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Insightsinto what stabilizes natural food webs have always been limited by a fundamen-
tal dilemma: studies either need to make unwarranted simplifying assumptions, under-
mining their relevance, or only examine few replicates of small food webs, hampering
the robustness of findings. Here we use generalized modeling to study several billion
replicates of food webs with nonlinear interactions and up to 50 species. In this way, we
show, first, that higher variability in link strengths stabilizes food webs only when webs
are relatively small, whereas larger webs are instead destabilized. Second, we reveal a
new power law describing how food-web stability scales with the number of species and
their connectance. Third, we report two universal rules. food-web stability is enhanced
when (i) species at high trophic level feed on multiple prey species and (ii) species at in-
termediate trophic level arefed upon by multiple predator species.

Understanding the dynamic properties of food webs is a problem of both theoreticaland pra
tical importanceg(1-16), especially as concerns about the robustness of naturainsysta-
late. Further, the discovery of stabilizing factors in food weasyield muchneededlesign
principles forinstitutional networks 7). Robert May(1) showed that randomly assembled
webs became less robust (measured in terms of their dynamical stability) as their complexity
(measured in terms of the number of interacting species and their connectivity) increased.
While it hasoftenbeenpointed out thatood webs can persist in n@tationary states, there is
growing evidence that May’s stabiligopmplexity relationship also holds for netationary
dynamics(18). Moreover population cycles or extaeal forcing averagesutif food websare
considered on loreg timescales, so thtitne-averaged dynamiagsan be considered agato-
nary. However, @tailed investigationaiming at a deeper understandmfgwhat makes food
webs robushavegenerally been hampered by computational constrééngs,12). Here,we
avoid these constraints through the use of generalized modehi2g)(

For a given class of mathematical modegsnerlized modeling (GM) identifiepara-



metersthat together capture the local stability progeriof allstationarystates Some of these
parametergscaleparametersjjuantify the scaling of biomassufles while others(exponent
parametensquantify the nonlinearity ofmodel functionsFor any gien model the GM @&-
rameters can be expressed as functions of conventional perdeheters. More importantly
however, the GM parameters are direatlgrpretablen their own right To capturethe can-
plexity of reatworld problens, the number of GM parameteassoftenlarge Yet, the numer
cal performance of GM is so favorable thdlions of randomly chosereplicates, defined by
samplesets of GMparameters, can be analyzed.

Our study focuses on realistic foaekb topologies generated by the niche model
(20,21). The dynamics of the population densiy of each species=1,...,N follows a dif-
ferential equation of the form

N
Xi =S(X) + R (X,.... X )= M; (X )_Z;,Gij (Xyr Xy )
-

where S, F, M;, G; are nonlinear functions describing the gain due to primary production,
the gain due to predation, the loss due to natural mortality, and the loss due to preslation
spectively Importantly, we do not restrict these functions to any specific functionahfdut
rather consider the whole classspichmodels.The production term is assumed to varfish
all species except producewghile the predationgain vanisheg$or producersSimilarly, the
predationloss is zerdor top-predators, while natural mortality is assumed to be negligible for
all species except tgpredatorsFinally, a relationship between the gain of a predator and the
loss of ts prey species is assumed tisatonsistent with passive prey switchi®M parane-
ters for this class of modelsave been derived befor#dj andare listed together with their
interpretatios in Tab.S1

To assess the dependencdaafd-web stability onthe exponenparameterswe gene-
ate a sample of@® food webs with a fixed number species. In this sampléhe exponent
parametes are drawn independently and randomly from suitable uniform distributions, while
the topological parameters are computed from randomly generatednmicled topologies
(20, 21). We estimate thaveragampact ofan exponenparameter on stability by computing
the correlation betweeiatparameter antbcal stabilty (20). Results ér food webs with 10
20, and 30species shown in Figre 1, reveal the followingThe sensitvity of predationto
prey density y, and thesensitivity of toppredator mortality to tojpredator densityy, ca-
relate positively with stability. This corresponds to the skabbwn fact that low saturation of
predators andonlinear, e.g., quadratimortality promote stability(12). By contrast, the se
sitivity of primary productiorto the number of primary producerg, and the sensitivity of
predationto predator densjt v, are negatively correlated with stability. This confirms that
stability increase whenprimary production is strongly limited by external factors suchuas n
trient availability, owhenpredation pressures are not very sersitopredator density2@).

The range ofurnover ratesa,,., as well as the total range of niche valugg, ., do not co-

scale?



relate with stability. Howeveincreasinghe average differendeetweerthe niche valugof a
predator andts prey, n,, , has a stabilizing effecfl2). Our analysis also confirms that the
number of links, and therefore a food wetimnectivity, is negatively correlated with stabil
ty.

As a next stepwe setall exponenparameters to realistic valuegap. S1) and focus on
the effects of foodweb topologyon stability We start by investigating how stability i§ a
fected bythe relationship betwedhenumber of specied\N , andthe number of linksL . For
better comparisorwe express thaumber of linksn terms of theconnectance€ = 1 . We
generate samples with random nighedel topologieswith N and C changing ora loga-
rithmic grid. At every vertexof this grid, we compute th@roportionof stable webgPSW),
which describeghe probability of randomly drawing a stable food virelm our sampleFig-
ure 2 shows BW resultscomputedfrom 35 billion food webs. As expectedhe ISW de-
creases asN and C increase Moreover, wefind thatthe levellines in Fig.2A are almost
perfectly straightvith a slope of 1, so that the PSW is determined almost exclusively by the
product of N and C. Fig. 2B shows that the dependencdanf(PSW) on log(CN) closely
follows a power law

We now turn tahe effect oflink-strengthvariability within a food web, which hgwe-
viously beenproposedas a potentially importantdeterminant offoodweb stability (4,7,9-
11,23). In order to compare link strengttve must take intaccount thatbecause of alloet
tric scaling biomass fluesat highertrophic levelsareon averagenuchweakerthanat lower
trophic levels. We thereformeasurdink-strengthvariability in a predatocentric way, by
determiningthe coefficient of variabn (CV) of all biomass fluxes normalized individually by
the total biomasmflow of the flux’s recipient. An alternative preyentric definition provid-
ing independent informatiorran be devisebased orthe CV ofall biomass fluxes norex
lized individually by the totabiomass outflow otheflux’s source.

To explore the impact of linkstrength variabilitywe generate a large ensembldood
webs(approx.10’) in which link strengths are drawn from a uniform disition. Figire 3A
showsthe PSW as a function of the observed CV of predatmtric link strengthsin very
small food webs (e.g.N =5), large jumpsoccur in the PSW as a function of the Q\bt
shown) This is due to the relativelpw number of feasible topologies, each giving rise to a
characteristic range of C\ed PSWs. In larger food welike number of topologies grows
combinatorially so thathe PSW becomesa smoothfunction of the CV abovabout N =10.
We find that h small and intermediateod webs (N < 30), the PSW increases with increa
ing CV (Fig. 3A), confirming thestabilizing effect of linkstrength variabilitypreviously e-
ported in the literaturedf. However, in largefoodsweb, this relationship is reveed, so that
increasing the CV decreases B&\V.

Repeatinghis investigatiorwith the alternativeprey-centrig measuref link variabili-
ty yields slightly different resut For smallfood webs(N < 20), alocal PSW maximum ¢



curs atlow CVs. Thereforancreasig the CV has atabilizing effectif the CV is low (not
shown).For largerfood webs, this maximum becomes less pronounced and eventually disa
pears so that, also witlthis alternative measure, we find that increasing thedestabilizes
large food webgFig. 3B). Additional investigations 20), of lognormally distributed link
strengtls andof food webs with trophic loopsinderscore the robustness of the patteens r
ported in Figure 3.

The GM approach cabe usedo exhaustivly search for propertiethat stabilize food
webs Here wefocus on the stabilizingrodestabilizing effea of links depending on the
trophic levelsthey connectin an ensemble of food webs with fixednnectivity K =+, a
trophictank index z is assigned to each spes (20). This index enumerates species, from
lowest to highest trophic position, according to their niche value, vitiittirn is ofteninter-
preted as amdicator of body sizeéWe normdized the index taheinterval [0,1], so that the
most basal species in a wishalways characterized by=0 and the most apical species by
z=1, with all other species occupying an equidistant grid of index values in betihaeall
focal species with a givez, we thendetermingthe correlatios between théSW and(a) the
number of predatogpeciesexploitingthe focalspecies ath (b) the number oprey species
exploited by the focal species

Figure 4A shows thecorrelationof food-web stability withthe number of predatape-
ciesas a functiorof z. Increasing the number of predaspeciespreying on basal species (
z<0.25) has a destabilizing effect on tfeod web Likewisg increasing the number of gar
dator peciespreying on apical speciez & 0.75) has a destabilizing effedh between, there
is alarge intermediateange ©.25< z< 0.7%) in which the correlation is positive, showing
that, fora givennumber of linksthe stability of food websis enhanced ifpredatoramainly
prey upon species of intermediate trophic position.

Figure4B shows he correlation ofood-web stability with the number of prey species
as a function ofz. For most speciesz(< 0.719), the PSW correlates negatively with the
number of prey species, while a positive correlation is found for spsidiegh trophiclevels
(z>0.719). For a given number of linkstability is therefore enhanced lggneralist preat
tors at the topf afood web and specialist predators below. The threshel@®.719 is inde-
pendent of mosEM parameters, includingd and K. Additional investigations (not shown)
reveal that the nonlireity of toppredator mortalityis the only parameter in the model that
has a detectable impact ts threshold.

Our study adds independent support for some previously proposed staljdiziogs
The mutual reinforcement ogimilar results obtained by different methods estabéiska
broader basigor understanding foedeb stability Our analges showthat variability in
trophic link strengthexerts astabilizinginfluence onlyin relatively small food web®y con-
trast largerfood wels are destabilized biycreasing the coefficient of variation of normalized
link strength. This indicas that large food web follow qualitatively different rules tha



smaller webs(16) and suggests thaxtremelink strengthsshould be rarer in larger food
webs.Furthe, we found a powetaw for the scaling of foogveb stability with species mu+
ber and connectance artentified two topologicalrulesgoverning foodweb stability for a
given number ofpecies andinks, foodweb stability isenhanced whefi) species ahigh
trophiclevels feed onmultiple prey speciesnd (i) species at intermediatephiclevels are
fed upon by multiple predat@peciesThis patern, with generalkt apicalpredators prepg
uponintermediatespecialist predatoyss often encounteredn empirical food webs (e.g., 7,
11,14,15) and is consistent with reported effeof allometric degree distribution4) andof
top predators connectingtherwise separatenergy channel§l4). In comparisorwith pre-
vious resultsour studyoffers more predictive speciity based on avider ensemble of ntb
els,which enhances confidence in theiversaity of the reportedules. Perhaps most impo
tantly, the approaclof generalized modelingised herghas much potential for addressiag
large class of related questions.
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Figure captions

Figure 1. Dependence ofood-web stability on GM parametersCorrelation coefficientsR
describingthe correlation between foasleb stability andGM parameterg20) are $iown for

10° randomly generated food webs with 10 (light grey), 20 (medium grey), and 30sspecie
(dark grey). Error bars ateo small to be visible. High sensitixgs of predation to pregen-

sity, y, largeaverage differenceisetweenthe niche values od predator and its preyn, ,

and high exponents of closurg,, promote stabilityHigh sensitivity of primary production to

the number oprimary producers,¢, large number of linksL , and high sensitivity of pred

tion to the number of predatorg,, destabilize The total range of niche values,, ., and the

total range of time scaleg, ., have little effect on stability.

Figure 2. Dependencef food-web stability on speciesiumber N and connectanc€. (A)
The proportionof stable websPSW,decreases with increasing and C, as showrby the
color coding and the logarithmically spaced level lines(B) The power law
log,,(PSW)}+a=bx® (red curvg with x=Ilog,,(CN), a=0.209C, b=-7.025 and
c = 3.138 explains99.64% of the shownvariation

Figure 3. Dependence dbod-web stability onlink-strength variability Theformeris charac-
terized bythe proportionof stable websPSW,and the latteby the coefficient of variation
CV. Link strength is normalizeby (A) the predator'sotal influx or(B) the prey’stotal ou-
flux. Link-strengthvariability enhancestability in small food websbut has a destabilizing
effect in larger wehs

Figure 4. Dependence ofood-web stability onthe distribution of links(A) Correlationof
stability withthe number of predat@peciegreying on docal speciesn depenénceon the
trophic position of thefocal speciesneasured byts trophictank index z. Stability is &-
hancedif most species preypon intermediatespecies characterized byndices around
z=0.5. (B) Correlation of stability with the number of prey speqesdated upon by a focal
species, irdepen@nceon thetrophic position of thefocal speciesStability is enhanak if
apical predators are generaisthile intermediatgredators arspecialiss.
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Methods

Generalized modeling. GM is based on the insight that, in general, the computation of steady
states is much more difficult and computationatypensivehan the investigation of the local
dynamics around them. Once a steady state is given, its stability is detebyitiedcorrs-
ponding Jacobian matrixvhich can be analyzeat low computational cost.

In the GM of food webs, computation of steady states can be avoided as follows: for
every abitrary steady stafeve formally map the species densiti&s andthe functionsde-
scribing production, predation, and mortalityl by a suitabl@ormalization. The Jacobian of
the normalized system contains a number of unknown terms, which can be identified as free
parameters with clear biological interpretationeese GMparametergan be treated just like
parameters in conventional modeling.

GM parameters fall into two classeg) §cale parameters, whicletermine the topology
and magnitudef biomass fluxes, and) exponent parameters, whiateasure the local ne
linearity of the considered functions. For mononomial functions, the corresponding exponent
parameter simply is the monomial’s exponent. For instance, a linear functiospcomdeo a
parameter value of 1, a quadratic function to a value of 2, and a sqoafanction to a va
ue of 0.5. However, we do not restrict the functional formsunmodel to monomials. For
general functions, the exponent parameter meastugesensitivity of a process, say predation,
to a variablee.g., prey densit{ffor details seeS1). Exponent parametsiare called elastic
ties in the context of metabolic control theory.

It is always possible to step back and forth betweeeonventioml model andhe cao-
respondinggeneralized model. For a given steady statéerconventional modethe corrs-
pondingGM parameters are unique and can be computed straightforwardly. Conviersaly


mailto:thilo.gross@physics.org�

given generalized modedne can always construct as$ of conventional models thgene-

ate the given GMparameters. For instanan exponent parameter=1, indicating a locally
linear functional responseorresponds toa LotkaVolterra functional responsier all prey
densities,to a Holling typell functional responsdor low prey densities andto a Holling

type-lll functional response for intermediate prey densities. Utilizing these coailities

analyzinga single set of GM parametaeveals information on a largéassof different con-

ventional models.

Example: Single species. To illustrate theGM approach we consider a single population
with density X . We assume thahis population growsdue to reproductiomat rate S(X),
while alsosuffering from predatiomat rate G(X) , andfrom natural mortalityat rate M (X) .

In this simple exampleve do not model the population of paddrsexplicitly. The popuh-
tion dynamics is therefore gimdy a single diferential equation

X =5(X)-G(X)-M(X). (S1)

In conventionalmodeling,one would nowparameterize the function$, G, and M, and
thereby restrict them tgpecific functional forrs.

Using GM,we instead parameterize the Jacobian matrix that governs the stability of all
steady states in the whole £taof modelgonforming to Eq. S1. For this purposeg denote a
steady state byX . Using the noaition " :=S(X'), G =G(X ), and M =M (X" ), we
define a normalized densfy x:=X/X and normalized functions s(x):=S(X)/S",
g(x):=G(X)IG ,ard m(x):=M(X)/M . It is always possible to mmalizein this way as
longasX', S, G ,and M  are positive Substitutingthe scaled quities into Eq. S1,we
obtain

.S G M

x= TS(X) —7g(x) —Tm(X) :
For thisequetion, the consideredteady state isc' =1, with s(x')=g(x')=m(x )=1. The
price we pay for normalizing the unknown steady state te1 is the introductiorof the wn-
known factors infront of the functionsThese factorshowever,are constants and cae b
treatedjust as unknown parameteis conventional modag. We definea:=S /X and
o =G /(G +M ), which, usingS" =M +G , allow us torewrite the differential ecation
aboveas

x=a[s(x)—og(x) —(1-0o)m(x)].

The parametewr > 0 denotes the perapita birth ratan the steady stat@.e., the turnover
rate) while o >0 denotes thetationaryfraction of losses resulting fropredation.Togeter,

a and o are thesystem’sGM scale parameteralthough the scale parameters could have
been defined diérenty, the present definition is particularly advantage@sssepaating the
turnover rate from the parameters weighting contributiortkis rate facilitatesterpretation.



We can now compute the Jacobian in the considdeadly state as

7=25 =adg-oy--o)l,
(22 g W}
where ¢:=5'(1), y:=¢'(1), and x:=m'(1l) arethe GM exponent parameterdenoting the
sensitivites of the corresponding functions around=1.
The consideredsteady state is stable if all eigenvalues of the Jacdiaaenegative
real parts In our onedimensional exampldahere is only one eigenvalughich is directly

given by J . The steady statis therefore stable if
p—oy—(1-o)u<0.

We can summé&e this result bytatingthatin all modelsconforming toEq. Sleveryposs-
ble steady stateés stdle in whichthe sensitivityof the source tern§ is smaller than theen-
sitivity of the loss termg and M , weighted according to their relative contribusaa the
total loss rateThis allows us to infer,dr example that a system with linear reproduction,
¢ =1, corstant predation (e.g., throudtarvesing), =0, and quadratic natural mortality,
u =2, can only be stable if s than half of the lossessult frompredaton, o <0.5.

Whenextending thissimple example to multiple species with arbitrary trophic intera
tions,only two additional difficultiesarise First, as the number of specg@sws the eigena-
lues of the Jacobian have to be computed numeri€adisnputingthe eigenvaluespectrum of
a real matrix is a standard numerical task tlaat be accomplished very iefently by existing
tools. Second, trophic interactions link the gain of a predator species to the loss of its prey.
We therefore include algebraic equations that capture the resultant dependéresesqua-
tions can be normalizgdst asthe differantial equationsand thereforgposeno additional d
ficulties. Forfurtherdetaik seeRef. S1.

Food-web generation. Following Ref. S2, each species is assigned a niche valug, ran-
domly drawn from a uniform distributiooverthe interval[0,1]. This niche valuds oftenin-
terpretedas an indicator of body size. Consequentlgpecies’ rate of biomass turnovet,,
is chosen according to the allometric scaling relaws o, ., with 0< ¢, ,.<1 and a @-
fault value of o, ,=0.008. Species i exploits other species; that posses a niche value
n; €lc,—4n,c, +5r1), where the width of theeeding ranger;, is drawn randomly from aeb
ta distributionoverthe interval[0,#n,] , while the center of théeedingrange c,, is drawn ra-
domly froma uniform distrilution overthe interval[$r,n, —4r] . Species that do not feed on
any other species are assumed to be primary produdsgsbtal range of niche values is
Nange= Max n, — Minn,, and the average difference in niche value between predators and
their prey is obtained &g, =12 .ol 7, |

To avoid degenerate food webs, drawlink strengths/, from anarrowGaussian d&-
tribution with a 10%coefficient of variation In the investigation of lirdstrength variability

(Fig. 3), the link strengthis insteaddrawn from a uniform distribution over theterval



[1-7,1+7], wherer is, in turn, drawn for every food web from a uniform distribution over
the interval[0,1]. Further resultsshown in FigiresS1andS2 are based ohink strengtls be-
ing drawn from a lognormal distribution.

For Figues 1 to 4we only considefood-web topologies that consist of a singleneo
nected componergnd for whichdouble links, self linkstfiroughcannibalism), and trophic
loops (e.g, through @rasitism) are avoidedVe have checked that the omission of tioph
loops does not qualitatively changer results. For this purposee have repeated the ayal
sis shown in Figre S1while includinga realistic number of trophic loops as generated by the
niche model. Figure S2 shows that, while trophic logghtly diminish the overall stability
of food webs resultsare qualitatively equivalent to those fouiod loop{free webs.

Stability analysis. We consider a food web as being stabliné real part of all eigenvalues

of the corresponding Jacobian matrix are $nahan -10°. As shown inRef. S1 the d-

agonal elements of a food web’s Jacobian matrix can be expressed in terms of GM parameters
as

N
Ji=¢ {ﬁﬁ +pY, - 6,4 -0, (Zﬂkiﬂ“ki[(j/k =D +1]j}

k=1

and the nordiagonal elements & ;) as

‘]ij =q, pi?/i)(ijﬂij —0; .

N
:Bji‘//j + Z ﬂki/lkj (7 — 1)7(@‘]
=1

All parameters contained in these equations are expliaifed S1.

A notable difference between most randoratrix models and GM lies in the diagonal
entries of the Jacobian, which are particularly important for stabilitjndny radom-matrix
modelsthese terms are assumed to eqgthl(e.g, Ref. S3). By contrast, in the class of o
els studied here, the diagonal entries corresponding to intermediate predadbrsgsepos
tive, if predation is assumed to be linear in predator density and less thamnlipesy dens

ty.
Correlations with stability. The correlation of a parameterwith stabiity is given by

vy v v
2 X .—— E X.
R = i=1 78,0 v i 17

Vo O,

where x,; and x,, respectivelyare thesets ofparameter valuegiving rise tothe stable webs
and in the entire eemble v is the total size of the ensemble, is the number of stable
welbs, o, is the standard deviation of, and o, is the standard deviation of the stability
with s, =1 characterizing stable angl =0 unstable webs.

Measures of trophic position. The trophic indexz, defined in themain text provides a basic
measure of th trophic position of a species. We have confirmed that using the nikree va



directly yields very similaresuls. Other, more advancetheasures of trophic positippro-
posed in the literaturdave aslightly different emphasis and therefore reveal differentrinfo
mation.

Table

Table S1. List of GM parametersor food-web dynamics

Parametel Interpretation Range Value

Scale parameters

a, Rate ofbiomass turnover igpeciesi n.a. al.
yis Contribution of predation bgpeciesi to  n.a. LY, L
thebiomass loss rate of specigs
Xi Contribution of species to the prey of  n.a. L 1Y
species;
ol Fraction of growth irspecies resulting n.a. 0if / is a producer,
from predation 1if i is a consumer
o Fraction of growth irspecis i resulting n.a. 1-p
from production
o, Fraction of mortalityin species resut- n.a. Oif i isatop
ing from predation predator, 1 otherwise
G, Fraction of mortalityn species notre- n.a. 1-o,

sulting frompredation

Exponent parameters

12 Sensitivityof predation irspeciesi to the [0.5,1.5] 0.95
density of prey
A, Exponent of prey switching ispeciesi n.a. 1 (passive switching)
7 Exponent of closure iapeciesi [1,2] 1
¢ Sensitivityof primary production ispe-  (0,1) 0.5

ciesi to the density of primary producer

W, Sensitivityof predation irspeciesi to the [0.5,1.5] 1
densityof predators



Figures

Figure S1. Dependence dbod-web stabilityon link-strength variabilitywhen link strengtls

aredrawn from a lognormal disbution. As in Figure 3, ihk strength is normalized by (A)
the prelator’s total inflx or (B) the prey’s total outflux.
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Figure S2. Dependence dbod-web stabilityon link-strength variabilitywhen lirk strengtls
aredrawn from a lognormal distribution and trophic lo@ye generated by the originabhv

riant of the niche modgRef.S2). As in Figgs 3 and S1link strength is normalized by (A) the

predator’s total influx or (B) the prey’s total outflux.
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