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Abstract

Models of infectious diseases are characterized by a phase transition between ex-

tinction and persistence. A challenge in contemporary epidemiology is to understand 

how the geometry of a host’s interaction network influences disease dynamics close to 

the critical point of such a transition. Here we address this challenge with the help of 

moment closures. Traditional moment closures, however, do not provide satisfactory 

predictions close to such critical points. We therefore introduce a new method for incor-

porating longer-range correlations into existing closures. Our method is technically 

simple, remains computationally tractable, and significantly improves the approxima-

tion’s performance. Our extended closures thus provide an innovative tool for 

quantifying the influence of interaction networks on spatially or socially structured dis-

ease dynamics. In particular, we examine the effects of a network’s clustering 

coefficient, as well as of new geometric measures, such as a network’s square clustering 

coefficients. We compare the relative performance of different closures from the litera-

ture, with or without our long-range extension. In this way, we demonstrate that the 

normalized version of the Bethe approximation – extended to incorporate long-range 

correlations according to our method – is an especially good candidate for studying in-

fluences of network structure. Our numerical results highlight the importance of the 

clustering coefficient and the square clustering coefficient for predicting disease dynam-

ics at low and intermediate values of transmission rate, and demonstrate the significance 

of path redundancy for disease persistence. 

Keywords: Contact process; Interaction-network structure; Long-range correlation; 

Moment closure; Phase transition. 
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1  Introduction

Infectious diseases without permanent immunity are classically represented as SIS 

(susceptible–infected–susceptible) systems. Such models can be implemented on lat-

tices, or more generally on graphs. The resultant models are characterized by a 

dichotomy between two possible dynamics: the disease either undergoes rapid extinc-

tion or it persists over a long time. This change of behavior can be understood as a 

bifurcation or phase transition governed by properties such as a disease’s transmission 

rate. The value of the control parameter at which such a transition occurs is known as 

the critical value. Critical values have received considerable attention in statistical phys-

ics because ( )i  they delimit ranges of parameters values within which the qualitative 

behavior of a system remains unchanged and ( )ii  classical approximations – such as the 

mean-field approximation – are known to yield accurate predictions only far way from 

critical values. Studying the critical dynamics of an infectious disease is important for 

understanding the outbreaks and prevalence of the disease close to the transition. A bet-

ter knowledge of factors influencing critical values is therefore important for improving 

disease control. 

In many spatially or socially structured disease models, the transmission is re-

stricted to nearest neighbors. The geometric pattern of transmission-enabling contacts 

between hosts can be described by a graph. The resultant interaction networks play an 

important role in the understanding and prediction of disease dynamics (Keeling, 1999; 

Eguiluz and Klemm, 2002; Keeling, 2005; Colizza et al., 2006) . In particular, the geo-

metric features of such networks can influence the critical values of a disease’s phase 

transition. However, while the existence of this influence is well known, the important 

geometric characteristics of arbitrary networks, favoring or limiting disease propagation 

and persistence, are still not understood in general. For a long time, the study of interac-

tion networks has been restricted to random graphs (resulting in mean-field models 

when fully connected, or in island models otherwise) or to regular lattices (resulting, 

e.g., in stepping-stone models). More realistic families of graphs have received mount-

ing attention only recently: these graphs are characterized by statistical features such as 

degree distributions and clustering coefficients (Albert and Barabási, 2002; Colizza et 

al., 2006). In this study, we propose new geometric characteristics of graphs that are 

particularly useful for characterizing disease dynamics. 
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Individual-based spatially explicit stochastic systems are often called interacting 

particle systems (IPSs; Liggett, 1985; Durrett and Levin, 1994). IPSs are useful for cap-

turing the propagation of infectious diseases (e.g. Keeling, 2003). They are also often 

used to describe ecological dynamics, especially when individual contacts occur among 

nearest neighbors (Van Baalen and Rand, 1998). However, very few exact results have 

been demonstrated for IPS models, which, therefore, are mostly studied through simula-

tions. By applying mean-field approximations, IPS can be reduced to ODE (ordinary 

differential equation) models, with suitable state variables, such as the mean densities of 

susceptible and infected hosts. Critical values can then be approximated by the bifurca-

tion points of these ODE models. However, examples of the failure of such mean-field 

models close to critical values are numerous (Durrett and Levin, 1994; Filipe and Gib-

son, 1998; Dieckmann et al., 2000 Part B; Keeling, 2005). A common reason for these 

failures is the inability of mean-field models to capture correlations in the state of 

neighboring individuals. Therefore, considerable attention has been given to the design 

of approximations that behave better than mean-field approximations in the vicinity of 

the critical values of an IPS model. Such methods are often referred to as moment clo-

sure methods (Bolker and Pacala, 1997). Prominent examples include the pair

approximation (Matsuda et al., 1992) and cluster variation methods (Kikuchi, 1951; 

Krishnarajah et al., 2005) such as the Bethe approximation. While these methods have 

become popular in theoretical epidemiology and ecology (e.g., Dieckmann et al., 2000), 

they account for a network’s structure only in limited ways, and thus cannot be used to 

study the influence of such structure more in general. 

Analytically tractable models of statistical physics, such as the Ising model, reveal 

that approximations often break down because of the persistence, or even amplification, 

of long-range correlations close to critical values (Marro and Dickman, 1999; Snyder 

and Nisbet, 2000; Dickman and Martins de Oliveira, 2005). Hence, one way to improve 

upon classical approximations is to take long-range correlations into account, to the ex-

tent possible, thereby going beyond the correlations between nearest neighbors, which 

are the basis of the classical pair approximations and Bethe approximations on graphs. 

Here we take as our point of departure several published approximations relying on cor-

relations between nearest neighbors only, and propose for each of them new 

approximations by incorporating correlations at distances larger than 1. We show that, 

in some cases, this method leads to more accurate predictions of critical parameter val-

ues, and also better describes the prevalence of a disease. In addition, our new 
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approximations allow us to explicitly take into account geometric features of graphs not 

captured by the classical approximations, which makes it possible to study their influ-

ence on disease prevalence. 

The new method introduced here is but one of several propositions for improving 

classical approximations (Sato et al., 1994; Snyder and Nisbet, 2000; Filipe and Gibson, 

2001; Petermann and De Los Rios, 2004). None of these earlier methods, however, was 

dedicated to exploring and quantifying the influence of the distinctive geometric fea-

tures graphs possess. To overcome this limitation, Petermann and De Los Rios (2004) 

suggested an alternative method for improvements, through the careful examination of 

basic clusters defined by local patterns larger than pairs. While the resultant approxima-

tions can improve the description of disease dynamics for a given interaction network, 

the systematic comparison of disease dynamics across different types of graph is not 

straightforward using their method, since different basic clusters would then have to be 

identified and used as the basis of (hence essentially different) approximation schemes. 

This is why we have developed an alternative approach. 

To illustrate our approach, we focus on a simple model of disease propagation on 

graphs by analyzing the well-studied contact process (Harris, 1974; Marro and Dick-

man, 1999), which serves as a standard for the spatially explicit definition of SIS 

models. This model has been used for modeling phenomena involving excitable media, 

like forest-fire models (Drossel and Schwabl, 1992), or for modeling the ecological dy-

namics of metapopulations (Franc, 2004). The contact process has also been widely 

used for studying the spread of diseases (Filipe and Gibson, 1998; Pastor-Satorras and 

Vespignani, 2001; Eguiluz and Klemm, 2002). 

This article is organized as follows. Section 2 introduces the contact process, and 

Section 3 reviews classical moment closures. In Section 4, we explain in detail, using 

the Bethe approximation as an example, the main methodological contribution of this 

study: how to extend moment closure approximations based on nearest neighbors to 

longer-range correlations. Exploiting the insights thus obtained, we propose new geo-

metric characteristics of graphs that have the potential to influence the dynamics of 

contact processes. In Section 5, we present a comparison of different approximation 

schemes, by critically evaluating approximations that have already been published 

against approximations based on our new method. We thus select the approximation 

best suited for studying the influence of the identified graph characteristics. We con-

clude with a discussion of possible improvements of our method and with guidelines for 
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selecting suitable moment closures. 

2  The contact process

The contact process is a simple model for describing the spread of an epidemic in 

continuous time (Harris, 1974; Marro and Dickman, 1999). We consider a graph, whose 

nodes are individual hosts and whose edges connect hosts that can infect one another. 

We will focus on graphs with homogeneous degree, in which each node has the same 

number h  of neighbors. At any time 0t � , a host i  can be in either of two states iz :

susceptible ( 0)iz �  or infected ( 1)iz � . If i  is infected, it becomes susceptible with 

probabilistic rate � . As units are arbitrary, we choose 1� �  without loss of generality, 

so that the unit of time is the expected duration between a host’s infection and recovery. 

If i  is susceptible and has ia  infected neighbors, it becomes infected with probabilistic 

rate ia� , with �  denoting the probabilistic transmission rate between neighboring 

hosts,

( 0 1)t dt t

i iP z z dt� � � � �  , (1a) 

 ( 1 0 )t dt t

i i iP z z a a a dt�� � � � � � �  . (1b) 

This process implies a critical value of �  that depends on the considered graph: for a 

transmission rate below the critical value the infection dies out, while above this value 

the infection spreads. 

There is no known analytical solution to the contact process, and several ap-

proximations have been derived. Approximations based on moment closure have been 

shown to behave fairly well far from the critical point; these are described in the next 

section. Our goal in this study is to propose an improvement of existing moment closure 

approximations close to the critical point by taking into account correlations between 

hosts at distances larger than that between nearest neighbors. 

3  Moment dynamics and moment closures 

Instead of tracing through time the states of all nodes of a graph, the essential features 

of the contact process dynamics can be captured by salient summary statistics. ODEs 

can thus be constructed to describe the expected dynamics of configuration probabilities 

6



over realizations of the stochastic process. For infinitely extended graphs, the configura-

tion probabilities in individual realizations are identical to their expected values across 

realizations. 

3.1  Singlet dynamics

We denote the probability that a host is infected at time t  by ( )t	 . The dynamics 

of 	  are then given by 

1(01)
d

h P
dt

	
� 	� 
 , (2) 

(Filipe and Gibson, 2005; Peyrard and Franc, 2005), where 1(01)P  is the probability 

that a pair of nodes linked by an edge is in state 01. Such nodes are also said to be 

(nearest) neighbors, adjacent, or directly connected; their distance is defined as 1. More 

generally, here and in the following ( )ijd

i jP z z�  denotes the probability for two arbitrary 

nodes i and j at distance ijd  to be in states iz  and jz . The symmetry relation 

( , ) ( , )ij ijd d

i j j iP z z P z z�  holds by definition. These probabilities do not refer to specific 

nodes and must be interpreted as expectations over all pairs in the graph that possess the 

specified distance. 

3.2  Pair dynamics

Closing Eq. (2) requires information about the dynamics of 1(01)P ,

1
1 1 1(01)
(11) ( 1) (100)

dP
P h P

dt
� �� � 


1 1
1

1

(101)
(01) 1 ( 1)

(01)

P
P h

P
� �

�� �

 � � 
 �

� �
 (3) 

(Filipe and Gibson, 2005; Peyrard and Franc, 2005), where 1 1(100)P �  is the probability 

to observe a node in state 0 and two of its neighbors in states 0 and 1, respectively. The 

definition of 1 1(101)P �  is analogous. Denoting the set of all neighboring pairs of nodes 

by E , we thus have 1 1(100)P � � ( 1 0 0 | ( ) ( ) )i j kP z z z i j j k E� � � � � � � � �  and 1 1(101)P � �

( 1 0 1| ( ) ( ) )i j kP z z z i j j k E� � � � � � � � � . Eq. (3) may seem complicated at first sight, but 

is nothing more than a straightforward consequence of accounting for infection and re-
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covery events starting from, or leading to, a pair of neighbors in state 01 (Appendix 1 

provides details on this derivation). Note that the roles of nodes i  and k  in the triplets 

discussed here are equivalent, while that of the central node j  is different: it is for this 

reason that the ordering of states in 1 1 1 1(100) (001)P P� ��  and 1 1(101)P �  is important. It 

also needs to be appreciated that the triplets ( , , )i j k  can either be open or closed (result-

ing in a triangular configuration of edges), depending on whether or not nodes i  and k

are neighbors. 

Just as the dynamics of singlets in Eq. (2) depends on pair states, the dynamics of 

pairs in Eq. (3) depends on triplet states. In general, whenever interactions occur only 

along edges, the dynamics of configurations of order n  depends on the state of configu-

rations of order 1n � . To close a dynamical system like the one jointly given by Eqs (2) 

and (3), one therefore needs to truncate the resultant hierarchy of equations at a certain 

order by approximating the required higher-order joint probabilities as functions of 

lower-order ones. Such relations are referred to as moment closures. Moment closure 

approximations go back to the cluster variation method developed in solid-state physics 

during the 1930s (Kikuchi, 1951; Lavis and Bell, 1999). 

3.3  Order-1 closure

The simplest closure is a closure at order 1, also known as the mean-field approxi-

mation (MF): 1(01) (1 )P 	 	� 
 . This yields a closed equation in 	  (Marro and 

Dickman, 1999), 

(1 )
d

h
dt

	
�	 	 	� 
 
  . (4) 

The SIS model often used in non-spatial epidemiology is thus recovered (with the prob-

ability 	  being interpreted as the proportion, or frequency, of infected hosts). Eq. (4) is 

easy to solve and study, but except in particular cases (for contact graphs with a high 

value of h , for contact graphs in high dimensions, or for diseases with high prevalence) 

the mean-field assumption, implying a well-mixed population of hosts, is too restrictive, 

so that this approximation’s performance typically is quantitatively poor (Durrett and 

Levin, 1994; Filipe and Gibson, 1998; Dieckmann et al. 2000; Keeling, 2005). 

8



3.4  Order-2 closures

In order-2 closures, triplet probabilities are approximated in terms of singlet and 

pair probabilities. Correlations between two nodes linked by an edge are thus no longer 

ignored. However, two nodes at a distance larger than 1 are still assumed to be inde-

pendent. Let us introduce here the notation for triplet probabilities: ( )ij jk ikd d d

i j kP z z z
� � � �

and � ( )
ij jk ikd d d

i j kP z z z
� �

� �  denote the exact and approximated probabilities, respectively, 

for three arbitrary nodes i , j , and k  at distances ijd , jkd , and ikd  to be in states iz , jz ,

and kz . As for pair probabilities, these triplet probabilities must be interpreted as expec-

tations over all triplets in the graph that possess the specified distances. Corresponding 

probabilities that are applicable when the third distance ikd  is unknown are denoted 

analogously, by ( )ij jkd d

i j kP z z z
� � �  and � ( )

ij jkd d

i j kP z z z
�

� � ; for an example see Eq. (6b). 

The most classical order-2 closure is known as pair approximation (PA). This ap-

proximation (Matsuda et al, 1992) has become a standard for simplifying 

spatiotemporal complexity in epidemiological and ecological models in which space is 

discrete (Iwasa, 2000; Sato and Iwasa, 2000; van Baalen, 2000), 

� � �

1 1
1,1,1 1,1,2 1,1 ( ) ( )

( ) ( ) ( )
( )

i j j k
PA PA PAi j k i j k i j k

j

P z z P z z
P z z z P z z z P z z z

P z

� �
� � � � � � � � �  . (5). 

Note that �
1,1,

( ) 0
ikd

PA i j kP z z z� � �  for 2ikd � , since in a triplet with two pairs at distance 1 

the third distance is always less or equal to 2. The pair approximation implies the as-

sumption that the states of nodes i and k are independent given the state of node j.

This limitation can be overcome by the so-called Bethe approximation (BA), which 

distinguishes between closed triplets ( 1)ikd �  and open triplets ( 2ikd � ). Denoting by 

�  the graph’s clustering coefficient (i.e., the probability that two neighbors of a node 

are neighbors of each other; Albert and Barabási, 2002; Newman, 2003), 1 1P �  can, in 

general, be expressed as 1 1 1 1 1 1 1 2(1 )P P P� �� � � � �� � 
 . The Bethe approximation (Morita, 

1994; Yedidia et al., 2005) for closed triplets is then given by the so-called Kirkwood 

approximation (Singer, 2004), 

�

1 1 1
1,1,1 ( ) ( ) ( )

( )
( ) ( ) ( )

i j j k i k
BA i j k

i j k

P z z P z z P z z
P z z z

P z P z P z

� � �
� � �  , (6a) 
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while the Bethe approximation for open triplets is given by the pair approximation, 

� �
1,1,2 1,1,2

BA PAP P� . Accordingly, the Bethe approximation for 1 1P �  is defined by 

� � �
1,1 1,1,1 1,1,2

( ) ( ) (1 ) ( )BA BA BAi j k i j k i j kP z z z P z z z P z z z� �� � � � � � 
 � �  . (6b) 

However, as opposed to pair approximation, the Bethe approximation of closed-

triplet probabilities according to Eq. (6a) is not normalized, so that the probabilities 

�
1,1,1

( )BA i j kP z z z� �  when summed over all combinations of iz , jz , and kz  do not necessar-

ily add up to 1. We will therefore also consider the following, appropriately normalized 

version of the Bethe approximation (NBA),

�
�

�

1,1,1

1,1,1

1,1,1

( )
( )

( )
i j k

BA i j k
NBA i j k

BA i j k

z z z

P z z z
P z z z

P z z z
� �

� �
� � �

� ��
 . (7) 

Moment closures have been used to approximate population dynamics in continu-

ous space. In this context, other order-2 closures have been proposed recently (Law and 

Dieckmann, 2000; Dieckmann and Law, 2000; Law et al., 2003; Murrel et al., 2004). 

They are referred to as power-1 closure (P1) and power-2 closure (P2) according to the 

number of pair probabilities that get multiplied in the terms of the closure, 

�
1,1,1

1 1 1
1 ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ,

P i j k i j k j i k k i j

i j k

P z z z P z P z z P z P z z P z P z z

P z P z P z

� � � � � � � �



 (8) 

�

1 1 1 1
1,1,1

2

1 1

( ) ( ) ( ) ( )1
( )

2 ( ) ( )

( ) ( )
( ) ( ) ( ) .

( )

i j j k i j i k
P i j k

j i

i k j k

i j k

k

P z z P z z P z z P z z
P z z z

P z P z

P z z P z z
P z P z P z

P z

� � � � �
� � � �

�

�� �
� 
 �

��

 (9) 

The corresponding equations for �
1,1,2

P  are obtained by replacing 1( )j kP z z�  with 

( ) ( )i kP z P z . For obvious reasons, the Bethe/Kirkwood approximation is referred to as a 

power-3 closure (Law and Dieckmann, 2000; Dieckmann and Law, 2000; Law et al., 

2003; Murrel et al., 2004). A drawback of the power-1 and power-2 closures is that they 

may lead to negative values (which then have to be replaced with 0); for the contact 

process, this may happen when � , and thus 	 , are low. 
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4  Extensions to longer-range correlations

For each of the five closures described above (PA, BA, NBA, P1, and P2), it is im-

plicitly assumed that any two nodes at distances larger than 1 are independent. We will 

now show how to surmount this restriction, by deriving extended versions of these clo-

sures that account for correlations at larger distances. A method for incorporating 

distance-2 and distance-3 correlations is explicitly detailed and illustrated for the Bethe 

closure. While the presented method readily extends to larger distances, only short cor-

relation distances are computationally tractable. 

4.1  Incorporating distance-2 correlations

We define the extended Bethe approximation as 

�
( ) ( ) ( )

( )
( ) ( ) ( )

ij jk ik
ij jk ik

d d d
d d d

i j j k i k

i j k

i j k

P z z P z z P z z
P z z z

P z P z P z

� � � � �
� � �  . (10) 

In the above expression, we approximate a pair probability, for instance ( )ikd

i kP z z� ,

with ( ) ( )i kP z P z  if 2ikd �  (instead of if 1ikd � , as assumed in the classical closures). 

To construct an extended Bethe approximation, we again use the relationship 

1 1 1 1 1 1 1 2(1 )P P P� �� � � � �� � 
 . The approximation of 1 1 1( )i j kP z z z� � � �  applies to closed triplets 

and remains given by Eq. (6a). For 1 1 2 ( )i j kP z z z� � � � , i.e., for an open triplet, even if there 

is no edge between nodes i  and k , many other paths of lengths larger than 1 may exist. 

The shortest of them is the path through the central node j  of the triplet, which is a path 

of length 2. Taking into account this correlation (which of course is only part of the set 

of the long-range correlations existing along all possible paths), the distance-2 Bethe 

closure for 1 1 2 ( )i j kP z z z� � � �  is 

�

1 1 2
1 1 2 ( ) ( ) ( )

( )
( ) ( ) ( )

i j j k i k

i j k

i j k

P z z P z z P z z
P z z z

P z P z P z

� � � � �
� � �  . (11) 

The correction factor relative to the classical Bethe approximation is 
2 ( )

( ) ( )
i k

i k

P z z

P z P z

�
 and ac-

counts for the fact that the states iz  and kz  are not independent. 
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4.2  Resultant closed dynamical system

We can now exploit the distance-2 order-2 closure defined above to close the open dy-

namical system given by Eqs (2) and (3). This will be achieved by approximating 

�
1 1

(100)P
�

 based on Eqs (6a) and (11), 

� � �
1 1 1 1,1 1 1,2

1 2 1 1 1 2

2 2

1 1
1 2

2

(100) (100) (1 ) (100)

(01) (00) (01) (00) (01)
(1 )

(1 ) (1 )

(01) (00)
[ (01) (1 ) (01)] .

(1 )

P P P

P P P P P

P P
P P

� �

� �
	 	 	 	

� �
	 	

� � �
� � 


� � 


 


� � 




 (12) 

The approximation �
1 1

(101)P
�

 is defined analogously based on a decomposition with 

respect to the third distance. We thus see that an additional equation is required for de-

scribing the dynamics of 2 (01)P . Denoting by 2

1 2 3 4( , , )T z z z z�  the transition rate of 

two nodes at distance 2 from states 1z  and 2z  to states 3z  and 4z , respectively, and ac-

counting for all four types of transition starting from or leading to state 01 , we obtain 

2
2 2 2(01)
(01)[ (01 11) (01 00)]

dP
P T T

dt
� 
 � � �

2 2 2 2(00) (00 01) (11) (11 01)P T P T� � � �  . (13) 

The involved transition rates at distance 2 are then approximated by 

� �
1 2 1 1,2

2

2 2

(101) (011)
(01 11) ( 1)

(01) (01)

P P
T h

P P
� �

� �

� � 
 �  , (14a) 

2 (01 00) 1T � �  , (14b) 

� �
1 2 1 1,2

2

2 2

(100) (010)
(00 01) ( 1)

(00) (00)

P P
T h

P P
� �

� �

� � 
 �  , (14c) 

2 (11 01) 1T � �  (14d) 

(Appendix 2 provides details on this derivation). In �
1 2

P
�

, only two distances are known. 

Three values are possible for the third distance: 1, 2, or 3 (see top row of Fig. 1). Again 

using the extended Bethe approximation, while ignoring correlations at distance 3, we 
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obtain

�

1 2
1 2 ( ) ( )

( )
( ) ( ) ( )

i j j k

i j k

i j k

P z z P z z
P z z z

P z P z P z

� � �
� � �

1 2

1 2 3[ ( ) ( ) ( ) ( )]i k i k i kP z z P z z P z P z� � �� � � � �  (15) 

The coefficients 1� , 2� , and 3 1 21� � �� 
 
  represent the proportions of the three cor-

responding triplet configurations. The extended closure therefore enables us to capture 

the influence of new geometric characteristics of the graph that go beyond the clustering 

coefficient �  and which, according to the approximation derived here, must be expected 

to affect the dynamics systematically. We refer to 1� , 2� , and 3�  as a graph’s square 

clustering coefficients. Their influence can be explored based on the distance-2 order-2 

closure derived here. 

Finally, pair probabilities for states 00 and 11 are readily recovered from the singlet 

probability for state 1 and the pair probability for state 01, 

 )01()11( 11 PP 
� 	  , (16a) 

 )01(1)00( 11 PP 

� 	  . (16b) 

The dynamical system given by Eqs (2), (3), and (13) has thus been closed by the 

approximations in Eqs (12) (and the corresponding equation for �
1 1

(101)P
�

), (14), (15) 

and (16). 

4.3  Incorporating distance-3 correlations

The method detailed above can be used to refine moment closure approximations 

by including correlations between nodes separated by more than two edges. We have 

implemented one more step in this scheme for successive refinement, by accounting for 

distance-3 correlations. It turns out that this enhancement modifies only the term with 

weight 3� �  in Eq. (15), as this is the only place where a distance larger than 2 needs to 

be considered between the three nodes involved in the triplet probabilities. 

Applying the same logic as introduced above for distance-2 correlations, we derive 

this further extension through the following steps: 

1. We add a fourth equation in the system, to describe the dynamics of 3(01)P .
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2. We express the transition rates 3(01 11)T �  and 3(00 01)T �  in terms of the prob-

abilities 1 3( )i j kP z z z� � �  that three nodes i , j , and k  are in states iz , jz , and kz ,

given that 1ijd � , 3jkd � , and ikd  is unknown (while i  is not on the path between 

j  and k ).

3. We decompose the approximation of 1 3( )i j kP z z z� � �  considering three possibilities 

for ikd : 2, 3, or 4 (see bottom row of Fig. 1). The case 1ikd �  does not occur, since 

it would imply 2jkd � . The proportions 2� , 3� , and 4 2 31� � �� � 
 
  of these three 

triplet configurations can be determined for any graph. 

4. We apply the extended Bethe approximation in Eq. (10) for 2ikd � , 3 , and 4while 

ignoring correlations at distance 4, 4 ( ) ( ) ( )i k i kP z z P z P z� � .

By going one step further in the refinement of the moment closure approximation 

we can thus introduce, and study the influence of, the two new graph characteristics 2�

and 3� , which help characterize a graph’s geometric features beyond its clustering coef-

ficient �  and its square clustering coefficients 1�  and 2� .

5  Numerical results

We derived the distance-2 and distance-3 extensions of the normalized Bethe ap-

proximation (NBA), power-1 closure (P1), and power-2 closure (P2) according to the 

general method detailed for the Bethe approximation in the previous section. On this 

basis, we systematically compared the performances of the following six closures: 

mean-field approximation (MF), pair approximation (PA), Bethe approximation (BA),

NBA, P1, and P2 without and, when applicable, with the extensions derived above for 

incorporating correlations at distances 2 and 3. The performance of closures was evalu-

ated for the contact process, by estimating the transmission rate’s critical value c�  and 

by examining the transients and equilibria of the singlet probability 	 . Accurate predic-

tions of c� , and of equilibrium densities 	  close to c� , are known to be much more 

challenging than predictions of 	  far away from c� .
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5.1  Method of comparison

Three different graphs with homogeneous degree were studied (Fig. 2). The first 

graph is conventionally referred to as the triangular grid ( 6h � , 0.4� � ; Fig. 2a). The 

second graph is the 4-regular graph ( 4h � , 0.4� � ; Fig. 2b), which shares the cluster-

ing coefficient with the triangular grid, but differs with regard to the degree and the 

coefficients affecting distance-2 and distance-3 correlations. The third graph is the 

square grid ( 4h � , 0� � ; Fig. 2c), which shares a degree of 4 with the 4-regular graph, 

but is characterized by a vanishing clustering coefficient. All graph statistics necessary 

for implementing the closure-approximations are easily obtained by analytic combinato-

rial computation; the resultant values (assuming infinitely extended graphs) are reported 

in Table 1. 

We used the Runge-Kutta integration method from the package odesolve of the 

scientific software environment R to solve the ODE systems resulting from the different 

moment closure approximations. Estimations of 	  during transients and at equilibrium 

were obtained from simulations of the continuous-time contact process by averaging 

over 100 different realizations, each of which proceeded for 200 000 iterations. An it-

eration was defined as the modification of the state of a single node in the graph, 

according to the rates given by Eq. (1). The time steps between successive iterations 

were drawn from an exponential distribution with mean 1 11
2

[ (01)]N h NP	 � 
� .  We ran 

simulations of the contact process on graphs with about 5000N �  nodes. Both the ODE 

models and the contact process simulations were initialized with a 20% proportion of 

infected nodes (allocated at random in the simulations). 

5.2  Comparison of different closures

Prediction of critical transmission rate 

Table 2 shows the simulation-based estimates of c� , together with predictions re-

sulting from the six moment closure approximations for the three studied graphs. Exact 

analytical results for c�  are available for MF and PA (1 h�  and 1 ( 1)h� 
 , respectively). 

When 0� � , classical BA and NBA are equal to PA.

Our results show that (1) with the exception of P1, predictions based on distance-1 

(classical) closures are poor, following the ordering 2MF P PA BA NBA� � � � , where 

1 2M M�  means that method M1 is less accurate than method M2; (2) P1 at distance 1 
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is more accurate for the 4-regular graph than for the triangular grid; (3) accounting for 

correlations at distances 2 and 3 improves the predictions of NBA, whereas the im-

provement for BA is restricted to distance 2; and (4) the distance-2 and distance-3 

extensions destabilize P1, because negative values for the triplet probabilities are pro-

duced. Fig. 3 illustrates results (2) and (3) around the values of c�  estimated from 

simulations. 

Prediction of singlet probability during transients and at equilibrium 

Two approximations are retained for testing predictions of 	  during transients and 

at equilibrium: NBA with extension to distance-3 correlations and P1 without extension. 

Fig. 4 shows the dynamics of the singlet probability 	  for the 4-regular graph, based on 

simulations and on these two approximations. No other approximation, without or with 

extension when applicable, resulted in better predictions (results not shown). Three 

cases can be distinguished: 

1. For c� ��  (Fig. 4a), the transients towards extinction are well predicted by NBA

with extension and by P1 without extension (and with lesser accuracy by the other  

approximations). 

2. For c� ��  with c� ��  (Fig. 4b), all approximations overestimate the probability 

	 , both at equilibrium and during the transients; however, this overestimation is 

smaller for NBA with extension and for P1 without extension than it is for the other 

approximations. 

3. For c� ��  (Fig. 4c), all methods correctly predict the probability 	  at equilib-

rium, while the transients are predicted less accurately. 

5.3  Influence of network structure

The extended closures we have introduced above can also be used to understand 

and predict the influence of those geometric features of a graph that the closures have 

been shown to depend on. Owing to their key role in the resultant moment-based ap-

proximations, we propose these features as good candidates for characterizing a graph’s 

dynamically relevant geometric properties. 

We tested the influence of the clustering coefficient �  and of the square clustering 
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coefficients 1� , 2� , and 3�  on the equilibrium probability 	  using NBA with extension 

to distance-3 correlations. Whereas this closure and the classical P1 provided the best 

approximations, the latter does not enable taking into account the square clustering co-

efficients. To test the influence of a given feature of the geometry (including �  and the 

vector ( 1� , 2� , 3� ), with 1 2 3 1� � �� � � ), we solved the ODE system of the moment-

based approximation for a range of values of the corresponding parameter, while leav-

ing the other parameters unchanged. 

Fig. 5 shows the influence of the clustering coefficient �  for different values of the 

transmission rate � . We see that the role of �  is highly dependent on � : for high val-

ues of �  (implying a high probability 	  of infected nodes at equilibrium) there is little 

effect of � . This is consistent with the acceptable predictive accuracy of the mean-field 

approximation (which completely ignores the graph’s geometry) for large � . The effect 

of �  increases as �  decreases towards its critical value. We recover the fact that a high 

clustering coefficient �  impedes disease propagation (Keeling, 1999; Proulx et al., 

2005). This is because infected nodes in a highly clustered region of the interaction 

network share many nearest neighbors; these links are then wasted by becoming redun-

dant as paths for disease propagation. 

Fig. 6 shows the influence of the square clustering coefficients 1� , 2� , and 3� . We 

see that the partitioning of triplet configurations as measured by these coefficients can 

significantly modify the equilibrium probability 	 . Their effect is especially strong 

when the transmission rate c� ��  is relatively low. Specifically, when 1�  is dominant 

among the three square clustering coefficients, 	  is lowest, whereas when 3�  is domi-

nant, 	  is highest. The interpretation of this result is analogous to that for � : a high 

value of 1�  implies a redundancy of paths of length 2 between pairs of nodes, so that 

infected nodes have more overlapping contacts, which consequently are wasted from the 

perspective of disease propagation. Again, the sensitivity to these geometric features 

decreases as the transmission rate �  increases and vanishes altogether for very high 

values of � .

6  Discussion

Stochastic dynamical systems on graphs provide powerful tools for understanding 
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and quantifying the role of spatial or social structures, and of the resultant contact net-

works, in the emergence and spread of infectious diseases. Simulations of such 

dynamics are computationally intensive and analytical results are rarely available. A 

standard method of investigation is thus the derivation of approximations based on or-

der-2 moment closures. Here we introduced a new method for improving classical 

order-2 moment closure approximations by accounting for longer-range correlations, 

thus revealing the importance of previously unrecognized general geometric features of 

contact networks. 

Longer-range correlations are particularly important in models of population dy-

namics in continuous space, defined through spatial kernels for local processes such as 

competition and movement, rather than through nearest-neighbor interaction. It is there-

fore not surprising that longer-range correlations have more naturally been taken into 

account in those models (Bolker and Pacala, 1997; Murrel et al., 2004). However, to our 

knowledge, the importance of longer-range correlations for the quality of moment clo-

sures has been little studied in discrete space up until now. While methods have been 

developed for improving classical order-2 closures on graphs, in order to compensate 

for neglected correlations (Sato et al., 1994; Snyder and Nisbet, 2000; Filipe and Gib-

son, 2001), these methods rely on the introduction of new parameters estimated through 

simulations or heuristic choices. By contrast, the approach we propose here is self-

contained and the new parameters appearing in the ODEs are clearly identified as geo-

metric characteristic of the considered graph. 

In analyzing the performance of our new method for moment closures, we have fo-

cused on the contact process. This simple model of disease dynamics involves as a 

single essential parameter a disease’s transmission rate �  between neighboring hosts. 

And yet this model’s behavior is difficult to predict accurately, especially in the vicinity 

of the critical value c�  below which the disease dies out. For these reasons the contact 

process serves as a valuable benchmark for the performance of moment closure ap-

proximations. 

We have systematically evaluated the effect of the choice of moment closure on the 

quality of the resultant predictions. We compared five different forms of order-2 clo-

sure, several of them introduced from studies in continuous space and extended here to 

discrete space. Whereas other variations of the classical pair approximation have been 

developed, we could not consider all of them, since either they cannot be used to ac-
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count for longer-range correlations (Sato et al., 1994; Filipe and Gibson, 2001; Bauch, 

2005) or they are very similar to the approximations we have studied here (e.g., Van 

Baalen, 2000, or Keeling, 1999, have proposed forms close to the Bethe approximation, 

taking into account the clustering coefficient). For all the moment closures we have 

considered and for which this was feasible, we derived the corresponding extensions 

based on accounting for longer-range correlations. We found that, (1) for c� ��  with 

c� �� , transients towards extinction are often poorly predicted by classical moment 

closure approximations, while introducing longer-range correlations improves the qual-

ity of the approximation, (2) for c� ��  with c� �� , all considered approximations 

overestimate the disease prevalence both at equilibrium and during transients, and (3) 

for c� �� , all considered approximations predict disease prevalence at equilibrium 

with good accuracy but perform less well in predicting the transients. Such a depend-

ence in the performance of moment closures on different parameter regimes (sub-

critical, critical, and metastable) has already been pointed out (e.g., Krishnarajah et al. 

2005).

Our systematic comparisons then demonstrated that the two moment closures lead-

ing to the best fit for disease prevalence, both at equilibrium and during transients, are 

the power-1 closure without extension and the normalized Bethe approximation with 

distance-3 correlations. Even though these two closures do not always predict the criti-

cal value of transmission rate with high accuracy, they provide reasonable estimations. 

If the main objective is to explore the influence of a graph’s characteristics, rather than 

to obtain precise quantitative predictions, the normalized Bethe approximation with dis-

tance-3 correlations can be relied upon for good results. 

Our study has also demonstrated that the length of loops in a contact graph may of-

fer a valuable lead for selecting the most suitable moment closure. It is well known 

from statistical physics and from the study of Bayesian networks that dynamics on 

graphs without loops, commonly known as trees, are far simpler to analyze. Several ap-

proximation methods are rigorous on trees, but still work well on graphs with loops 

(e.g., Yedidia et al., 2005). On regular graphs with homogeneous degree, as those stud-

ied here, loops can be triangles, squares, or may be longer. While some approximations 

that do not account for long-range correlations provide good predictions when loops are 

short (resulting in a large clustering coefficient, such as for the triangular grid), the new 

method proposed here, by adding information about longer-range correlations, signifi-
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cantly improves the estimation of the critical transmission rate c�  when loops are 

longer than triangles. The improvements are particularly striking when minimal loops 

are squares (so that the clustering coefficient vanishes, such as for the square grid). 

Based on these considerations, we offer the following suggestions for selecting 

suitable moment closures for approximating dynamics in discrete space: (1) mean field-

approximation when studying random graphs far from the critical point or graphs with 

high mean degree; (2) pair approximation when predictions are needed closer to a criti-

cal point for graphs without loops (trees); (3) classical order-2 closures that distinguish 

between open and closed triplets when dynamics are studied close to a critical point and 

the graph’s clustering coefficient is intermediate to high; (4) normalized Bethe ap-

proximation extended to account for longer-range correlations when studying dynamics 

close to a critical point for graphs that have small clustering coefficients and thus ex-

hibit longer loops. In particular, it should be appreciated that our new method yields 

improvements under conditions that are known to cause the mean-field approximation’s 

failure: our method offers satisfactory predictions close to critical points and for graphs 

with low homogeneous degree. 

Our derivation of extensions of classical closures enables us to draw attention to 

several new geometric characteristics of graphs. We have shown that these are impor-

tant for simplifying the spatiotemporal complexity of dynamics on graphs in general 

and for studying the structural determinants of disease spread in particular. In addition 

to the above-mentioned clustering coefficient, we have identified several new coeffi-

cients: the square clustering coefficients affecting distance-2 correlations, as well as 

further clustering coefficients affecting distance-3 correlations. In Caldarelli et al. 

(2004), the authors pointed out that the clustering coefficient alone may not suffice for 

understanding the key features of contact networks and therefore considered extensions 

based on more complex patterns of nodes. Here we have formally linked such descrip-

tions with the spatiotemporal dynamics of the contact process. Exploring the dynamical 

implications of clustering and square clustering coefficients is easy based on the ex-

tended normalized Bethe approximation, and yields results that are valid for whole 

classes of graphs sharing given combinations of these coefficients. In this way we have 

found that the influence of these coefficients, and thus of the corresponding features of 

graph geometry, is strong for low to intermediate values of transmission rate, as these 

coefficients serve as indicators of path redundancy in a graph. For graphs with homoge-
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neous degree, analytical computation of these coefficients is straightforward. When 

considering more complex contact networks, appropriate algorithms are readily avail-

able for evaluating such coefficients (Schreiber and Schwöbbermeyer, 2005 and 

references therein).  

While this study has focused on graphs with homogeneous degree, real interaction 

networks (except in some particular cases such as orchards) tend to be complex (which 

includes social contact networks, networks of airline routes, and ecological networks; 

Newman, 2003; Proulx et al., 2005) and are characterized by more general degree dis-

tributions. The methodology presented here can be extended without conceptual 

problems to these situations and could thus help account for geometric features specific 

to non-homogeneous graphs. Pair approximation and Bethe approximations have al-

ready been derived for a graph with a general degree distribution (Peyrard and Franc, 

2005). Combining the influence of degree distributions and of long-range correlations in 

a unified framework can be expected to provide increasingly accurate moment closure 

approximations of real spatiotemporal dynamics even close to critical points. 
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Appendix

1  Dynamics of 
1(01)P

Pairs of nodes at distance 1 in state 01  can originate from a node in a 00 -pair be-

coming infected or from a node in a 11-pair becoming susceptible. 01 -pairs  can 

disappear either by infection of the susceptible node or by recovery of the infected one. 

Denoting by 1

1 2 3 4( , , )T z z z z�  the transition rate of a pair of nodes at distance 1 from 

state 1 2( , )z z  to state 3 4( , )z z , these considerations yield the dynamics of 1(01)P ,

1
1 1 1 1

1 1 1 1

(01)
(00) (00 01) (11) (11 01)

(01) (01 11) (01) (01 00) .

dP
P T P T

dt

P T P T

� � � �


 � 
 �

The transition rates 1(11 01)T �  and 1(01 00)T �  are equal to 1, while the transi-

tion rates 1(00 01)T �  and 1(01 11)T �  depend on the state of the neighborhood of the 

node moving from state 0 to state 1. 

To see this, let us consider 1(01 11)T �  and introduce some suitable notations. We 

will refer to as i  the node changing from 0 to 1 and as j  the node staying in state 1. 

With ( )N i  representing the set of the h  nodes linked with i  by an edge, and with ( )

t

N iz

denoting the state of the nodes in the neighborhood of i at time t , then the number of 

neighbors of node i  that are infected at time t  is ( ) 1,( )
( ) t

l

t

i N i zl N i
a z �

�
�� , with 

1,0 0� �

and
1,1 1� � . Since the state of node j  is known, we can rewrite this expression as 

1,( ) { }
1 t

lzl N i j
�

�
�� �

. Using properties of the mathematical expectation E , we thus obtain 

1(01 11)T � � ( )[ ( ) | 0 1]t t t

i N i i jE a z z z� � � �

� � �1,( ) { }
1 [ | 0 1]t

l

t t

i jzl N i j
E z z� �

�
� � � �� �

� � �( ) { }
1 ( 1| 0 1)t t t

l i jl N i j
P z z z�

�
� � � � �� �

� � �1 1

1

(101)

(01)
1 ( 1)

P

P
h�

�

� 
  . 
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The same logic leads to 

1(00 01)T � �
1 1

1

(100)

(00)
( 1)

P

P
h�

�


  . 

With these results, the dynamics of 1(01)P  is given by 

1(01)dP

dt
� 1 1 1(11) ( 1) (100)P h P� �� 


1 1

1

(101)1

(01)
(01) 1 ( 1)

P

P
P h� �

�� �
 � � 
� �  . 

2  Dynamics of 
2 (01)P

To determine the dynamics of 2 (01)P , we first consider the transition rate 

2 (01 11)T �  and specify that the node in the 01 -pair that changes from 0 to 1 is called 

j  and the other node is called k . To determine this rate, we have to evaluate the prob-

ability for each neighbor of j  to be infected. One of these neighbors is the node in 

between j  and k  (since we know that the shortest path between j  and k  is of length 

2). The ratio �
1 1 2

2(011) / (01)P P
� �

 approximates the probability of this intermediate node 

to be infected, while �
1 2

2(101) / (01)P P
�

 approximates the probability of the 1h 
  other 

neighbors of j  to be infected, so that 

� �
1 2 1 1 2

2

2 2

(101) (011)ˆ (01 11) ( 1)
(01) (01)

P P
T h

P P
� �

� � �

� � 
 �  . 

The triplet probability �
1 1 2

(011)P
� �

 is obtained using Eq. (10). To determine 

�
1 2

(101)P
�

, we decompose �
1 2

( )i j kP z z z
�

� �  with respect to the distance between node i

and node k , in the same way we decomposed �
1 1

( )i j kP z z z
�

� �  using the clustering coeffi-

cient � . For this we recall that 1 2 ( )i j kP z z z� � �  is the probability to find three arbitrary 

nodes i , j , and k  in configuration ( )i j kz z z� � , given that the distance between i and j is 

1, that the shortest path between j  and k  is of length 2, and that i  is not the intermedi-

ate node between j  and k . The nodes i  and k  may be at distance 1 (Fig. 1a), distance 

2 (Fig. 1b), or distance 3. A distance of 4 is not possible because of the triangular ine-

23



quality 1 2 3ik ij jkd d d� � � � � . As in Section 4.2, we denote by the square clustering 

coefficients 1� , 2� , and 3� , respectively, the proportions of these three triplet configu-

rations, so that we can decompose as follows, 

� � � �
1 2 1 2,1 1 2,2 1 2,3

1 2 3( ) ( ) ( ) ( )i j k i j k i j k i j kP z z z P z z z P z z z P z z z� � �
� � � �

� � � � � � � � � � �  . 

Finally, we apply the distance-2 Bethe closure to determine the three approximate 

triplet probabilities above, 

�
1 2

( )i j kP z z z
�

� � �
1 2 1( ) ( ) ( )

1 ( ) ( ) ( )

i j j k i k

i j k

P z z P z z P z z

P z P z P z
� � � �

1 2 2 1 2( ) ( ) ( ) ( ) ( )

2 3( ) ( ) ( ) ( )

i j j k i k i j j k

i j k j

P z z P z z P z z P z z P z z

P z P z P z P z
� �� � � � �
� �  , 

where in the third term we have assumed that the states of the pair of nodes at distance 3 

are independent. 
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Captions of figures and tables

Table 1. Statistics characterizing geometric features of the three studied graphs: h  is 

the degree; �  is the clustering coefficient; 1� , 2� ,  and 3�  are the square clustering co-

efficients affecting distance-2 closures, and 2� , 3� , and 4�  are the coefficients affecting 

distance-3 closures. 

Table 2. Estimations of the critical value c�  of the contact process transmission rate 

from simulations and predictions obtained by solving the ODE systems resulting from 

the six different moment closure approximation without (classical) and with extension 

to distance-2 and distance-3 correlations. (a) 4-regular graph, (b) square grid, (c) trian-

gular grid. No value is reported when a closure leads to a negative value for the singlet 

probability at equilibrium. 

Fig. 1. Illustration on the triangular grid of configurations of triplets of nodes i , j , k

that fall into the categories measured by 1�  and 2�  (top row), and by 2�  and 3�  (bot-

tom row). Enlarged nodes are part of the triplet, while thickened lines depict (not 

necessarily unique) paths between each two of the three nodes that have shortest length 

and thus define their distance. 

Fig. 2. The three studied graphs with homogeneous degree: (a) triangular grid with 

6h � , (b) 4-regular graph with 4h � , (c) square grid with 4h � .

Fig. 3. Predictions of the singlet probability 	  at equilibrium close to c�  by NBA with 

extension to longer-range correlations and by P1 without extension. Continuous curves 

with error bars: mean and 90% confidence intervals from simulations; continuous 

curves with symbols 1 to 3: NBA based on distance-1 (classical), distance-2, and dis-

tance-3 correlations, respectively; dash-dotted curve: P1 without extension to longer-

range correlations. (a) 4-regular graph, (b) square grid. 

Fig. 4. Predictions of the singlet probability 	  during transients for the 4-regular graph 

by NBA with extension to longer-range correlations and by P1 without extension. Con-
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tinuous curves: three independent realizations of the contact process; dashed curve: 

NBA with extension to distance-3 correlations; dash-dotted curve: P1 without extension 

to longer-range correlations. (a) 0 39� � � , (b) 0 49� � � , (c) 1 3� � � .

Fig. 5. Predictions of the influence of the clustering coefficient �  on the probability 	

at equilibrium for any graph with homogeneous degree 4h �  and different transmission 

rates � .

Fig. 6. Predictions of the influence of the square clustering coefficients 1�  and 2�  on 

the probability 	 at equilibrium for any graph with homogeneous degree 4h �  and a 

transmission rate 0 47� � � .
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Table 1

Graph h θ α1 α2 α2 γ2 γ3 γ4

Triangular grid 6 2/5 2/15 6/15 7/15 2/15 6/15 7/15

4-regular graph 4 2/5 4/45 4/15 29/45 2/45 12/45 31/45

Square grid 4 0 2/9 0 7/9 2/5 0 2/5

1
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Table 2

Simulation 0.458
Closure Classical Distance-2 Distance-3
Mean field 1/4
Pair approximation 1/3
Bethe approximation 0.37 0.40 0.36
Normalized BA 0.37 0.41 0.42
Power-1 0.44 - -
Power-2 0.30 0.32 0.33

(a)

Simulation 0.40
Closure Classical Distance-2 Distance-3
Mean field 1/4
Pair approximation 1/3
Bethe approximation 1/3 0.37 0.355
Normalized BA 1/3 0.375 0.395
Power-1 0.33 - -
Power-2 0.26 0.26 0.27

(b)

Simulation
Closure Classical Distance-2 Distance-3
Mean Field 1/6
Pair approximation 1/5
Bethe approximation
Normalized BA
Power-1
Power-2

(c)

1
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Figure 2

(b)

(a)

(c)
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