
Value Efficiency Analysis for 
Incorporating Preference 
Information in Data Envelopment 
Analysis

Halme, M., Joro, T., Korhonen, P., Salo, S. and 
Wallenius, J.

IIASA Interim Report
August 1998

 



Halme, M., Joro, T., Korhonen, P., Salo, S. and Wallenius, J. (1998) Value Efficiency Analysis for Incorporating Preference 

Information in Data Envelopment Analysis. IIASA Interim Report. IIASA, Laxenburg, Austria, IR-98-054 Copyright © 1998 

by the author(s). http://pure.iiasa.ac.at/5595/

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at  

mailto:repository@iiasa.ac.at


International Institute for Applied Systems Analysis • A-2361 Laxenburg • Austria
Tel: +43 2236 807 • Fax: +43 2236 71313 • E-mail: info@iiasa.ac.at • Web: www.iiasa.ac.at

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work.

Approved by

INTERIM REPORT

IIASA

IR-98-054/August

Value Efficiency Analysis for

Incorporating Preference Information

in Data Envelopment Analysis

Merja Halme (halme@hkkk.fi)

Tarja Joro (joro@hkkk.fi)

Pekka Korhonen(korhonen@iiasa.ac.at)

Seppo Salo(salo@hkkk.fi)

Jyrki Wallenius (walleniu@hkkk.fi)

Gordon MacDonald (macdon@iiasa.ac.at)

Director, IIASA



Contents

1. Introduction 1

2. DEA and Multiple Objective Linear Programming 4

3. Value Efficiency Analysis 7

3.1. An Introduction 7

3.2. Some Mathematical Considerations 10

3.3. Determination of Value Efficiency Scores 12

4. An Illustrative Example 14

5. Value Efficiency Analysis with Real Data 19

6. Conclusions 21



Abstract

We develop a procedure and the requisite theory for incorporating preference
information in a novel way in the efficiency analysis of Decision Making Units. The
efficiency of Decision Making Units is defined in the spirit of Data Envelopment
Analysis (DEA), complemented with Decision Maker’s preference information
concerning the desirable structure of inputs and outputs. Our procedure begins by aiding
the Decision Maker in searching for the most preferred combination of inputs and
outputs of Decision Making Units (for short, Most Preferred Solution) which are
efficient in DEA. Then, assuming that the Decision Maker’s Most Preferred Solution
maximizes his/her underlying (unknown) value function at the moment when the search
is terminated, we approximate the indifference contour of the value function at this
point with its possible tangent hyperplanes. Value Efficiency scores are then calculated
for each Decision Making Unit comparing the inefficient units to units having the same
value as the Most Preferred Solution. The resulting Value Efficiency scores are
optimistic approximations of the true scores. The procedure and the resulting efficiency
scores are immediately applicable to solving practical problems.

Keywords: Efficiency Analysis, Data Envelopment Analysis, Multiple Criteria
Decision Making, Value Function
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1. Introduction

Data Envelopment Analysis (DEA), originally proposed by Charnes, Cooper and
Rhodes [1978 and 1979], has become one of the most widely used methods in
management science. DEA measures the relative efficiency of comparable entities
called Decision Making Units (DMUs) essentially performing the same task using
similar multiple inputs to produce similar multiple outputs. The purpose of DEA is to
empirically estimate the so-called efficient frontier based on the set of available DMUs.
A DMU is efficient if there is no other unit – existing or virtual –  that can either
produce more outputs by consuming the same amount or less of inputs or produce the
same amount or more of outputs by consuming less or the same amount of inputs as the
DMU under consideration. The former approach is referred to as the output oriented and
the latter as the input oriented DEA. DEA provides the user with information about the
efficient and inefficient units, as well as the efficiency scores and reference sets for
inefficient units. The results of the DEA analysis, especially the efficiency scores, are
used in practical applications as performance indicators of  DMUs.

When Decision Making Units are evaluated in practice, there is always a reason for this.
It might be the allocation of existing or additional resources to units, need to make the
operations more profitable by improving the performance of inefficient units, or the
desire to reward the most efficient units. The results of the analysis provide a basis for
such decisions. Generally there exists a Decision Maker (DM) who has preferences over
outputs and inputs. The underlying assumption of the original DEA, however, is that no
output or input is more important than another. In such a situation, a DMU which, for
example, is a superior producer of a marginally important output is diagnosed as
efficient even if it performs poorly with respect to all other outputs. Hence, in the
original DEA the efficiency scores are not necessarily good performance indicators. We
use Figure 1.1 to clarify our point. The example consists of five DMUs, each producing
two outputs and all consuming the same amount of one input. We can see that DMUs 1,

                                                
1 An abbreviated version is forthcoming in Management Science
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2 and 3 are efficient and 4 and 5 inefficient. Thus DMUs 1, 2 and 3 all receive an
efficiency score of 1. Let us assume that for some reason the DM considers output 1 to
be much more important than output 2. In this case DMU1 would be far more preferred
to DMU3. The DM might even prefer DMU5 to DMU3, even though the former is
inefficient.
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Figure 1.1 Classical DEA

Although DEA calculations were originally value-free, several attempts have been made
to incorporate preference information in DEA, resulting in different models. Such
models can be divided into two categories: (1) models that use preference information
to set targets for inefficient DMUs, and (2) models that use preference information to
produce more meaningful efficiency scores. We briefly discuss both types of models.

Golany [1988] and Thanassoulis and Dyson [1992], among others, have developed
target setting models. Golany introduced a model that allows the DM to select the
preferred set of output levels given the input levels of a DMU. In standard DEA, the
target for DMU4 in Figure 1.1 would be DMU4*, but in Golany’s model the DM is able
to choose any point from the efficient frontier restricted by the dotted lines.
Thanassoulis and Dyson have introduced models which can be used to estimate
alternative input/output target levels to render relatively inefficient DMUs efficient. The
models can incorporate preferences over potential improvements to individual
input/output levels, and thus the DM may select the preferred target in the input/output
space. In the DEA language, such models are not radial. Such models do not, however,
aim at producing efficiency scores, and thus perform a task different from the one we
have set for us in this paper.
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In the category of efficiency score models, the traditional way to incorporate preference
information in DEA is to restrict the flexibility of weights. Several weight flexibility
restriction schemes have been proposed by Charnes, Cooper, Wei and Huang [1989,
1990], Dyson and Thanassoulis [1988], Thompson, Langemeier, Lee, Lee and Thrall
[1990], Thompson, Singleton, Thrall and Smith [1986], and Wong and Beasley [1990],
among others. Generally speaking, weight restrictions result in the reduction of the
number of efficient DMUs. Zhu [1996] introduced a model that calculates efficiency
scores incorporating the DM’s preference information. His model can also be used for
target setting; it offers to the DM targets that do not dominate the DMU under
consideration. In Zhu’s model the preferences are elicited as weights, reflecting the
relative degree of desirability of the adjustments in the current input or output levels.
However, it is far from trivial to select the bounds for the weights or, more generally,
elicit the DM’s preference structure. Golany and Roll [1994] introduced a model that
does not use weights to elicit preference information; instead they incorporated
preference information in the form of hypothetical DMUs in an otherwise standard DEA
model.

In the Multiple Criteria Decision Making (MCDM) literature we can find numerous
arguments against using importance weights as a means to elicit and represent DM’s
preference information (for example, Steuer [1986, pp. 193-200], Korhonen and
Wallenius [1989], and Wierzbicki [1986]). It seems particularly difficult to understand
that the intuitively appealing notion “the greater the importance -- the larger the weight”
does not always work. When the weights have a straightforward interpretation, such as
prices in economics, their definition and use is also straightforward. We suggest that the
DM’s preferences are incorporated in efficiency analysis by explicitly locating his/her
most preferred input-output vector on the efficient frontier. We call this vector the DM’s
Most Preferred Solution (MPS). It is a vector on the efficient frontier which he/she
prefers to any other vector at the moment of the final choice. In this paper we use an
interactive Multiple Objective Linear Programming (MOLP) search procedure to locate
the MPS, but any approach (using weights or any other preference information)
resulting in the MPS is applicable for carrying out the proposed analysis (e.g., Steuer
[1986]). We may also use a “goal focusing” approach for this purpose (see, e.g.,
Charnes, Cooper, Rousseau, Schrinnar, Terleckyj, and Levy [1980]). Conceptually, an
MPS can be defined as the point at which the DM’s value function assumes its
maximum when the search terminates. Using the knowledge of the MPS, the DM’s
(unknown) value function is approximated using so-called tangent cones at the MPS.
The efficiency of each DMU is then determined with respect to this tangent cone. As a
result we obtain scores that we call Value Efficiency scores, because the efficiency of
each DMU is determined by means of an approximation of the indifference surface of
an implicitly known value function at the MPS.

The rest of this paper is organized as follows. Section 2 sets the stage by discussing
preliminary considerations. In Section 3 we develop the procedure and the requisite
theory for incorporating preference information in DEA. Section 4 illustrates the
procedure with a numerical example, and Section 5 discusses the use of Value
Efficiency Analysis with real data. Section 6 concludes the paper.
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2. DEA and Multiple Objective Linear Programming

Assume we have n DMUs each consuming m inputs and producing p outputs. Let X ∈
ℜ m×n

+ and Y ∈  ℜ p×n
+  be the matrices, consisting of nonnegative elements, containing the

observed input and output measures for the DMUs. We further assume that there are no
duplicated units in the data set. We denote by xj (the jth column of X)  the vector of
inputs consumed by DMUj, and by xij the quantity of input i consumed by  DMUj. A
similar notation is used for outputs. Furthermore, we denote 1 = [1, ..., 1]T.

The traditional CCR-models, as introduced by Charnes et al. [1978] are fractional linear
programs which can easily be formulated and solved as linear programs. To condense
the text, in the sequel we consider solely output oriented DEA models. The discussion,
with appropriate modifications, holds for input oriented models as well. Later Banker,
Charnes and Cooper [1984] developed the so-called BCC models with variable returns
to scale. The CCR and BCC models are the basic model types in DEA. The output
oriented CCR- and BCC-models are given in (2.1a), (2.1b), (2.2a), and (2.2b). Note that,
following Charnes and Cooper,  the original primal formulation is called the dual and
vice versa.

Output-Oriented CCR Primal
(CCRP - O)

Output-Oriented CCR Dual
(CCRD - O)

max ZO =  θ + ε(1Ts+ + 1Ts-)       2)

s.t.                                                   (2.1a)
       Yλ  -  θy0 -  s

+ =  0
       Xλ           + s-  =  x0

              λ, s- , s+ ≥ 0
          ε > 0    (“Non-Archimedean”)   3)

min WO = ν  T x0

s.t.                                                   (2.1b)
       µTy0             =  1
      -µTY + νTX  ≥  0 T

              µ, ν ≥ ε1
          ε > 0

Output-Oriented BCC Primal
(BCCP - O)

Output-Oriented BCC Dual
(BCCD - O)

max ZO =  θ + ε(1Ts+ + 1 T s-)

s.t.                                                   (2.2a)
       Yλ  -  θy0 -  s

+ =  0
       Xλ           + s-  =  x0

          1
Tλ = 1

              λ, s- , s+ ≥ 0
          ε > 0

min WO = ν  T x0   + u

s.t.                                                   (2.2b)
       µTy0                        =  1
      -µTY + νTX  + u1T  ≥  0 T

              µ, ν ≥ ε1
          ε > 0

                                                
2 For clarity, throughout the paper we assume that the units of all slacks are the same. See Thrall (1996)
for a discussion.
3 For more details, see Arnold, Bardhan, Cooper, and Gallegos [1997].
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To unify the presentation we formulate a general model (for short, GEN) which includes

CCR- and BCC-models as special cases. Matrix A ∈  ℜ k× n
  and  vector b ∈  ℜ k

   are used

to specify  the set of feasible  λ-variables.

Output-Oriented GEN Primal
(GENP - O)

Output-Oriented GEN Dual
(GEND - O)

max ZO =  θ + ε(1Ts+ + 1Ts-)

s.t.                                                   (2.3a)
       Yλ  -  θy0 -  s

+ =  0
       Xλ           + s-  =  x0

            Aλ ≤ b

              λ, s- , s+ ≥ 0
          ε > 0

min WO = νTx0   + uTb

s.t.                                                   (2.3b)
       µTy0            =  1
      -µTY + νTX  + uTA ≥  0 T

              µ, ν ≥ ε1
        u ≥ 0
          ε > 0

A DMU is efficient iff Z* =  1 and all slack variables s-, s+ equal zero; otherwise it is
inefficient (Charnes et al. 1994).

When it is not necessary to emphasize the different roles of inputs and outputs, we

denote u = 



 y

-x   and U =  



 Y

-X  , and modify the problem (2.3) accordingly. Because the

results concerning u and U are valid for 



 y

x   and 



 Y

X   as well, for simplicity, we often

refer to u and U, although we are factually interested in results concerning 



 y

x   and  



 Y

X

. Define the sets  Λ =  { λ   λ ∈  ℜ n
+ and Aλ ≤ b} and  T = { u   u = Uλ, λ ∈  Λ}  . We

assume that ei ∈  Λ, i =1,…, n, where ei is the i th unit vector in ℜ n. All efficient DMUs lie
on the efficient frontier, which is defined as a subset of points of set T satisfying the
efficiency condition above. The definition of efficiency and the corresponding
definition for weak efficiency, can be given in the following equivalent form:

Definition 1.  A point Uλ*  = u* is efficient iff there does not exist another u ∈  T such
that u ≥ u*, and u ≠ u*.

Definition 2.  A point u* ∈  T is weakly efficient iff there does not exist another u ∈  T
such that u > u* .

In DEA, the efficiency of a DMU is traditionally determined either by maximizing
outputs subject to given input levels or minimizing inputs subject to given output levels.
A model considering both input minimization and output maximization was introduced
as early as 1985 (Charnes, Cooper, Golany, Seiford, and Stutz [1985]). Other models
considering simultaneous input minimization and output maximization exist (see, for
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example, Warwick DEA-User Manual, Thanassoulis and Dyson  [1992]  and Joro,
Korhonen, and Wallenius [1995]).

The efficiency of DMUs can also be determined using the following Multiple Objective
Linear Programming (MOLP) model:

max       Uλ =  



 Y

-X  λ

s.t. (2.4)

              λ ∈  Λ =  { λ   λ ∈  ℜ n
+ and, Aλ ≤ b}.

Model (2.4) -- like any multiple criteria model -- has no unique solution. Its solutions
are defined analogously to the efficient solutions in DEA. Specifically, in the MOLP-
literature (see, e.g., Steuer [1986]),  the concept of efficiency is used to refer to the
solutions in the decision variable space (set Λ) and the concept of dominance is used to
refer to the efficient solutions in the criterion space (set T). Weakly efficient solutions
of problem (2.4) are defined according to Definition 2.

One possible, currently popular way to perform the search for solutions on the efficient
frontier of a MOLP-problem is to use the achievement (scalarizing) function (ASF)
suggested by Wierzbicki [1980]. To characterize the efficient set of problem (2.4), we
may use the following formulation:

min s(g, u, w, δ) = 
 

 min { max
      i∈ P

 [ (gi - ui) / wi ] +   δ ∑
i∈ P

  
 (gi - ui)}

(2.5)
s.t. u ∈  T,

where s is the ASF, w =  



wy

wx   >  0, w ∈  ℜ m+p is a vector of weights, δ > 0 is “Non-

Archimedean” and P = {1, 2, ..., m+p}. Vector g =  



 gy

-gx  ∈  ℜ m+p is a given point, the

components of which are called aspiration levels. Using (2.5), we may project any
given (feasible or infeasible) point g ∈  ℜ m+p onto the set of efficient solutions of (2.4).
Varying the vector of aspiration levels, all efficient solutions of (2.4) can be generated
(Wierzbicki [1986]). In Joro et al. [1995], we have shown that, using the above
formulation, the projection problem can be presented as in (2.6a) and (2.6b).
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Reference Point Model Primal
(REFP)

Reference Point Model Dual
(REFD)

max σ + ε(1Ts+ + 1Ts-)

s.t.                                                    (2.6a)
           Yλ  - σwy - s+ = gy

           Xλ +σwx + s-

  = gx

                Aλ ≤ b
                    λ,  s- , s+ ≥ 0
                               ε > 0

min      νTgx - µgy

   + ηTb

s.t.                                                      (2.6b)
             -µTY  + νTX  + ηTA ≥  0
              µT wy + νTwx           = 1

                                                                 µ, ν ≥ ε1
                                           η ≥ 0
                                            ε > 0

Vector  gx consists of aspiration levels for inputs and gy of aspiration levels for outputs.
Vectors wx > 0 and  wy > 0 are the weighting vectors for inputs and outputs,
respectively. If a particular unit’s efficiency has to be checked, vector g is replaced by
its input/output vector. We refer to model  (2.6) as the reference point model à la
Wierzbicki [1980].

The reference point model is a generalization of the traditional DEA input and output
oriented CCR and BCC models. Vectors wx > 0 and wy > 0 give freedom to project the
inefficient input/output vector to any point on the efficient frontier dominating the
input/output vector under consideration. Obviously,  the radial projection (wx = x0 and
wy = y0) can be performed as a special case. The first non-radial projection was proposed
by Banker and Morey [1986] as early as in the eighties. When the weight vector in
(2.6a) coincides with the input/output vector of the unit under diagnosis, the model is
radial with respect to y and x. The optimal solution provides us with a lower bound
estimate of the percentage the inputs have to be decreased and outputs increased in
order to make the unit efficient.

3. Value Efficiency Analysis

3.1. An Introduction

Our purpose is to assist the DM to evaluate the value of each vector u = 



 y

-x   ∈  T to

him/her. Actually, our approach makes it possible to evaluate the value of any u ∈  ℜ m+p.
The evaluation could be done easily, if we explicitly knew the DM’s value function.
However, generally in practice it is not realistic to assume that the value function is
known or that it could reliably be estimated. That is why we use a different approach to
incorporating a DM’s preferences in the efficiency analysis. Our approach is based on
the idea of locating the DM’s MPS. The only assumption that we make about the DM’s
value function is that it is pseudoconcave at the moment when the search for the MPS is
terminated. We first characterize the set of the tangent hyperplanes of the contours of all
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possible pseudoconcave value functions. We then use this information to evaluate the
value of each DMU to the DM in the spirit of DEA.

The MPS is a solution which is preferred by the DM to any other solution. Assuming a
rational DM who prefers more of any output and less of any input, it is obvious that the
MPS is efficient. Unfortunately defining the MPS in this way provides no practical tool
for efficiency analysis.  It is not realistic to assume that the DM is generally able to
compare all possible solutions to the final solution at the end of the search. In practice,
the MPS is a solution at which the search process ends. It is difficult to know how good
it is. In this paper, we assume that the MPS is the solution at which the DM’s value
function v(u): ℜ m+p → ℜ 1 obtains its maximum over T. Note that we do not need to
make any assumptions whatsoever concerning the value function during the search
process. We only need the assumptions at the moment of termination in order to be able
to say “something” about the quality of the final solution. The weaker these assumptions
are, the better. We assume that the choice of the MPS was based on the DM’s value

function v(u), u = 



 y

-x   ∈  ℜ m+p, which is strictly increasing (i.e. strictly increasing in y

and strictly decreasing in x) and with a (local) maximal value v(u*) over T, u*  = 



 y*

-x*
∈  ℜ m+p. Furthermore, we assume that v is pseudoconcave, because then its local
optimum over a convex set is also global (Bazaraa and Shetty  [1979], p. 510) and the
optimality conditions can easily be verified. This assumption guarantees that the DM
has found his/her most preferred solution in the original meaning of the word.

Next we define the concept of Value Efficiency.

Definition 3. Assuming that u* ∈  T is the DM’s most preferred solution, point u ∈  ℜ m+p

is Value Efficient iff v(u) ≥ v(u*).

If the point u ∈  ℜ m+p is not Value Efficient, it is called Value Inefficient.

Definition 4. The weighted true Value Efficiency score for point u0 is defined as
follows:

E
w
t (u0) = γt,

where γt is the optimal value of the objective function of the following problem:

sup γ

s.t.
u -  γw ≥ u0                                                                                                                                                (3.1)
u ∈  V = {u   v(u) ≤ v(u*)}

         w > 0.

Note that we have to use “sup” in the above formulation, because we did not assume the
continuity of function v, and thus set V is not necessarily closed.
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Remark. It is evident for an increasing value function γ that γ > 0 iff the point u0 is
Value Inefficient. When γ = 0, the point is Value Efficient; and if γ < 0, it is Value
“Superefficient”, i.e. v(u0) > v(u* ).

Lemma 1.  Let v(u) be strictly increasing. Then, for any finite u*, u0, and w > 0 ,
problem (3.1) has a finite solution γt corresponding to a finite input/output point us = u0

+ γ tw.

Proof. Assume first that v(u0) < v(u*). (This assumption includes the cases: u0 ∈  T and
v(u0) ≠ v(u*)).  Because w > 0,  ∃  γ1  such that u0 + γ1w > u*. Because v is strictly
increasing, v(u0 + γ1w) > v(u*) and v(u0 + γ w) is strictly increasing in γ.  Hence it
follows that ∃ γt < γ1, where

γt = sup{γ   v(u0 + γ w)  ≤ v(u*)}.

The proof for the case v(u0) > v(u*) is analogous and the case v(u0) = v(u*) trivially
gives γ=0.

In (3.1), if we set  w = u0  the model becomes radial in y and radial in x and we may
interpret  γt as the percentage of improvement needed in both inputs and outputs to make
u0 Value Efficient.

It is not realistic to assume that we know the DM’s value function. Hence we only
assume that we know its form at the time the search for the MPS is terminated. If the
DM explored the neighborhood of the MPS in a systematic manner and was unable to
find a more preferable input/output vector, we may conclude that the MPS has been
found, provided that the value function assumption from above is valid (for a more
detailed description of the neighborhood exploration, see Korhonen and Laakso [1986]).

To keep the presentation brief, we do not discuss in any detail how to carry out the
search for the MPS.  If suffices to say that we believe that an interactive system would
be necessary for the DM to support him/her in the process. Numerous procedures and
accompanying software systems are available for this purpose. The Pareto Race
interface by Korhonen and Wallenius [1988], which is implemented in the VIG
software, is a case in point.  Its use is illustrated in Section 4.

The MPS lies on the indifference contour of the DM’s value function possessing the
highest possible value among all feasible input/output vectors in T. Accordingly the
MPS has the highest possible Value Efficiency for the DM. Value Inefficient DMUs
should increase their performance to reach the contour on which the MPS lies in order
to achieve the same Value Efficiency.

It is interesting to compare Value Efficiency to the concepts of classical efficiency
analysis: technical and overall efficiency (Farrell, [1957]). (See, for example, Norman
and Stoker [1991] for a discussion of classical efficiency analysis and DEA.) Figures
3.1a and 3.1b illustrate different situations. Again, we assume that the DMUs produce
two outputs and all consume the same amount of one input.



10

DMU0

DMU0
O

DMU0
T

Output 1

O
ut

pu
t 2

DMU1

O

 
O

ut
pu

t 2

Output 1

MPS

DMU0

DMU0
T

DMU0
VE

DMU0
VA

O

Figure 3.1a          Figure 3.1b

Figure 3.1: Classical Efficiency Vs Value Efficiency

Figure 3.1a illustrates the concept of classical efficiency. The downward sloping line
through DMU0

O represents the revenue equation, thus containing information about the
prices. Only DMU1 is overall efficient. For DMU0 the ratio O-DMU0/O-DMU0

T reflects
technical efficiency, and ratio O-DMU0/O-DMU0

O overall efficiency.

Next, we seek to clarify the connection between classical overall efficiency and Value
Efficiency.  Classical overall efficiency is based on the idea of maximizing a known
revenue (cost) function. In Value Efficiency analysis, this revenue function is replaced
by a more general unknown pseudoconcave value function. Furthermore, we assume
that the maximum of this function is known, but its precise form is unknown. Based on
this information, in Value Efficiency analysis, we estimate “overall efficiency”. More
precisely, we postulate that the value function ν(u) is a pseudoconcave, strictly
increasing function, which obtains its maximum over T at the MPS u*. The contours of
a pseudoconcave function lie above their tangent hyperplanes. Hence we use the tangent
hyperplane at the MPS as a linear approximation of ν(u). In Figure 3.1b, the ratio O-
DMU0/O-DMU0

T reflects  technical efficiency. The ratio DMU0-DMU0

VA/O-DMU0

reflects (true) Value Efficiency that is not possible to determine. That is why we use the
ratio DMU0-DMU0

VE/O-DMU0 to approximate the Value Efficiency score. For an
efficient unit, Value Efficiency score is zero. The requisite theory is developed in
subsections 3.2 and 3.3. Our approximation of the Value Efficiency score is optimistic:
it provides a lower bound for the actual Value Efficiency score.

3.2. Some Mathematical Considerations

In this subsection we present the requisite mathematical theory to formulate an
operational model for computing Value Efficiency scores.
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Definition 5. A nonempty set Gx defined in an n-dimensional Euclidean space ℜ n is
called a (pointed) cone with vertex x, if  x + y ∈  Gx ⇒  x + λy ∈  Gx for all λ ≥ 0. The
cone with the origin as vertex is denoted by G.

Note that vertex x ∈  Gx. A singleton {x} is also a cone with vertex x.

Definition 6. Let X be a nonempty polytope in ℜ n and let x ∈  X. The pointed cone D(x)
in ℜ n is called the cone of feasible directions of  X at x, if

D(x) = {d   x + λd ∈  X for all λ ∈  (0,δ) for some δ > 0}.

Each d ∈  D(x), d ≠ 0,  is called a feasible direction. The cone Gx = {y y = x + d, d ∈
D(x)} is called the tangent cone of X at x and the cone Wx = {s s = y + z, y ∈  Gx, z ∈
ℜ n

- } the augmented tangent cone of X at x.

Note that both Gx and Wx are closed and convex. For any s ∈  Wx there is an y ∈  Gx such
that s ≤ y and all points z ≤ s are in Wx.

We illustrate the tangent cone and the augmented tangent cone in Figure 3.2. The area
defines the polytope X. The tangent cone Gx at x is spanned by vectors a and b, and the
augmented tangent cone Wx by vectors a and c.

                 Figure 3.2: An Example Illustrating the Tangent Cone and the
                 Augmented Tangent Cone

Lemma 2.  Let X = {x   Ax = b, x ≥ 0} be a nonempty polytope, where A ∈  ℜ k× n
 , b ∈

ℜ k
 , and x0 ∈  X an arbitrary point. Then Gx0 = X0, where X0 = { x   Ax = b, xj ≥ 0  if x0

j  =

0, and otherwise xj  is free, j = 1, 2, …, n }.

X

c

b

x

a

 W x

 Gx
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Proof.  Clearly the tangent cone of an affine set Xa = {x   Ax = b } at x0 is Xa itself.
Moreover, the tangent cone of the closed halfspace Hj = { x   xj ≥ 0 } at x0 is ℜ n if x0

j  > 0
and Hj, if x

0

j  = 0, j = 1, ... , n. Because X is the intersection of  Xa and the halfspaces Hj, j
= 1,...,n, the tangent cone of X at x0 is the intersection of  their tangent cones,
respectively, i.e. set X0.

Lemma 3. Let U = { u ∈  ℜ  m   u = Bx, x∈  X }, where X = {x   Ax = b, x ≥ 0}, be a
linear transformation of a nonempty polytope X and u0 ∈  U an arbitrary point. Let x0 ∈
X be any point such that u0 = Bx0. Then the tangent cone of U at u0 is Gu0 =  BGx0 = {u 
u = Bx, x ∈  Gx0}.

Proof.  Any u ∈  Gu0, u ≠ u0, defines a feasible direction u - u0 for U at u0, which must
be generated by a feasible direction x - x0 for X at x0. Thus Gu0 ⊂  BGx0. Any x ∈  Gx0, x ≠
x0,  defines a feasible direction x - x0 for X at x0, which defines a feasible direction u - u0

for U at u0. Thus Gu0  ⊃  BGx0.

Definition 7. A differentiable function f:ℜ n→ℜ  is pseudoconcave on a convex set S iff
for all x1, x2 ∈  S  such that ∇ f(x1)

T(x2 - x1) ≤ 0 ⇒  f(x2) ≤  f(x1).

Note that pseudoconcave functions are by definition differentiable and therefore
continuous.

Let X ⊂  ℜ n be a nonempty polytope and x* ∈  X. Define Ξ(x*) as the set of increasing
pseudoconcave functions  ξ:ℜ n→ℜ   which obtain their maximum in X at  x* ∈  X.

Lemma 4. Let x* ∈  X and Ξ(x*) ≠ ∅ . Denote the augmented tangent cone of X at x*
by Wx*. Then x ∈  Wx* iff ξ(x) ≤ ξ(x*) for all ξ ∈  Ξ (x*).

Proof.  Let x ∈  Wx*. Then there is y ∈  Gx* such that x ≤ y. ξ is increasing ⇒  ξ(x) ≤ ξ(y).
y - x* ∈  D(x*) and ξ obtains its maximum in X at x* ⇒  ∇ ξ(x*) T(y - x*) ≤ 0. Because ξ
is pseudoconcave, ξ(y) ≤ ξ(x*) ⇒  ξ(x) ≤ ξ(x*) for all ξ ∈  Ξ(x*). To prove the second
part, let x ∈  ℜ n for which ξ(x) ≤ ξ(x*) for all ξ ∈  Ξ(x*).  Assume x ∉  Wx*. Then, x can
be strongly separated from Wx*, i.e. ∃ p ∈  ℜ n such that pTx > pTy  for all y ∈  Wx*, i.e. for
any y = x* + d + z, where d ∈  D(x*), z ≤ 0. Hence pTd ≤ 0 and pTz ≤ 0 (⇒  p ≥ 0),
because otherwise pTd or pTz could be positive and arbitrarily large. Therefore a
pseudoconcave increasing function ξ(x) = pTx obtains its maximum in X at x*, i.e. ξ ∈
Ξ(x*), and ξ(x) > ξ(x*) contrary to the assumption that ξ(x) ≤ ξ(x*).

3.3. Determination of Value Efficiency Scores

Now we are in a position to formulate and prove the requisite theorems for evaluating
Value Efficiency. We make use of lemmas 2, 3 and 4 by substituting ℜ m+p for ℜ n, set Λ
for set X, set T for set U and set  Ξ(u*) for set Ξ(x*), where Ξ(u*) is the set of
pseudoconcave increasing functions v(u), which obtain their maximum in T at u*.
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Lemma 4 is employed when approximating  the set V = {u = 



 y

-x    v(u) ≤ v(u*)} where

v may be any function in Ξ(u*). This means that when the projections of inefficient
units are restricted to the indifference contours of this set, the resulting efficiency scores
are always surely better than the true ones.

Theorem 1. Wu*  is the largest cone with the property Wu* ⊂  V = {u   v(u) ≤   v(u*), for
any v ∈  Ξ(u*)}.

Proof. Evident from Lemma 4.

Thus V is approximated by the cone W, the tangent cone of T at u* with all input/output
points weakly dominated by T appended, which guarantees that the resulting scores are
optimistic (not greater than the real ones). Without supplementary information this is
the best approximation  available for set V in the sense that it is the largest set contained
in all the sets of input/output points which are not preferred by any pseudoconcave
increasing value function v(u)  ∈  Ξ(u*).

Theorem 2. Let u* = 



 y*

-x*  ∈  T be the DM’s Most Preferred Solution. Then u ∈  ℜ m+p,

an arbitrary point in the input/output space, is Value Inefficient with respect to any

strictly increasing pseudoconcave value function v(u), u = 



 y

-x   with a maximum at

point u*, if the optimum value Z* of the following problem is strictly positive:

max Z = σ + ε(1Ts+ + 1Ts-)
s.t.

Yλ  - σwy - s+ =  y,
           Xλ +σwx + s-

  = x,
                     Aλ + µ = b,
(3.2)

              s- , s+ ≥ 0,
                ε > 0, (“Non-Archimedean”)

                    λ j ≥ 0, if λ j* = 0,  j = 1,2, …, n
        µj ≥ 0, if µj* = 0,  j = 1,2, …, k

where λ* ∈  Λ, µ* correspond to the Most Preferred Solution:

y*  = Yλ*
x*  = Xλ*.

Note: For easy reference to the traditional Output oriented DEA models we have given
the output and input parts separately.
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Proof. By lemmas 2 and 3 the tangent cone of  T at u* is the set { 



 v

-z     v = Yλ, z =

Xλ, λ ∈  Gλ*}, where the tangent cone of Λ at  λ * is Gλ* = {λ  Aλ + µ = b, λ j ≥ 0 if λ j* =
0,  j = 1, 2, …, n, µj ≥ 0 if µ*

j   = 0,  j = 1, 2, …, k}. The augmented tangent cone Wu* of  T

at u* is the set {



 v

-z     v = Yλ + d y, z = Xλ + d x, d y ≤ 0, d x ≥ 0, λ ∈  Gλ*}. Therefore

(3.2) has a solution with σ ≥ 0 only if  



 y

-x   ∈  Wu*. Now let Z*, λs, σs, µs be a solution of

(3.2). With ε > 0, Z* > 0 only if either σs > 0 or σs = 0 and (s- , s+) ≠ (0, 0). In either

case, 



 vs 

-zs  ∈  Wu*, y
s = Yλs ≥ y, xs =Xλs ≤ x and (y, x) ≠ (ys, xs). Thus v(y, -x) < v(ys, -xs) ≤

v(y*, -x*) and by Theorem 1, (y, x) is Value Inefficient.

Definition 9. The (weighted) Value Efficiency score for point u0 is defined as:

Ew(y0, -x0) = σs,

where σs is the value of σ at the optimal solution of problem (3.2).

Note that σs > 0 means that the point u0 is Value Inefficient. It is also Value Inefficient,
if  σs = 0, and 1T(s+ + s-) > 0; otherwise σs = 0 means that the point is diagnosed Value
Efficient. However,  the point is not necessarily truly Value Efficient. Formulation (3.2)
only guarantees that we use the largest possible set guaranteed not to include Value
Efficient points except u* to diagnose Value Inefficiency, but it is not the set consisting
of all value inefficient points. If σs < 0, the point is diagnosed Value “Superefficient”.
In that case it does not belong to the original set of given units.

Remark. It is important to note that the Most Preferred Solution u* = 



 y*

-x*   was

assumed efficient in T. Then Du* = {u   u = u* + w, w > 0} is separated from T and
also from Wu*. As discussed in the proof of Lemma 1, for any finite w > 0 and u there is
a finite σ so that u + σw > u* ⇒  u + σw ∈  Du* ⇒  u + σw ∉  Wu* and a finite σ so that u
+ σw < u* ⇒  u + σw ∈  Wu*.  Therefore for an efficient MPS the solution of (3.2) is
guaranteed to be bounded. If u* is not efficient, e.g. an interior point of T, in which case
Wu* = ℜ m+p and (3.2) is guaranteed to be unbounded.

4. An Illustrative Example

We illustrate our Value Efficiency model with a simple example. Throughout the
example we use the generalization (2.6a) of the traditional BCC model (combined BCC
model). In terms of formulas (2.6a) and (3.2) this means that the constraint Aλ ≤  b
becomes 1Tλ = 1; we also set wx = gx = x0 and wy = gy = y0. Note that in traditional DEA
analysis efficient DMUs receive a score of 1. In combined models where both inputs
and outputs are treated simultaneously, efficient DMUs receive a score of 0, and
inefficient units a positive score. This is because the interpretation of the score in
combined models -- when weights are set as above -- is the percentage by which the
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inefficient units should simultaneously increase their outputs and decrease their inputs
to become efficient.

Assume that there are six DMUs, each requiring one input and producing one output.
See Table 4.1 and Figures 4.2a, 4.2b and 4.2c.

TABLE 4.1: A Simple Example
DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

Output 1 4 7 9 12 8
Input 3 3 5 7 11 10

As discussed in the body of this paper, the DM’s preferences are incorporated in the
efficiency analysis via his/her Most Preferred Solution. Hence we must first identify the
DM’s Most Preferred Solution over the set consisting of all convex combinations of
existing DMUs. We begin by formulating model (2.4) as a bi-criteria problem, where
we wish to maximize the output and minimize the input:

max   λ1 + 4λ2 + 7λ3 + 9λ4 + 12λ5 + 8λ6

min 3λ1 + 3λ2 + 5λ3 + 7λ4 + 11λ5 + 10λ6

s.t. 1Tλ = 1,
λ ≥ 0.

Several Multiple Objective Linear Programming methods can be used to solve the
above model. In fact, a two-criteria problem is so trivial that a good visual
representation of the points in the input-output scape is sufficient for enabling the DM
to locate the MPS. However, we illustrate a technique suitable for solving more general
multiple criteria problems.

Reflecting our own bias, we have used the VIG software to perform the search for the
Most Preferred Solution. VIG implements Pareto Race, a dynamic and visual “free-
search” type of interactive procedure for Multiple Objective Linear Programming. It
enables a DM to freely search any part of the efficient frontier by controlling the speed
and direction of motion. The objective function values are represented in numeric form
and as bar graphs on the computer screen. The theoretical foundations of Pareto Race
are based on the reference direction approach developed by Korhonen and Laakso
[1986]. In the reference direction approach, any direction specified by the DM is
projected onto the efficient frontier. Pareto Race is the implementation of the dynamic
version of the reference direction approach as proposed by Korhonen and Wallenius
[1988]. In Pareto Race, a reference direction is determined by the system on the basis of
preference information received from the DM. By pressing number keys corresponding
to the ordinal numbers of the objectives, the DM expresses which objectives he/she
would like to improve and how strongly. In this way he/she implicitly specifies a
reference direction. Figure 4.1 shows the Pareto Race interface for the search,
embedded in the VIG software (Korhonen and Wallenius 1988).
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Pareto Race

Goal   1 (max ): Sales  ==>                                             

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■   69.5465                    

Goal   2 (max ): Profit  ==>                                              
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■   1.39094

Goal   3 (min ): Working H     ==>                            

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■   46.0137                                  

Goal   4 (min ): Size     ==>                            

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■   2.21314

Bar:Accelerator  F1:Gears (B)  F3:Fix      num:Turn

  F5:Brakes         F2:Gears (F)  F4:Relax   F10:Exit                            
Figure 4.1: Pareto Race Screen

For illustrative purposes let us assume that the DM chooses the input/output vector (4,
5.5) shown on the screen in Figure 4.1 to be his/her Most Preferred Solution. This
situation corresponds to Figure 4.2a. The Value Efficiency scores are calculated with
formula (3.2). For example, for DMU5 the formulation is:

max σ + ε(s+ + s -)
s. t.   λ1 + 4λ2 + 7λ3 + 9λ4 + 12λ5 +   8λ6  - 12σ - s+ = 12,

3λ1 + 3λ2 + 5λ3 + 7λ4 + 11λ5 + 10λ6 + 11σ + s - = 11,
1Tλ = 1,
λ1, λ4, λ5, λ6 ≥ 0,
λ2, λ3 unrestricted.

It is important to note that the nonnegativity constraints for λ2 and λ3 have been relaxed.
This is because the chosen Most Preferred Solution can be presented as a convex
combination of them, i.e. their values in the solution of model (2.4) are strictly positive.
All other λs are equal to zero and they need the nonnegativity constraints in the above
formulation. The corresponding tangent cone is illustrated in Figure 4.2a.

The optimal solution to the above problem produces σ = 0.14, hence DMU5 is Value
Inefficient. So are DMUs 1, 4, and 6. The MPS being (4, 5.5), only DMUs 2 and 3 are



17

Value Efficient. Note that all units that are inefficient in classical DEA analysis are also
Value Inefficient, but efficient units can be either Value Inefficient or Value Efficient.
See Table 4.2.

Let us also consider a situation where the MPS corresponds to an existing DMU.
Assume the DM chooses his/her MPS to be (5, 7) (Figure 4.2b). Since the MPS
coincides with an existing unit DMU3, it can be represented by that unit solely. Hence in
this case the only strictly positive λ-variable in model (2.4) is λ3, and we relax its
nonnegativity constraint in model (3.2). Now for DMU5 the optimization produces σ =
0.04. It is still Value Inefficient, but receives a better score than with the previous MPS.
The corresponding tangent cone is illustrated in Figure 4.2b. In this case DMUs 2, 3 and
4 are approximated to be Value Efficient and DMUs 1, 5, and 6 Value Inefficient. In
Figure 4.2c DMU2 is the MPS. That case illustrates the situation in which the DMU1 is
value inefficient, although σ = 0, since one slack is positive. See Table 4.2.

TABLE 4.2: Results of Efficiency Analysis with the BCC Model and Three  Cases
of the Value Efficiency Model

Slacks Efficiency
Score

Ineff.
Units

DMU1

λ1

DMU2

λ2

DMU3

λ3

DMU4

λ4

DMU5

λ5

DMU6

λ6

s+ s- σ

BCC-Model (Combined Score)
DMU1 1 3 0
DMU6 0.77 0.23 0.21

Value Efficiency Model with MPS1

DMU1 1.82 -0.82 0.55
DMU4 -0.82 1.82 0.05
DMU5 -2.23 3.23 0.14
DMU6 -1.09 2.09 0.28

Value Efficiency Model with MPS2

DMU1 1.82 -0.82 0.55
DMU5 -1.76 2.76 0.04
DMU6 -0.39 1.39 0.22

Value Efficiency Model with MPS3

DMU1 1 3 0
DMU4 -0.82 1.82 0.05
DMU5 -2.23 3.23 0.14
DMU6 -1.09 2.09 0.28

MPS1, MPS2, and MPS3 refer to three  different most preferred solutions in Figures 4.2a, b,
and c. Note: Combined Score refers to the model that treats inputs and outputs
simultaneously. DMUs having an efficiency score equal to 0 are efficient. DMUs having a
positive efficiency score are inefficient.
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Figures 4.2a, 4.2b and 4.2c: Three Cases Illustrating the Determining  of Value
Efficiency
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5. Value Efficiency Analysis with Real Data

In this  section we perform our Value Efficiency analysis with real-world data to
demonstrate its use in a realistic setting. The data is from Charnes, Cooper and Li
[1989], where they evaluated the efficiency in the economic performance of 28 key
Chinese cities during 1983 and 1984. The cities played a critical role in the
government’s program of economic development. In total, 3 inputs and 3 outputs were
used. We reproduce the data from Charnes et al. [1989] in Table 5.1.

TABLE 5.1. Outputs and Inputs of Key Chinese Cities: 1983 Statistics
DMUs Outputs Inputs

(Cities) GlOV P&T RS LABOR WF INV
DMU1 6785798 1594957 1088699 483.01 1397736 616961

DMU2 2505984 545140 835745 371.95 355509 385453

DMU3 2292025 406947 473600 268.23 685584 341941

DMU4 1158016 135939 336165 202.02 452713 117424

DMU5 1244124 204909 317709 197.93 471650 112634

DMU6 1187130 190178 605037 178.96 423124 189743

DMU7 658910 86514 239760 148.04 367012 97004

DMU8 993238 1411954 353896 184.93 408311 111904

DMU9 854188 135327 239360 123.33 245542 91861

DMU10 606743 78357 208188 116.91 305316 91710

DMU11 736545 114365 298112 129.62 295812 92409

DMU12 454684 67154 233733 106.26 198703 53499

DMU13 494196 78992 118553 89.70 210891 95642

DMU14 842854 149186 243361 109.26 282209 84202

DMU15 776285 116974 234875 85.50 184992 49357

DMU16 490998 117854 118924 72.17 222327 73907

DMU17 482448 67857 158250 76.18 161159 47977

DMU18 515237 114883 101231 73.21 144163 43312

DMU19 625514 173099 130423 86.72 190043 55326

DMU20 382880 74126 123968 69.09 158436 66640

DMU21 867467 65229 262876 77.69 135046 46198

DMU22 830142 128279 242773 97.42 206926 66120

DMU23 521684 37245 184055 54.96 79563 43192

DMU24 869973 86859 194416 67.00 144092 43350

DMU25 604715 55989 127586 46.30 100431 31428

DMU26 601299 37088 224855 65.12 96873 28112

DMU27 145792 11816 24442 20.09 50717 54650

DMU28 319218 31726 169051 69.81 117790 30976

Outputs:
Gross Industrial Output Value (GIOV)
Profits and Taxes (P&T)
Retail Sales (RS)
Note: GIOV, P&T, RS are measured in
10,000 rmb, the Chinese currency

Inputs:
Labor (10,000 persons)
Working Funds (WF)
Investments (INV)
Note: WF and INV are measured in
10,000 rmb, the Chinese currency
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In Table 5.2 we have produced output-oriented BCC and CCR efficiency scores, and the
corresponding Value Efficiency scores. We have assumed DMU27 to be the Most
Preferred Solution (MPS). For locating the MPS, a Pareto Race model with 6 columns
and 28 rows (plus one row for the BCC constraint) is formulated. The search for the
MPS is quite straightforward. Since DMU27 is BCC efficient, it is a valid MPS for BCC
Value Efficiency analysis. When computing the BCC Value Efficiency scores, the
lambda variable corresponding to DMU27 has been defined free.

TABLE 5.2. Results of the Analysis
OUTPUT ORIENTED MODEL

BCC MODEL CCR MODEL

DMU DEA Value DEA Value
Efficiency Efficiency Efficiency Efficiency

Score Score Score Score
1 1.00 1.00 1.00 1.00

2 1.00 0.87 1.00 0.69
3 0.70 0.58 0.66 0.63

4 0.85 0.44 0.52 0.45
5 0.86 0.46 0.58 0.49
6 1.00 0.84 1.00 0.55

7 0.64 0.42 0.49 0.35
8 1.00 1.00 1.00 0.60

9 0.70 0.56 0.63 0.56
10 0.58 0.48 0.54 0.40

11 0.80 0.60 0.69 0.46
12 0.82 0.58 0.65 0.37
13 0.46 0.42 0.45 0.42

14 0.74 0.66 0.72 0.59
15 0.89 0.81 0.87 0.72

16 0.61 0.59 0.60 0.50
17 0.64 0.61 0.64 0.51
18 0.67 0.62 0.67 0.58

19 0.68 0.61 0.66 0.59
20 0.58 0.57 0.57 0.44

21 1.00 0.96 1.00 0.92
22 0.82 0.73 0.79 0.67

23 1.00 1.00 1.00 0.83
24 1.00 0.93 1.00 1.00
25 1.00 1.00 1.00 1.00

26 1.00 1.00 1.00 0.80
27 1.00 1.00 0.54 0.54

28 0.73 0.68 0.70 0.40

DMU27 , however, is CCR inefficient. In the CCR Value Efficiency Analysis we have
used a linear combination of DMU1 and DMU25 (the reference set of DMU27) as MPS.
To compute the Value Efficiency scores in the CCR model, we have defined free the
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lambda variables corresponding to DMU1 and DMU25. (Another possibilty would be to
build a Pareto Race model with CCR assumptions and locate a new MPS.)

In both CCR and BCC models, when VEA rather than DEA is used the number of
efficient DMUs is reduced. Some DMUs received a VEA score that was considerably
lower than the corresponding DEA score, like DMUs 4, 5, 7, 11 and 12 in the BCC
model, and DMUs 2, 6, 8, 11, 12, 26 and 28 in the CCR model. This is obviously
because such DMUs lie on a different facet than the MPS.

Given the MPS, the Value Efficiency Analysis for the above problem was
straightforward, although the data was demanding from a computational point of view
apparently due to the different scales used in measuring inputs and outputs. It took a few
hours to perform the calculations and analysis required for the Value Efficiency
Analysis. This is because the VEA calculations were performed with LP software.
However, a customized software that supports VEA is being developed. We emphasize
that VEA calculations are no more demanding than DEA calculations. Original DEA is
beset with the same difficulties as VEA.

6. Conclusions

Increasing competition and tightening government budgets in many countries are
forcing private and public sector organizations to closely analyze their performance.
Data Envelopment Analysis is an excellent tool for performance evaluation, but it has
suffered from the difficulty of incorporating DM’s preference information in the
analysis. In this paper we have developed an operational procedure and the requisite
theory for incorporating DM’s preference information into DEA type efficiency
analysis. Due to the well-known difficulties associated with the elicitation and use of
importance weights for inputs and outputs, we have taken a different route. We model
the DM’s preferences via his/her Most Preferred Solution. Briefly, the DM is first
supported by an interactive procedure in  the search for the best input/output vector.
Such a vector is a convex combination of the input/output vectors of the DMUs under
consideration. Note that sensitivity analysis  with respect to the  choice of the MPS
should be  performed in each analysis. The DM is assumed to have a  pseudoconcave
value function at the moment he/she terminates the search, enabling us to use a linear
approximation of the indifference contour of the value function at his/her Most
Preferred Solution. When the linear approximation is not uniquely defined, our
approximation will produce, in the spirit of DEA, the most optimistic efficiency score
for each DMU. The formulation to calculate efficiency scores for each DMU,
incorporating DM’s preference information, reduces to a straightforward application of
linear programming. Our efficiency scores can be interpreted as the relative difference
in value between the Most Preferred Solution and the unit under investigation. It is most
closely related to measuring classical overall efficiency. The model is immediately
applicable and easily implemented for solving practical problems. Possible application
areas in the private and public sectors are numerous.
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