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Through non-genetic maternal effects, mothers can tailor offspring phenotype to the 

environment in which young will grow up. If juvenile and adult ecologies differ, the 

conditions mothers had experienced as juveniles may better predict their offspring’s 

environment than the adult environment of mothers. In this case maternal decisions about 

investment in offspring quality should be determined already during the juvenile phase of 

mothers. I tested this hypothesis by manipulating juvenile and adult maternal 

environments independently in a cichlid fish. Females raised in a poor environment 

produced larger young than females raised without food limitations, irrespective of the 

feeding conditions experienced during adulthood. This maternal boost was due to a higher 

investment in eggs, and to faster larval growth. Apparently mothers prepare their 

offspring for similar environmental conditions as they had encountered as juveniles. This 

explanation is supported by the distribution of these fish under natural conditions. 

Juveniles live in a different and much narrower range of habitats than adults. Therefore, 

the habitat mothers experienced as juveniles will allow them to predict their offspring's 

environment better than the conditions in the adult home range.  

 

INTRODUCTION 

Non-genetic maternal effects are widespread and strongly influence the fitness of mothers and 

offspring (reviewed in Mousseau & Fox 1998, Lindström 1999, Lummaa & Clutton-Brock 

2002). Egg size (Bernardo 1996, Mousseau & Fox 1998) and quality (e.g. Schwabl et al. 1997, 

Blount et al. 2002) are important maternal effects, which can determine the entire life histories of 

offspring (Lindström 1999). Maternal effects may depend on maternal condition (e.g. Blount et 

al. 2002) and on the conditions in the current environment (Mousseau & Fox 1998, Lindström 

1999) or during preceding breeding events (Reznick & Yang 1993).  
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While this appears to be adequate in some cases, in many animals successive life stages use 

different habitats (reviewed in Werner & Gilliam 1984) or they use resources differently within 

the same habitat (e.g. Lind & Welsh 1994). If juvenile and adult ecologies are uncorrelated, cues 

from the current conditions are a poor predictor of the environment offspring are likely to 

encounter (Bernardo 1996). In such cases the conditions a female encountered as juvenile may 

allow her to predict her offspring's environment with a much higher precision. Consequently, 

maternal investment decisions should be determined by a mother's early development (sensu 

Lindström 1999), but should be independent of the environmental conditions in which young are 

produced.  

 

I tested this hypothesis experimentally with the African cichlid Simochromis pleurospilus by 

independently varying the resource availability of juveniles and adult females. In the field, I 

tested the prediction that the habitat use of adult females and juveniles differs, so that the 

environmental conditions experienced these stages are rather independent of each other. 

 

MATERIALS AND METHODS 

I raised 120 fish (among them 55 females) of the maternally mouthbrooding cichlid Simochromis 

pleurospilus, each in a separate tank, exposing aliquot numbers to high-food (H) and low-food (L) 

conditions (juvenile treatment, J) (see electronic Appendix A and Taborsky (2005) for details on 

experimental set-up). Fish were fed six days a week standardized agarose gel cubes containing an amount 

of Tetramin® flake food corresponding to 12% or 4% of mean body weight plus 5% Spirulina algae. I 

adjusted the food amounts to increasing body weight every 14 days. The juvenile treatment took on 

average 265 days and covered the period between independence of young (mean age 29 days) and the end 

of the first breeding attempt. Afterwards, half of all reproductively active females (n=23) were switched 

to the opposite treatment, while the remaining 23 females stayed on the original ration (adult treatment, 

A). Siblings were assigned alternately to high or low food ration as juveniles, and to switched or original 

ration during the adult treatment to achieve equal brood splitting. The resulting treatment groups were 
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denoted as HH (n=13), HL (n=10), LH (n=11) and LL (n=12). For each successive brood a female was 

mated with a different male (Taborsky (2005) gives details about schedules of male presence in female 

tanks). About 50% of females never raised a brood successfully despite spawning several clutches. 

Females remained in the adult treatment until they stopped to produce further clutches (mean 

reproductive lifespan in experiment: 264.5d; Taborsky 2005).  

 

Brood care of S. pleurospilus consists of two phases, two weeks of continuous incubation when young 

use up yolk reserves ('1st incubation phase') and two weeks when young are periodically released from the 

mouth for feeding ('2nd incubation phase'). Total length (TL; nearest 0.5mm) and weight (W; nearest 

0.01g) of females and young (TL: nearest 0.1mm, W: nearest 0.0001g) and weight of females and young 

were measured at the end of both incubation phases. I calculated Fulton's condition factor K as 

K=100×W/TL3 , and specific growth rates of young (SGR) as ln(TL2/TL1)/t, where TL1, TL2 are lengths at 

the beginning and end of the second incubation phase and t is the duration of this phase. As SGR depends 

on absolute size, it was corrected for TL1. The experiment lasted from November 2001 to May 2004. One 

clutch each was collected of all females that spawned during the last six months of this period (3HH, 

4HL, 4LH, and 4LL females) to measure egg mass. Clutches could not be collected earlier, as this would 

have interfered with the measurement of reproductive rates of females (see Taborsky 2005). Mean clutch 

mass was calculated from individual egg dry mass measured to the nearest 0.0001g. 

 

I calculated two-way analyses of variance with juvenile treatment (J) and adult treatment (A) as 

independent factors and individual females as independent units of analysis (using female means of clutch 

means).  Female size and body condition was not related to size or weight of young after the 1
st
 and 2

nd
 

incubation phase, and was therefore not included as a covariate in the ANOVAs.  

 

I determined the size-frequency distribution of juveniles and females across the natural depth range of S. 

pleurospilus by transect counts along a 150-m stretch of pebble shore in Mbete Bay near Mpulungu, 

Zambia (see electronic Appendix A for details on survey methods). The mean distributions of four study 

years are presented here. In the lab experiment, females started to reproduce at a mean size of 5.7cm TL 
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(Taborsky 2005). Therefore, I considered individuals in size classes of ≤ 4.5-5.4cm as 'juveniles' and 

individuals above 5.5cm as 'adults'. 

 

RESULTS 

When mothers had been raised with little food, offspring were on average 1.4mm larger at the 

end of brood care than when mothers had been well fed, irrespective of the ration mothers 

received during adulthood (Figure 1a; Table 1). The larger size of young was not explained by 

extended brood care, as the results did not change when controlling for the age of young (Table 

1). Rather young of poorly-reared mothers grew faster during the second incubation phase 

(independent of their size at the beginning of this phase; Table 1). The condition factor K of 

young was not affected by treatment (Table 1), showing that faster growth was not compromised 

by a slower increase of body mass.  

 

Young of poorly-raised mothers were already larger for their age after the first incubation phase 

(Figure 1b, Table 1), when larvae depend entirely on yolk reserves. Accordingly, females raised 

with little food laid eggs with a higher dry mass (ANOVA, F1,13=8.74, p=0.011; Figure 1c). Egg 

mass was not related to female length (regression analysis: R2
=0.02, p=0.64, d.f.=1,13) or body 

condition (R2
=0.04, p=0.52, d.f.=1,12).  

 

In their natural habitat, the majority of juveniles (<5.5cm) stayed at a depth of 0.5m and were 

rarely found below 1m (median depth: 0.5m, inter quartile range (iqr) 0.5-1; Figure 2a,b). In 

contrast, fish of adult size occurred predominantly in deeper water (median: 1.5m, iqr 1.0-3.5; 

Figure 2a,b). Juvenile and adult habitat use differed with respect to depth distribution (Chi-

square test, d.f.=5, χ2
=36.94, p<0.001; frequencies ≥3m were pooled because of low expected 

frequencies in these depths) and central tendency of depth distribution (Median test, d.f.=1, 

χ2
=11.16, p<0.001).  
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Above 0.5m water depth, only small specimen (1.5–4.4cm were found). As they could not be 

counted by transect swimming, these numbers are not included in the results (separate data set of 

shallow-water counts given in electronic Appendix A). 

 

DISCUSSION 

At the end of broodcare, young of S. pleurospilus mothers raised on a poor diet were on average 

8.8% longer than young of mothers raised without food limitation. This size difference is likely 

to affect offspring fitness, as even a size advantage of 3.3% can significantly increase the 

survival chances of fish larvae (McCormick & Hoey 2004). This is the first experimental 

evidence showing that maternal effects induced by pre-reproductive conditions can be similarly 

expressed in markedly different reproductive environments, while not being influenced by the 

conditions in which females produce their young. Moreover, the reported size differences of 

young were based on up to four successful broods spread over female reproductive life span, 

suggesting that such maternal effects can persist during the entire adulthood even in iteroparous, 

long-lived animals.  

 

Poorly-raised females paid costs for producing larger young by having smaller clutches, while 

there was no indication for such a trade-off in females raised on the high-food diet (Taborsky 

2005). If females raised on a poor diet had resulted in poorer quality adults than females raised 

on a rich diet, the former may have been more affected by the costs of reproduction than the 

latter. 

 

S. pleurospilus females raised with little food apparently used two different mechanisms to boost 

the size of young. (i) They produced eggs with a higher energy content as indicated by higher 

egg dry mass. (ii) Young grew faster during the second incubation phase, when most yolk is used 
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up and they use already external food sources. The mechanism responsible for faster growth 

needs still to be clarified.  

 

In several fish, insects and amphibians larger offspring have survival advantages under adverse 

growth conditions, while under benign conditions smaller young do equally well (Hutchings 

1991, Mousseau & Fox 1998, Einum & Fleming 1999) or better (Kaplan 1992, Rotem et al. 

2003). Therefore, the experimental results strongly suggest that S. pleurospilus females prepared 

their young for similar environmental conditions as they had encountered themselves as 

juveniles. In humans, it has been hypothesized that predicting the quality of the offspring 

environment incorrectly may have detrimental consequences for offspring health and survival 

(Bateson et al. 2004). The conditions mothers experienced as juveniles may predict their 

offspring's environment better than current environmental cues, if (i) environmental conditions 

for adults and juveniles vary independently, and (ii) juvenile conditions of successive 

generations are similar. When juveniles and adults have entirely different ecologies like in 

metamorphosing animals or anadromous fish, some species appear indeed to adjust offspring 

phenotype to their juvenile environment (Jonsson et al. 1996, Rotem et al. 2003) while others do 

not (Fox et al. 1995).  

 

In contrast, juvenile and adult S. pleurospilus co-occur along the rocky shores of Lake 

Tanganyika use the same major food source, filamentous turf algae. However juveniles mainly 

live in shallow water using only a narrow range of water depths, while after maturity females  

mainly use deeper habitats for breeding (Figure 2a). The juvenile habitat has a high productivity 

of turf algae, while  productivity varies by at least two orders of magnitude over the depth range 

inhabited by adults (Taborsky 1999). Because of this large variation the ability to predict food 

availability for offspring reliably is limited if females use cues from their ambient environment. 
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A much better estimate can be achieved if females use the growth conditions experienced during 

their own juvenile phase.  

 

As differential habitat use of juveniles and adult is very widespread in animals, parents will often 

not be able to predict the conditions for the early life stages of offspring by using cues from their 

current environment. Therefore I predict that it is a common parental strategy to base decisions 

about the investment in individual offspring more strongly on the own early environment than on 

present conditions. When studying the origin and function of parental effects, it is hence 

inevitable to incorporate the influence on parents of the environment experienced during early 

development. 

 

I am indebted to D. Heg, I. Hamilton and M. Taborsky for helpful comments on the manuscript, to S. 

Aschwanden, Z. Bachar, D. Bonfils, R. Eggler C. Grüter, N. Hirt, S. Immler, S. Lehner, M. Massironi, G. 

Pachler, T. Reichlin, R. Schürch and P. Vonlanthen for assistance with data collection and analysis and to  

the Austrian Science Fund (FWF grant P14327-B06) and the Forschungsstiftung, University of Bern 

(48/2003) for financial support.  
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Figures 

Figure 1. Total length of offspring at the end of (a) 2
nd

 incubation phase, (b) 1
st
 incubation phase 

(residuals of the model with offspring age as covariate are shown) and (c) egg dry mass of 

females (means ±s.e. of brood means). 

 

Figure 2. (a) Size-depth distribution of S. pleurospilus (mean of four study seasons); grey shades  

indicate frequencies of fish recorded for each size class and depth. (b) Medians and quartiles for 

the depth distributions of 1-cm size classes. Stippled lines indicate size at maturity. 

 



Table 1. Analyses of variance testing for the effects of juvenile (J) and adult treatment (A) and their interaction on dependent variables 

associated with offspring phenotype of experimental females. 

  TL after 2
nd

 

inc. phase 

(cm) 

TL after 2
nd

 

phase corr.  

for age (cm) 

K after brood 

care (g cm
-3

) 

TL after 1
st
 

inc. phase 

corr for age 

residual SGR* 
during 2

nd
 inc. 

phase (% day
-1

) 

d.f.  3, 25 4, 24 3, 25 4, 22 3, 23 

R2
  0.30 0.53 0.008 0.78 0.39 

full model F 3.64 6.80 1.07 19.42 4.91 

 P 0.026 0.001 0.379 <0.001 0.009 

covariate       

offspring age F  11.63  64.0  

 P  0.002  <0.001  

main effects       

J F 10.28 16.20 0.13 5.93 9.15 

 P 0.004 <0.001 0.721 0.023 0.006 

A F 0.35 0.42 2.81 0.84 <0.001 

 P 0.559 0.552 0.106 0.370 0.98 

J × A F 0.40 1.25 0.001 0.88 4.83 

 P 0.530 0.274 0.975 0.359 0.038 

*female means of residuals of the regression between SGR and initial TL of young (clutch means) at the beginning of the 

second incubation phase 
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Mothers determine offspring size in response to own juvenile growth conditions 

Barbara Taborsky1,2 

 
1Behavioural Ecology, University of Bern, Wohlenstrasse 50A. CH-3032 Hinterkappelen, Switzerland, 

 2ADN, International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria 

 

Study species 

In Simochromis pleurospilus Nelissen (Subfamily: Tropheini), a mouthbrooding cichlid endemic to Lake 

Tanganyika, females produce clutches year-round and care for the young alone. Brood care consists of two 

phases; two weeks of continuous incubation when young only use yolk reserves are followed by another one 

to two weeks when young are periodically released from the mouth for feeding on the surrounding substrate. 

Afterwards, young are independent.  

 

Experimental fish and housing 

The experimental fish were recruited from 14 broods, bred from closely related parents (siblings and half-

siblings) to minimize genetic variability. I raised 120 young S. pleurospilus, each in a separate 20-litre tank. 

Each 20-litre tank contained an internal biological filter and a clay flower pot half (10 cm diameter), both 

used as shelters by the fish, and a layer of river sand. Water temperature was kept at 27°C by controlled 

heating of the room temperature. The light:dark regime was set to 13h:11h including 10 min periods of 

dimmed light in the mornings and evenings to simulate natural light conditions at Lake Tanganyika. The 

sexes of the experimental fish could only be determined from an age of 5 to 6 month, when there were 55 

females in the experimental population. Of these, 46 females (23 high-food and 23 low-food females) 

produced clutches of eggs during the experiment. These females were used in both the juvenile and the adult 

treatment phases. Of the 46 females, 23 females produced 'successful broods', i.e. they incubated and raised 

their young. The probability of successful incubation was not influenced by the food treatment (Taborksy 

2005), and it is unknown why the remaining females always abandoned or swallowed their eggs.  

 

Transition between juvenile and adult treatment 

I switched the females from the juvenile to the adult treatment after their first breeding attempt. Most first-

spawning females (37 of 46) interrupted incubation after 3.1 days (mean± 0.29 SE) and swallowed the eggs, a 

phenomenon generally observed in mouthbrooding cichlids. Only 9 females raised their first clutch. I wanted 

to ensure that all females were in the same developmental stage at the switch. Therefore, the day after the 

first breeding attempt was chosen as starting point for the adult treatment as first spawning is the first 
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unequivocal sign of maturity in these fish. Hence, the juvenile treatment period covered the entire phase of 

'early development' (the time from birth to developmental maturity, Lindström 1999). Additionally it 

included a short period of ovary maturation before first spawning (2-3 weeks in Tropheini, Yanagisawa & 

Nishida 1991, B. Taborsky unpub. data, i.e., 6-7% of the juvenile treatment period), and in 9 females also 

incubation.  

Of the 9 females that did raise the first clutch, six were switched to the opposite food level after 

incubation, according to the experimental protocol. As the first young of these 6 females were produced still 

under the previous (juvenile) food conditions, data of these clutches were analysed together with data of the 

respective non-switched groups whenever all four treatment groups were compared.  

 The majority (83%) of the 54 successful broods (produced by 23 females, mean: 1.9 broods ±0.18 SE 

per female, range 1-4), were produced during the adult treatment. Therefore, the timing of the treatment 

switch closely matched the divide between juvenile and adult stages of the experimental females.  

 

Food source for young during adult treatment 

Overall, clutch size increased with female size, while the latter was influenced by the food treatment 

(Taborsky 2005). In principle, it would be possible that the differences of growth rates during the second 

incubation phase have been caused by differential levels of density-dependent competition for the food 

rations provided daily. However, this possibility is unlikely because (i) larvae fed mainly on detritus and 

algae, which were plentiful in all tanks, and were thereby largely independent of the daily food rations and 

(ii) growth rates did not correlate with clutch size within treatments (except for the LH group, r=-0.55, 

P=0.034, n=15 individual broods). 

 

Field survey 

Data were collected along a 150m stretch of coastline in Mbete Bay at the southern tip of Lake Tanganyika 

about 1 km west of Mpulungu, Zambia. Data include counts of four study periods (25 Dec 96 to 26 Jan 97, 28 

Jan to 2 Mar 98, 1 Mar to 10 Mar 2002, 1 Mar 20 Mar 2003).  

Before starting with the actual data collection each observer did several training trials allow for a direct 

comparison of count data collected by different observers. During these training trials, the observer first 

estimated the size of a randomly chosen focal individual, then he caught it and measured its total length to 

verify his estimate. At least 5 successive estimates had to be done correctly before an observer started to 

collect the data. This condition was usually fulfilled after very few training trials. 

When conducting a transect count, the observer swam in parallel to the shoreline in constant water 

depth either by snorkelling or by SCUBA diving. Transects were conducted at each half depth meter between 

0.5 and 6 m depth (12 transects per study period). Every 10 m along a transect the observer stopped, 

remained motionless for 2 min, counted all S. pleurospilus by once scanning the substrate and the water 
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column in a half-circle with a radius of 2 m. He then noted the size of each individual, which was estimated 

to the nearest 1.0 cm resulting size classes from 2.5-3.4 cm to 10.5-11.4 cm for females and juveniles. Male 

counts are not presented in this paper, as only the habitat use of females and juveniles is relevant for the focus 

of this study. Adult males were easily distinguished from juveniles and females by their bright colour pattern.  

For further analysis the counts of all 15 positions of a transect were summed. Whenever a transect was 

repeated (all transects of 2002 and some transects in 1998), the counts of the repeated transects were 

averaged by taking the arithmetic mean.  

The total numbers of juvenile fish detected during the transect counts was relatively low compared to 

the number of adults. This is because a large number of juveniles occurred above 0.5 m of depth, where the 

counting method described above is not feasible. To account for this problem, two additional counts were 

done in 2002 by walking on land along 100 m of shoreline in front of the study site (shore transects). For 

these transects fish were counted every 5 m on an area of a half-circle with 1 m radius. An additional size 

class (1.5-2.4 cm) was found during these counts. The numbers of fish in count 1 and 2, respectively, were 27 

and 22 in size class 1.5 to 2.4 cm, 16 and 25 in class  2.5-3.4 cm and 7 and 9 in class 3.5-4.4 cm. No S. 

pleurospilus larger than 4.4 cm were found during these shore transects. As the counting method used in the 

shore transects is not directly comparable with the transects done by swimming, the results of these two 

additional transects were not included in the data presented in the 'Results' section.  
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