortality increases with the severity of the infection in the
population. As a tongue-in-cheek explanation, one may think of a reduction in the efficiency
of the health care system occurring when too many people are infected. This model again has
a unique internal point attractor. Qunoxy of invasion fitness is given by

V) R(av,ﬂv;8,|)=$ . (14)

In an as yet uninfected population, this reduces to the W&l ) =4S /(a+d,), as in
model (i). So here maximizin&, gives a result that is independent®f which means that
the non-applicability ofR,-maximization may easily elude the naive practitioner. However,
since the feedback environment in model (Mwis-dimensional, therexists no optimization
principle, and the ESS cannot be calculated by maximi®ngAll that remains in cases like
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this is to do a full ESS calculation based oa titness proxy (14) and the equilibrium solu-
tions

(B+R)a+d) —Oalby=do) -, o S@P-a=dy g0

V) S(@p)= B(B+K) + Oak Oct

Also for models (iii) and (iv), such a full ESS calculation could be carried out based on using
the equilibrium solutions of these models,

iy s-2F _2‘:((“ d) (15b)

B d)(for)-andy o a-dyrMd (15¢)
B —K’+K pB-K

(v) |

Equations (15) bring out the unfortunate consgge of having to rely on a full ESS calcula-
tion: for even slightly more complicated models, the ensuing formulas have a tendency to be
rather opaque, to say the least.

The overall take-home message of this section perhaps does not come as a surprise in a
special issue on ESS theory: simple optimization can rarely be used to predict evolutionary
outcomes — and even when an optimization principle exists, it is rarely equivaln(gee
also Mylius and Diekmann, 1995). This general conclusion applies to evolutionary epidemi-
ology in particular (Dieckmann, 2004), whef maximization ruled maybe even more
firmly than in other areas of population biology. Conditions (A) and (B) provide a complete
characterization, phrased in teymof the properties of the environmental feedback loop, of all
cases in which an optimization principle does a proper job. In addition, relation (10) in condi-
tion (C) provides a useful tool for getting hold of such an optimization principle if one exists.

5 Generically, Hardy-Weinberg ratios occur for evolutionary reasons only

The fourth of the surprises brought about by the incorporation of more realistic environmental
feedback loops into evolutionary models is wholly conceptual, without an immediate unex-
pected biological phenomenon in its wake. The reason is that the evolutionary phenomenon to
be discussed in this section has been unwittingly presaged by a standard textbook simplifica-
tion, which, however, rarely applies in ecological reality. In almost any textbook chapter on
the mathematics of selection for randomly mating populations, the Hardy-Weinberg law at the
level of new zygotes is presented as a usgfakralization, introduced and motivated from a
purely mechanistic basis. In contrast to this treatment, we will show below that, even when
assuming the global random union of gametes, almost no population dynamical model with
ecologically realistic life histories has itgygotic genotype frequencies on the Hardy-
Weinberg manifold. Yet, even in those cases, Hardy-Weinberg frequencies mée we#n
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in practice. The apparent contradiction between the preceding two statements is resolved by
the demonstration, to be given below, that the exceptional parameter values necessary fo
Hardy-Weinberg frequencies occur as ESSs in a large class of ecologically more realistic
models. Thus, the Hardy-Weinberg law may indesign in nature, but for evolutionary in-

stead of purely mechanistic reasons.

In textbooks on evolutionary biology, it is close to dogma that under the random union of
gametes, be it due to a mixing of gametes in broadcast spawners or to random mating, the
newly formed zygotes occur in Hardy-Weinbgngportions. However, as is neatly stressed
for the case without selection in the unpublished textbook by Felsenstein (2005), available at

http://evolution.genetics.washington.edu/pgbook/pgbook, hthd Hardy-Weinberg law for
zygotes only holds when allele frequencies in the two sexes are equal (without selection, the
zygotic genotype frequencies relax to Hardyividerg proportions in one generation, at least

in the case of autosomal genes). With selection, it should not be so much the allele frequen-
cies in the two sexes that should be equal, but the allele frequencies in their gametic outputs.
This is where ecological considerations kick in.

The condition for generically having equal naciand macrogametic allele frequencies is
that, for all feasible environmental trajectories, the expected micro- and macrogametic outputs
in the different genotypes are proportional at all ages. If we restrict attention to equilibria, a
proportionality of the lifetime outputs is sufficient. Although customarily assumed, such pro-
portionality is actually exceptional, when seen against the background of most life histories
encountered in the field. We may think, for instance, of a life history in which females repro-
duce for the first time at age 1, and males at age 2, and otherwise produce age-independent
gametic output. When considering an age-independent annual density-dependent survival
we can envisage a mutant allele that, in the heterozygote, changes this survival by . factor
Then, at any prescribed density, carrying one copy of this mutation changes the lifetime ga-
metic output of females by a factarﬁ, and that of males by a factar"%. To achieve
proportionality of the macro- and microgametic outputs of the different genotypes, the ratio of
these two factors must be 1. As long as botles are present, the genotype frequencies in
the newly produced zygotes do not lie on the Hardy-Weinberg manifold. In particular, if the
invasion ends in a stable polymorphism, this departure from Hardy-Weinberg frequencies
persists. Similar statements apply essentially whenever the age dependence of micro- and
macrogametic production is not exactly in proportion. This is even so in hermaphroditic an-
nual plants — which may be perceived as the example best conforming to the simplified
ecology of the population genetics textbooks — when genetic differences affect seed produc-
tion relative to flower production. The latter would apply, in particular, to any adaptive trait
affecting relative competitive ability during the seed-setting phase.
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Observationally, transient polymorphisms are probably much less important than polymor-
phic ESSs. In recent days, it has been become clear, i.a. from evolutionary game theory
(Maynard Smith, 1982), from the consideration of fluctuating environments (e.g., Ellner,
1996), and most recently as a result of the adaptive dynamics research program (Metz et al.,
1996a; Geritz et al., 1998; Doebeli and Dieckmann, 2000), that realistic ecologies more often
than not are conducive to the generation of diversity. In some cases, such diversity is realized
through species formation (Dieckmann et al., 2004), but on many other occasions some
within-species form of diversity results, be it purely phenotypic or genetically based (Leimar,
2005). It is this genetically based diversity that has our interest here.

We will illustrate our point with a very simple eco-genetic model. To that end, we concen-
trate on an annual organism with a potentipthlymorphic locus with two segregating alleles,
leading to phenotype vectorg,, with G=aa aA AA. The expected macrogametic output
of an individual with phenotype is given by A(x, E ) where E denotes the instantaneous
ecological environment. Similarly, the expected microgametic outpuves @y u(x, E). In
this way, we may incorporate any determination of sexual roles, from hermaphroditism to ge-
netically determined dioicy. The environmekt may, for instance, be am-dimensional

vector,

E= F(ZG¢1(E1XG)nG 7"'1ZG¢k(E!XG)nG) ) (163-)

where n; denotes the population density of genotypeFor the ¢, one may think of the per
capita use of resources like light, water, space, and various nutrients. The fufdtem
represents the outcome of the resource dynamics given these demands. When the frequency of
A in the micro- and macrogametic outputs is denoteg,®nd g,, respectively, then, under
the assumption of random mating, we have

Mo = Pa0aN  Nop = (PaGa + PAIN 4 Npn = PAGaN (16b)
where N =n_, +n,, +n,, denotes total population density, gnd=-1-p, and g, =1-q,.
Moreover, with next generation values denoteddyand q,,, p,and g, satisfy the recur-

rences
P, = HanPaAla + 5 Haa(PAls + Pada) (17a)

Ay = ZApaPala + 7 Aaa(PaGa + Po0a) (17b)
where 4; and 4, are abbreviations fou(x;, E and A(x, E ), respectively, and

ﬁ = pAqA/JAA + (pAqa + pan)/JaA + paqa/uaa ’ (170)

A = Paladpn+ (Pala + Pala)Aan + Poladas - (17d)

21



As a matter of convenience, we absorb all density regulatidn ire., we include iy fertil-
izing propensities, but not realized effectivitiasthe form of offspring numbers, so that we
can do the full zygote-to-zygote bookkeeping throughFor the total population density we
thus obtain the recurrence

N'=AN , (18)
which completes the specification of our eco-genetic model.

Based on the setting captured by (16) to (18), we can now examine under what conditions
the new zygote genotype frequencies will stay on the Hardy-Weinberg manifold. As can be
seen from (16b), this requirgs, = g, in (17), for all relevant allele frequencies and popula-
tion densities. The latter is ensured Af = 6, for all G, but generally does not apply
otherwise.

More important than the recurrences themselves are the equilibria they engender. These
can be calculated from (16) to (18) after dropping the primes. When we refer to (16) to (18)
below, it will be assumed, unless mentioned otherwise, that the primes have been dropped and
that, accordingly p,and g, denote equilibrium values.

The seeming oversimplification of the model specified by (16) to (18) is justified by the
fact that it is actually much less special than our initial description suggests. Following argu-
ments initiated by Charlesworth (1976, 1994), it was shown by Diekmann et al. (2003) that,
under the assumption of random mating, the same equilibrium equations follow from a large
class of physiologically structured population models. For this, we have to intéraethe
expected lifetime macrogametic output from a new zygote times the probability of their fer-
tilization, u as the expected lifetime microgametic output times their fertilization propensity,
andng; and N as birth rates. The simple and the gelnesiae of course differ in their internal,

i.e., population dynamical, stability properties. However, when it comes to external stability,
i.e., the stability towards invasion by variants altering phenotypic expression, the two cases
coincide, since all that matters in both cases is whether a generation-based linearized recur-
rence for the frequency of variant heterozygotes predicts their increase or decrease.

The system of equilibrium equations (16) to (18) allows, in principle, two different classes
of equilibria, characterized by the routesearan follow in the solution process. Along the
first route, one assumes that at least two ofther two of the,; differ. In that case, given
the A, and;, (17) produces up to three isolated internal solutiongfoand g, (these solu-
tions have been extensively studied by Owen, 1952; Bodmer, 1965; and Mandel, 1971; see
also Karlin and Lessard, 1986, and Diekmann et al., 2003). We will call these equilibria
‘population genetic’ solutions. The second route is based on the possibility, first discussed by
Lewontin (1958), of a solution in which all; are equal, and so are all. We will call these
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equilibria ‘feedback-driven’ solutions. Anyédback-driven solution satisfies the alternative
equilibrium equations

A =Ap=Apa=1, (19a)

aa

Haa = Han = Han (19b)
together with (16). Whereas for a population genetic equilibrium the number of equations,
m+ 2+ 1 for equations (16), (17), and (18) togathneatly matches the number of unknowns,

E, p, andq,, and N, this is not the case for feedback-driven equilibria, since (19) actually
contains five equalities that need to be satisfied. This means that, generically, there is no solu-
tion, except for special cases, such as when it is assumedxthatx,,, so that both

Aan = Aan @nd g, = 11, hold a priori. Thus, if there are any polymorphic equilibria, we may
expect them to be population genetic ones. Consequently, except in the equally nongeneric
case thatl, =6y, for G=aa aA AA, the zygotic genotype frequencies are off the Hardy-
Weinberg manifold.

The previous considerations were based on the assumption that the phengtyaes
given a priori. However, in nature traits do not just take on any values, but are shaped by evo-
lution. There are two ways in which the, may change evolutionarily. Either some new
allele « appears on the scene, or an expression modifier, denot&d &ypears at a locus
that previously only carried an allele For the sake of concreteness, and since the loci under-
lying the expression of phenotypesare likely to extend beyond the single locus considered
so far, we shall proceed on the assumption that the evolutiog @ primarily driven by
modifiers. Accordingly, we mentally promote our focal locus to the status of a genetic switch,
with three statesaa, aA and AA, and assume that the output of this switch to a phenotypic
expression is under evolutionary control. One particular reason for this ploy is that it will al-
low us to discuss more easily so-called ‘ideal free’ ESSs (Bulmer, 1994; see also Fretwell and
Lucas, 1970).

To examine the evolution of phenotypic expression, we need to consider the invasion fit-
ness of the modifiers. For this we shall use a fitness proxy, demtedith this notation
intended to stress the proxy’s interpretation as an expected lifetime offspring number sensu
Diekmann et al. (1990). In principle, thieeallele can be transmitted in four different states, in
a macro- or a microgametmgether with eithema or A, and the appropriate (but necessarily
complicated) procedure would be to go through a bookkeeping argument to derive the lin-
earized recurrences for the four corresponding frequencies, followed by a calculéipasof
the associated dominant eigenvalue. Luckily, we can fall back on a shortcut invented by Eshel
and Feldmann (1984), and worked out for the most general case by Liberman (1988), who
showed thaR, can be written as a weighted sum,
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—1(w ~ ~ 7 7 7
Rs = 3 (Wiklgpan + Wa klgpan + Wallgpan + Widgpan + Wodgyan + Wadgan) (20a)

with weights

W, = Pg a0+ Palsar Wo = Pgala + Paala + Palsa + Palsar Wa = Pgala + Palsa » (20b)
where 1 =4/1 and jt=plm. The averagesl, u, as well as the gamete frequencies
P, O, Pas O, are to be determined from (16) to (18) for the resident equilibrium. The long-
term relative frequencies of the different transmission stat@s @f; ., 0g,, Pga. aNd0g 4,
are to be calculated as the components ohtinmalized eigenvector of the linear recurrences
mentioned above. For the considerations bethere is no need to determine the weights
it suffices to know that all of them are positive, tRat;, =1, and that, necessarilg, =1.

Armed with the fitness proxy given by (20), we can now introduce the idea of ‘ideal free’
ESSs. If there are no genetic constraints, in the sense that for any feasible phenotype there ex-
ists a potential modifier realizing it, the fitness contributions through the different routes —
here corresponding to the states of the genetic switch — should be equal, i.e.,
Hopoa+ beaa:[lbbaA+ j’be:ﬁbe+ beAA. For, if they were not, then a modifi& that were
to change the expression of all phenotypes with a smaller fithess contribution to that of the
phenotype with the highest contribution would haveRgr-1. (Let us assume, for the sake of
the argument, thally,,, + Aysaa < Fopan+ Anpas AN Zopan + Aupan > Fopan + Aupan; then changing
both Xobaa and Xobaa to Xobaa would lead to
Re =5 D W (Zypon+ Aopar) =% (Zopan+ Aopan) > R, =1, independently of the values of the
weightsw, for eitherb or B.) The notion of ‘ideal free’ ESSs is customarily used to set apart
ESSs that equalise fitness contributions ol#dithrough different routes, reflecting the fact
that such ESSs often obtain in the ideal situabf a total freedom from constraints. (The
only constraints that matter here are genetic ones; constraints on trait values remain allowed
when considering ideal free ESSs.)

The just introduced ideal free ESSs do not yet satisfy the proportionality conditions
Hipaa = Mopaas Hopan = Oipan, ANA th 00 = 04 00 TO €nsure this, we need the additional as-
sumption (to be called IF in the remainder of this section) that gene expression is allowed to
be sex-dependent and that we can wri@ = (X5, X;g ,» (X5, E)= (X, E),

A(Xs, E) =Z(foG, E), without any physiological constraints tying,; to x;, and without

any hard restriction on the realization of the feasible combinationgofand x; ; by single
mutational steps. For such “even morealifree” ESSs, or IF-ESSs, we hafg = 1, = 1,

and u,, = 1., = s, Dy the same argument as given earlier. Consequently, once an IF-ESSs
has been attained by evolution, zygotic gene frequencies will follow the Hardy-Weinberg law.

Another matter is that for continuous trait spaces the probability of directly jumping into an
ideal free ESS or IF-ESS will generally be negligible, to the extent of being observationally
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irrelevant. Therefore, the question remains WhaetF-ESSs are locally evolutionarily attract-

ing. Determining attractivity is easy for one-dimensional strategy spaces (e.g., Taylor, 1989;
Christiansen, 1991; Metz et al., 1996a; Eshel et al., 1997; Geritz et al., 1998), but very diffi-
cult otherwise. Leimar (2001, in press) provides a solution for cases in which, close to an
ESS, mutational steps are still sufficiently small relative to the distance from that ESS that the
analysis can be based on the canonical equation of adaptive dynamics (Dieckmann and Law,
1996, Durinx and Metz, 2005; Champagnat et al., this issue). In principle, convergence to the
ESS may depend on the mutational covariance matrix. However, Leimar (2001, in press) de-
rived conditions characterizing those cadas which convergence, or divergence, is
determined only by the dependence of the selective regime on the ecology. These conditions
are expressed in terms of local derivatives efittvasion fitness function at the ESS. (In this
context, it may be worth noting that we have derived a general canonical equation for the
modifier-driven evolution scenario describdzbae; De Kovel and Metz, in preparation) Un-
fortunately, the very idea of ideal free ESSs, and thus also of IF-ESSs, is based on the
assumption that mutational steps are not small: in the argument leading up to the definition of
ideal free ESSs, we had to assume the potential occurrence of mutational steps that change the
phenotype at one setting of the genetic switch to the phenotype occurring at another setting. In
Appendix B, we sketch a research program that we believe may, in the long run, resolve the
convergence issue, at least in principle, based on the assumption that the mutation distribution
is sufficiently smooth in phenotype space.

In this section we have argued that, once an IF-ESS has been reached evolutionarily, zy-
gotic allele frequencies will lie on the Hardy-Weinberg manifold. Although the Hardy-
Weinberg law may thus reign in nature, using it as a widely applicable primary assumption
based on purely mechanistic reasons is mighggdin particular when sex-structured popula-
tions are embedded in realistic ecological settings. We have also argued that, in general,
Hardy-Weinberg frequencies will not apply during the evolutionary transients leading to an
IF-ESS. That the law applies after these transiare over, is caused by a lucky combination
of environmental feedback with sufficient developmental and genetic freedom. Given such
conditions, long-term evolution either keeps moving, or engenders polymorphisms that give
the appearance of being selectively neutdgl € 1,, = 1., and g, = 14,, = 1), SO that, even
for complicated life histories, the classical arguments of Hardy (1908) and Weinberg (1908)
hold sway at the zygotic level.
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6 Summary

All intelligent modeling and theorizing rely on idealizations. Good models, just as successful
theories, require stripping away the non-essential, to allow an unobstructed view onto a phe-
nomenon’s core. To delineate the domain of validity of models and theories, and thus to
assess whether perhaps more than the non-edserst been stripped away, robustness checks
are to be carried out.

Here we have shown, in a sequence of falnustness checks, how the incorporation of
enhanced degrees of ecological realism results in evolutionary phenomena not predicted by
the underlying simplified models:
= When evolutionary matrix games are embedded in more realistic ecolagtcals mixed

ESSs no longer render neutral all involved pure strategies and their mixtures. By overcom-

ing this fundamental structural instability, more conclusive predictions of evolutionary

outcomes can be made, with population-level polymorphisms of individual-level mixed

strategies becoming amenable to analysis (Section 2).
= When realistic types of density- and frequency-dependent selection are considered in mod-

els of life-history evolution, adaptations can no longer be assumed to maximize a

population’s viability. Instead, adaptive evolution can become responsible for bringing

about a population’s extinction under a variety of ecologically plausible scenarios (Section

3).
= When models of disease evolution are equipped with realistic ecological detail, attempts at

predicting evolutionary outcomes through optimization principles typically become futile.

As soon as the effective dimension of the feedback loop governing the interaction of an

evolving population with its environment exceeds 1, optimization-based predictions will

necessarily be in error (Section 4).
= When studying the population genetics of sex-structured populations in realistic ecological

settings, the Hardy-Weinberg law for zygotic proportions loses it validity. It can be shown,

however, that adherence to this law may be reestablished in the course of evolution, pro-

vided the underlying genetic system possesses sufficient flexibility (Section 5).

In all these robustness checks, the investigated perturbations of the simplified models have
gualitative implications: loss of neutrality (Sexti2), loss of viability (Section 3), loss of op-
timality (Section 4), and loss of Hardy-Weinberg proportions (Section 5). In some
circumstances the tiniest perturbations suffice (Section 2), in other cases the amplitude of the
new phenomena grow with the considered perturbation (Sections 4 and 5), and sometimes
perturbations may need to exceed a threshold level (Section 3).

Obviously, the failed robustness checks documented in this study must not be misinter-
preted as rendering the underlying simplified models useless. Instead, great care ought be

26



taken not to abuse these idealized models by drawing biological inferences that fall outside
their documented domain of validity. Since the ecological theater of most evolutionary plays

occurring in nature is complex, that may btk order. Modern ESS theory is increasingly
living up to this challenge.
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Appendix A: Ascertaining the dimension of the eco-evolutionary feedback

To assess the monotonicity or the effective dimension of the feedback loop in the evolution-
ary models of epidemiological dynamics discussed in Section 4, we need to examine the
dependence oR(a,,f,;S («, f),1 (a,)) on the resident traiz, ) locally around those
combinations(e, ) that yield R(e,,5,;S («, 8),1 (a, 8)) = 1 for all values of the variant
trait («,, f3,).

To show that in model (iii) the feedba@bop is non-monotone, we start from (12) and
(15). R depends ork =(S,1) and therefore orfa,8) in a one-dimensional manner, through
S alone.R as a function ofS has a maximum &§,_,(«,,f,) = W, and possesses
no other internal extrema. We now consider theMetf resident trait values that as residents
maximize R, M ={(a,8)|S,,(@B)=S (@,B)}. For (a,f)e M we have
R(a, B; S, (e, £)) =1, and thereforesign InR(e,5; S, (@, F)) =sign p(a, ;S (., 5)) = 0.
(To ward off potential confusion, we repeat that the maximization is with respect to the resi-
dent trait (), and not with respect to the variant trét,, S, , ds is common in ESS
calculations.) The elements ™ are thus precisely those trait values around which the poten-
tially interesting things happen: they mark the traits for whicfails to be locally monotone
in S, and the variants close to these straddtebibrder between positive and negative values
of In(R). The monotonicity or non-monotonicity dR in S is of concern only in the
neighborhood ofM. The salient point here is thil does not consist of just a single point
but is a one-dimensional manifold, as can be seen from its definition. Any function
¢: S ¢(S) € R having a non-decreasing relation wilgnin(R(«,, S,; S , cpnsidered as
a function of S for a given(e,,f,) € M, should have its maximum &, («,,5, - asin
the close neighborhood oM, by the very construction of that manifold, we have
sign InR(e,,5,;9) =0 for S=S§,,(«,.5,) andsign InR(e,.L,;S) =-1for S= S, («,.5,)-
Accordingly, there can be a single functignfulfilling condition (B) for all («,,5,) e M
only if S, (a,,p,) is constant orM. The latter, however, is not the case. Hence, model (iii)
does not allow an optimization principle.

In models (i) to (iii), where the feedback loop acts thro&ghlone, it is immediately clear
that the dimension of the feedback is 1. In model (iv), wheis also influenced by, it is
necessary to be more precise. For when the evolving population itself appears in the feedback,
the very fact that there may be more than one type present in that population may increase the
number of environmental variables that it is reseey to keep track of. However, the fact that
infected individuals were treated on a par with susceptible individuals, through th&4sum
in their influence on the density-dependent deate, strongly suggests treating all types of
individuals identically when it comes to determining the density-dependent deaths. If we pro-
ceed on this assumption, we may conclude that the environment of the infected individuals is
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at most two-dimensional, spanned by the densities of susceptible and infected individuals.
What we still have to check is whether or not, by some quirk, the model components conspire
around the subset ®®* defined byR(a,,f,:S («,f),1 (a,5)) = 1to produce a lower ef-
fective dimension.

To prove that the effective environmental dimension for model (iv) is larger than 1, we
first introduce a property that is shared byealblutionary models having effective environ-
mental dimension equal to 1, and then show that model (iv) does not possess this property.
Assume that there does exist a functibnE — R and a functiong: X xR — R, not nec-

x 3
attr
sign g(x,; #(E,, (X)) . Then the family of manifolds irX defined by R(x,; E,,(X)) = 1 pa-

essarily increasing in its second argument, such tl&nin(R(x,;E

rameterized byx, , equals the family of manifolds defined BYE, . (X)) = ¢, with ¢, defined

by o(x,;¢,) =0, as is illustrated in Figure 6. Translated into the notation of model (iv), this
means that a curve through a point(e,f)=(a/5,) defined by
R(a,,,;S (a, p),1" («, B)) =1 will not change if we chang@,,3,) in such a manner that
the resulting curve still passes through the p@igts,) . To check that this property does not
hold for R in (12), with S'and I” defined by (15), it suffices to calculate the derivative in
(ay.p,) of different curvesR(x,,5,;S (a,5),1 (a,B)) = 1with (a,,p,)<R?, passing
through (,,/,) , which is easily done through an implicit differentiation in the defining equa-
tion. Since this derivative depends @¢a,,3,), the curves throughe,,f,) for different
(a,,B,) do not coincide, as they should if the effective dimension of the environment
equaled 1.

Appendix B: Ascertaining continuous stability in more dimensions

How can we resolve whether or not IF-ESSs are evolutionarily attracting when mutational
steps are not necessarily small, as is the assumption implicitly made in the consideration of
IF-ESSs? Here we sketch, in a phrasing adagtékdat problem, a research program that we
expect to be helpful in addressing this opeseaech question in the case in which the distri-
butions of mutational steps are smooth and relatively wide.

We denote the potential variant trait combinations engendered by a heterozygote modifier
as Xz = (Xg aa» Xsan Xsaa) € X°, With X denoting the space of traits of single individuals. A

Baa’ B.aa

similar notation, X, = (X, .., Xaan: Xnaa) € X, applies to the residents. We move the origin of
the spaceX® to the ESS. Moreover, we emphasize the dependenBg of the variant and
resident traits,R; = R(Xg; X%, ) Using this notation, we definél(x,) ={x|R(x x,) >1 , ko
that H(x,) = X® is the set of potentially successful invadersxpf It follows from Taylor-
expandingR that the family of set$d (x, )s scale-invariant close to the origin: if we neglect
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higher-order terms irH (x,) , multiplying the spacex® with a constant will map the family

onto itself. Figure 7 illustrates such scale invariance for a simpler two-dimensional problem.
Since, for small mutational steps, the invasion probability of a variant calculated from a
branching-process approximation depends Rrinearly, this probability satisfies similar

scale invariance. Moreover, by the smoothness and large extent of the mutation distribution,
we may assume all variants arising froty through mutation to be uniformly distributed in
H(x,) . For the time being, we assume that any successful invasion leads to a substitution.
We can then decompose the process of sequentiatitutions into an autonomous process

on the unit sphere iX?, together with a subjugated radial process. The logarithm of the radial
process is a random walk with dependent st€pavergence or divergence of the radial proc-

ess corresponds to convergence of the log-radial process to eitheor +o. This
convergence, in turn, depends on whether the steps are positive or negative on average. A
negative average implies almost sure convergence of the radial process to zero, whereas a
positive average implies that any neighborhood of zero will almost surely be left forever.
Having said this, we run into the first real difficulty: to calculate these average steps, we first
have to calculate the stationary distributmmthe process on the unit sphere. Based on our
work so far, we can only say that this distribution satisfies a forbidding looking integral equa-
tion.

A second difficulty is that invasion does not necessarily imply substitution. As we concen-
trate on only a small range of phenotypic possibilities, we may assume that the genotype-to-
phenotype map is additive to first order of appmaadion. Close to the ESS, selection is weak
relative to recombination. So, to the required order of approximation, we can describe a
polymorphism in terms of the corresponding average phendtypéx

aa’

X0 X,0)» tOgether

with a list of variable length, corresponding to the number of modifiers, consisting of ele-
ments (7, X;), Where 7z, =(p; +0g)/2 denotes the frequency on a modifiBr, with p;,

being its frequency in the microgametes apdits frequency in the macrogametes, agd
denotes the modifier's allelic effect. [Note that for giver, X;), 7, and x, can be calcu-

lated from 7, =1- 7, and 7 X, + 7%z = Q By writing p, =75 +J; and g, = 7z —J; and

by expanding the genetic recurrences around tHeS§, it can be seen, moreover, that up to
second orderz, satisfies a classical genetic equilibrium equation, with *“viabilities”
V(X,E)/V = [I (X, E) + u(x,E)]/2 of a type considered by Zhivotovsky and Gavrilets (1993)
and by Hermisson et al. (2003). Furthermafg,is first-order in the distance to the IF-ESS,
and can, up to this order, be expressed explicitly in terms of thend the differences of the
relative female and male gametic outpuigx, E)—E(X,E .] The states of the long-term
evolutionary process then correspond to the population dynamically feasible lists of this kind.
This full process satisfies the same scale invariance as before, and can therefore be decom-
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posed into a scale-free configuration process, with states represenidﬂﬂl)yogether with

lists (75, % /|X[), and a subjugated radial procds$. And, just as in the simple case, the
log-radial process is a random walk. However, the task of calculating the stationary distribu-
tion of the configuration process, and from tha #verage step of the log-radial process, is
even more daunting than for the earlier introduced toy process based on the (close to an ESS
often incorrect) assumption that invasion implies substitution. The three reasons for yet pro-
viding this sketch are that (i) it indicates where the difficulties lie, (ii) it may put
mathematicians on a potentially interesting track, and (iii) it shows that the local attractivity of
an IF-ESS is an all-or-nothing phenomenon, and can thus be determined by a single simula-
tion run.

As a final point we remark that although the program sketched above is both mathemati-
cally interesting and possibly also rewarding, it is, for its biological meaning, predicated on
the assumption that deterministic forces stay dominant. When the ESS is approached, the fit-
ness values of invaders get closer and cléserero, so that, for finite populations, the
strength of selection will eventually become comparable to that of mutation and/or random
drift. It thus depends on the interplay beam many factors whether or not the conclusions
derived from the idealization sketched above make biological sense. Salient questions are as
follows. How close an approximation of the ESS are we interested in? What are the relative
curvatures of the fitness landscape and of its dependence on the resident traits? What is the
size of the population we are considering? What is the frequency of the occurrence of new
modifier alleles with effects in the right range? How long has the process been going on since
the last externally imposed change in the environment? Clarifying whether convergence oc-
curs in the idealized case of unrestricted mutation limitation is thus only the natural first step
in studying a diversity of factors and their interplay.
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Figure 1. Pairwise invasibility plots for (a) the original hawk-dove game and for (b) an eco-
logical embedding with fluctuating rewards. The non-diagonal zero-contour curve is strictly
straight and vertical in (a), whereas this curve is tilted counter-clockwise and concave from
the right in (b). Even though both effects are only slight, they do imply a qualitative change in
evolutionary behavior. Paramete¥s= 05, C=1, R=2,andc=0 (a),c=1 (b).
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Figure 2. Pairwise invasibility plots and unfolding for an ecological embedding of the hawk-
dove game with variable interaction rates. The classical game-theoretical case (Figure l1a) is
located atr, =r, =0; it is thus straddling three bifurcation curves, reflecting its structural in-
stability. In the top-left panel, the non-diagonal zero-contour curve is tilted clockwise and is
concave from the right; in the top-right panel, the curve is titled clockwise and is concave
from the left; in the bottom-left panel, the curve is tilted counter-clockwise and is concave
from the left; and in the bottom-right panel, the curve is tilted counter-clockwise and is con-
cave from the right. Evolutionary branchingpiedicted to occur for parameters in the white

and light grey regions of the central panel, as can be seen from the top-left and top-right pair-

wise invasibility plots. Parameterg:= 05, C=1, R=2, andr,= 1
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Figure3. General unfolding of mixed ESS in evolutionary matrix games.
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Figure 4. lllustration of evolutionary suicide. (a) Equilibrium densiy/ (x résulting for

trait values x. Continuous and dotted curves deptable and unstable equilibria, respec-
tively. (b) Selection gradieng(x) resulting for trait valuesx. For all viable initial trait
values, directional selection increasesup to a critical trait value at which the evolving
population goes extinct. The equilibrium density, trait value, and selection gradient at which
extinction occurs are indicated by open circles. Parametebéx) =b,xe ™,

a(AX) =1/(L+e '), b, =10, k=5, andd =1.
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Figure 5. Optimization principles (upper rows; horizontal axes: adaptive trait, vertical axes:
guantity optimized by evolution), together with the corresponding pairwise invasibility plots
(lower rows; horizontal axes: resident trait, tical axes: variant trait). Notice that the exis-
tence of an optimization principle amounts to no more and no less than that all feasible values
of the trait vector can be a linearly pre-orderaftier dividing out over the equivalence rela-

tion “equally good”, one obtains a linearly ordered set of equivalence classes. The geometric
implications are two-fold. First, the antisymmetry of linear orders translates into the skew
symmetry of the pairwise invasibility plots. Secotitk transitivity of linear orders translates

into the fact that any isolas of the non-diagonal zero-contour curve (these isolas correspond to
local maxima of the optimization principle that are exceeded by its global maximum) have
counterparts in wiggles in any other non-diagonal zero-contour curves that span the same
range of trait values, either horizontally or vertically.
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Figure6. Curves defined bR(x,,3,;S (o, )1 (a0, f)) = ,Jor equivalently by
#(S (@, B),1" (@, B)) = ¢, with ¢, defined byg(e,,B,:4,) =0.
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Figure 7. Configuration of sets of variants wifositive invasion fitness for different resi-
dents (small black dots) around an ESS (large black dot).
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