
Generalized models reveal 
stabilizing factors in food webs

Gross, T., Rudolf, L., Levin, S.A. and Dieckmann, U.

IIASA Interim Report
July 2009

 



Gross, T., Rudolf, L., Levin, S.A. and Dieckmann, U. (2009) Generalized models reveal stabilizing factors in food webs. 

IIASA Interim Report. IIASA, Laxenburg, Austria, IR-09-062 Copyright © 2009 by the author(s). 

http://pure.iiasa.ac.at/9094/

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at  

mailto:repository@iiasa.ac.at


 

International Institute for 
Applied Systems Analysis 
Schlossplatz 1 
A-2361 Laxenburg, Austria 

Tel: +43 2236 807 342
Fax: +43 2236 71313

E-mail: publications@iiasa.ac.at
Web: www.iiasa.ac.at

 

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work. 

Interim Report IR-09-062

Generalized models reveal stabilizing factors in food webs 
Thilo Gross (thilo.gross@ pks.mpg.de) 
Lars Rudolf (rudolf@pks.mpg.de) 
Simon A. Levin (slevin@princeton.edu) 
Ulf Dieckmann (dieckmann@iiasa.ac.at) 
 
 

Approved by 

Detlof Von Winterfeldt 
Director 

July 2011 

 

 



 1 

Generalized Models Reveal Stabilizing Factors in Food 
Webs 

Thilo Gross1, Lars Rudolf1, Simon A. Levin2,3 & Ulf Dieckmann4 

1 BioND Group, Max-Planck Institute for Physics of Complex Systems (MPI-PKS), 

Nöthnitzer Straße 38, 01187 Dresden, Germany. 
2 Department of Ecology and Evolutionary Biology and Center for BioComplexity, Princeton 

University, Princeton NJ 08540, New Jersey, USA. 
3 University Fellow, Resources for the Future, 1616 P Street NW, Washington, DC 20036, 

USA. 
4 Evolution and Ecology Program, International Institute for Applied Systems Analysis 

(IIASA), Schlossplatz 1, 2361 Laxenburg, Austria. 

Insights into what stabilizes natural food webs have always been limited by a fundamen-

tal dilemma: studies either need to make unwarranted simplifying assumptions, under-

mining their relevance, or only examine few replicates of small food webs, hampering 

the robustness of findings. Here we use generalized modeling to study several billion 

replicates of food webs with nonlinear interactions and up to 50 species. In this way, we 

show, first, that higher variability in link strengths stabilizes food webs only when webs 

are relatively small, whereas larger webs are instead destabilized. Second, we reveal a 

new power law describing how food-web stability scales with the number of species and 

their connectance. Third, we report two universal rules: food-web stability is enhanced 

when (i) species at high trophic level feed on multiple prey species and (ii) species at in-

termediate trophic level are fed upon by multiple predator species. 

Understanding the dynamic properties of food webs is a problem of both theoretical and prac-

tical importance (1-16), especially as concerns about the robustness of natural systems esca-

late. Further, the discovery of stabilizing factors in food webs can yield much-needed design 

principles for institutional networks (17). Robert May (1) showed that randomly assembled 

webs became less robust (measured in terms of their dynamical stability) as their complexity 

(measured in terms of the number of interacting species and their connectivity) increased. 

While it has often been pointed out that food webs can persist in non-stationary states, there is 

growing evidence that May’s stability-complexity relationship also holds for non-stationary 

dynamics (18). Moreover, population cycles or external forcing averages out if  food webs are 

considered on longer timescales, so that time-averaged dynamics can be considered as statio-

nary. However, detailed investigations aiming at a deeper understanding of what makes food 

webs robust have generally been hampered by computational constraints (e.g., 12). Here, we 

avoid these constraints through the use of generalized modeling (19,20). 

For a given class of mathematical models, generalized modeling (GM) identifies para-
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meters that together capture the local stability properties of all stationary states. Some of these 

parameters (scale parameters) quantify the scaling of biomass fluxes, while others (exponent 

parameters) quantify the nonlinearity of model functions. For any given model, the GM pa-

rameters can be expressed as functions of conventional model parameters. More importantly, 

however, the GM parameters are directly interpretable in their own right. To capture the com-

plexity of real-world problems, the number of GM parameters is often large. Yet, the numeri-

cal performance of GM is so favorable that billions of randomly chosen replicates, defined by 

sample sets of GM parameters, can be analyzed. 

Our study focuses on realistic food-web topologies generated by the niche model 

(20,21). The dynamics of the population density iX  of each species 1, ,i N=   follows a dif-

ferential equation of the form 

 1 1
1

( ) ( ,..., ) ( ) ( ,..., )
N

i i i i N i i ij N
j

X S X F X X M X G X X
=

= + − −∑ , 

where iS , iF , iM , ijG  are nonlinear functions describing the gain due to primary production, 

the gain due to predation, the loss due to natural mortality, and the loss due to predation, re-

spectively. Importantly, we do not restrict these functions to any specific functional form, but 

rather consider the whole class of such models. The production term is assumed to vanish for 

all species except producers, while the predation gain vanishes for producers. Similarly, the 

predation loss is zero for top-predators, while natural mortality is assumed to be negligible for 

all species except top-predators. Finally, a relationship between the gain of a predator and the 

loss of its prey species is assumed that is consistent with passive prey switching. GM parame-

ters for this class of models have been derived before (19) and are listed together with their 

interpretations in Tab. S1. 

To assess the dependence of food-web stability on the exponent parameters, we gener-

ate a sample of 810  food webs with a fixed number of species. In this sample, the exponent 

parameters are drawn independently and randomly from suitable uniform distributions, while 

the topological parameters are computed from randomly generated niche-model topologies 

(20, 21). We estimate the average impact of an exponent parameter on stability by computing 

the correlation between that parameter and local stability (20). Results for food webs with 10, 

20, and 30 species, shown in Figure 1, reveal the following: The sensitivity of predation to 

prey density, γ , and the sensitivity of top-predator mortality to top-predator density, µ , cor-

relate positively with stability. This corresponds to the well-known fact that low saturation of 

predators and nonlinear, e.g., quadratic, mortality promote stability (12). By contrast, the sen-

sitivity of primary production to the number of primary producers, φ , and the sensitivity of 

predation to predator density, ψ , are negatively correlated with stability. This confirms that 

stability increases when primary production is strongly limited by external factors such as nu-

trient availability, or when predation pressures are not very sensitive to predator density (22). 

The range of turnover rates, scaleα , as well as the total range of niche values, rangen , do not cor-
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relate with stability. However, increasing the average difference between the niche values of a 

predator and its prey, diffn , has a stabilizing effect (12). Our analysis also confirms that the 

number of links, and therefore a food web’s connectivity, is negatively correlated with stabili-

ty. 

As a next step, we set all exponent parameters to realistic values (Tab. S1) and focus on 

the effects of food-web topology on stability. We start by investigating how stability is af-

fected by the relationship between the number of species, N , and the number of links, L . For 

better comparison, we express the number of links in terms of the connectance ( 1)
L

N NC −= . We 

generate samples with random niche-model topologies, with N  and C  changing on a loga-

rithmic grid. At every vertex of this grid, we compute the proportion of stable webs (PSW), 

which describes the probability of randomly drawing a stable food web from our sample. Fig-

ure 2 shows PSW results computed from 35 billion food webs. As expected, the PSW de-

creases as N  and C  increase. Moreover, we find that the level lines in Fig. 2A are almost 

perfectly straight with a slope of 1, so that the PSW is determined almost exclusively by the 

product of N  and C . Fig. 2B shows that the dependence of log(PSW) on log( )CN  closely 

follows a power law. 

We now turn to the effect of link-strength variability within a food web, which has pre-

viously been proposed as a potentially important determinant of food-web stability (4,7,9-

11,23). In order to compare link strength, we must take into account that, because of allome-

tric scaling, biomass fluxes at higher trophic levels are on average much weaker than at lower 

trophic levels. We therefore measure link-strength variability in a predator-centric way, by 

determining the coefficient of variation (CV) of all biomass fluxes normalized individually by 

the total biomass inflow of the flux’s recipient. An alternative prey-centric definition, provid-

ing independent information, can be devised based on the CV of all biomass fluxes norma-

lized individually by the total biomass outflow of the flux’s source. 

To explore the impact of link-strength variability, we generate a large ensemble of food 

webs (approx. 710 ) in which link strengths are drawn from a uniform distribution. Figure 3A 

shows the PSW as a function of the observed CV of predator-centric link strengths. In very 

small food webs (e.g., 5N = ), large jumps occur in the PSW as a function of the CV (not 

shown). This is due to the relatively low number of feasible topologies, each giving rise to a 

characteristic range of CVs and PSWs. In larger food webs, the number of topologies grows 

combinatorially, so that the PSW becomes a smooth function of the CV above about 10N = . 

We find that in small and intermediate food webs ( 30N < ), the PSW increases with increas-

ing CV (Fig. 3A), confirming the stabilizing effect of link-strength variability previously re-

ported in the literature (4). However, in larger foods web, this relationship is reversed, so that 

increasing the CV decreases the PSW. 

Repeating this investigation with the alternative, prey-centric, measure of link variabili-

ty yields slightly different results. For small food webs ( 20N < ), a local PSW maximum oc-
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curs at low CVs. Therefore increasing the CV has a stabilizing effect if the CV is low (not 

shown). For larger food webs, this maximum becomes less pronounced and eventually disap-

pears, so that, also with this alternative measure, we find that increasing the CV destabilizes 

large food webs (Fig. 3B). Additional investigations (20), of lognormally distributed link 

strengths and of food webs with trophic loops, underscore the robustness of the patterns re-

ported in Figure 3. 

The GM approach can be used to exhaustively search for properties that stabilize food 

webs. Here we focus on the stabilizing or destabilizing effects of links depending on the 

trophic levels they connect. In an ensemble of food webs with fixed connectivity L
NK = , a 

trophic-rank index z  is assigned to each species (20). This index enumerates species, from 

lowest to highest trophic position, according to their niche value, which in turn is often inter-

preted as an indicator of body size. We normalized the index to the interval [0,1] , so that the 

most basal species in a web is always characterized by 0z =  and the most apical species by 

1z = , with all other species occupying an equidistant grid of index values in between. For all 

focal species with a given z , we then determine the correlations between the PSW and (a) the 

number of predator species exploiting the focal species and (b) the number of prey species 

exploited by the focal species. 

Figure 4A shows the correlation of food-web stability with the number of predator spe-

cies as a function of z . Increasing the number of predator species preying on basal species (

0.25z < ) has a destabilizing effect on the food web. Likewise, increasing the number of pre-

dator species preying on apical species ( 0.75z > ) has a destabilizing effect. In between, there 

is a large intermediate range (0.25 0.75z< < ) in which the correlation is positive, showing 

that, for a given number of links, the stability of food webs is enhanced if predators mainly 

prey upon species of intermediate trophic position. 

Figure 4B shows the correlation of food-web stability with the number of prey species 

as a function of z . For most species ( 0.719z < ), the PSW correlates negatively with the 

number of prey species, while a positive correlation is found for species at high trophic levels 

( 0.719z > ). For a given number of links, stability is therefore enhanced by generalist preda-

tors at the top of a food web and specialist predators below. The threshold 0.719z =  is inde-

pendent of most GM parameters, including N  and K . Additional investigations (not shown) 

reveal that the nonlinearity of top-predator mortality is the only parameter in the model that 

has a detectable impact on this threshold. 

Our study adds independent support for some previously proposed stabilizing factors. 

The mutual reinforcement of similar results obtained by different methods establishes a 

broader basis for understanding food-web stability. Our analyses show that variability in 

trophic link strength exerts a stabilizing influence only in relatively small food webs. By con-

trast, larger food webs are destabilized by increasing the coefficient of variation of normalized 

link strength. This indicates that large food webs follow qualitatively different rules than 
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smaller webs (16) and suggests that extreme link strengths should be rarer in larger food 

webs. Further, we found a power law for the scaling of food-web stability with species num-

ber and connectance and identified two topological rules governing food-web stability: for a 

given number of species and links, food-web stability is enhanced when (i) species at high 

trophic levels feed on multiple prey species and (ii ) species at intermediate trophic levels are 

fed upon by multiple predator species. This pattern, with generalist apical predators preying 

upon intermediate specialist predators, is often encountered in empirical food webs (e.g., 7, 

11,14,15) and is consistent with reported effects of allometric degree distributions (15) and of 

top predators connecting otherwise separate energy channels (14). In comparison with pre-

vious results, our study offers more predictive specificity based on a wider ensemble of mod-

els, which enhances confidence in the universality of the reported rules. Perhaps most impor-

tantly, the approach of generalized modeling, used here, has much potential for addressing a 

large class of related questions. 
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Figure captions 

Figure 1. Dependence of food-web stability on GM parameters. Correlation coefficients R  

describing the correlation between food-web stability and GM parameters (20) are shown for 
810  randomly generated food webs with 10 (light grey), 20 (medium grey), and 30 species 

(dark grey). Error bars are too small to be visible. High sensitivities of predation to prey den-

sity, γ , large average differences between the niche values of a predator and its prey, diffn , 

and high exponents of closure, µ , promote stability. High sensitivity of primary production to 

the number of primary producers, φ , large number of links, L , and high sensitivity of preda-

tion to the number of predators, ψ , destabilize. The total range of niche values, rangen , and the 

total range of time scales, scaleα , have little effect on stability. 

Figure 2. Dependence of food-web stability on species number N  and connectance C . (A) 

The proportion of stable webs, PSW, decreases with increasing N  and C , as shown by the 

color coding and the logarithmically spaced level lines. (B) The power law 

10log (PSW) ca bx+ =  (red curve) with 10log ( )x CN= , 0.2090a = , 7.025b = − , and 

3.138c =  explains 99.64% of the shown variation. 

Figure 3. Dependence of food-web stability on link-strength variability. The former is charac-

terized by the proportion of stable webs, PSW, and the latter by the coefficient of variation, 

CV. Link strength is normalized by (A) the predator’s total influx or (B) the prey’s total out-

flux. Link-strength variability enhances stability in small food webs, but has a destabilizing 

effect in larger webs. 

Figure 4. Dependence of food-web stability on the distribution of links. (A) Correlation of 

stability with the number of predator species preying on a focal species, in dependence on the 

trophic position of the focal species measured by its trophic-rank index z . Stability is en-

hanced if  most species prey upon intermediate species, characterized by indices around 

0 5z = . . (B) Correlation of stability with the number of prey species predated upon by a focal 

species, in dependence on the trophic position of the focal species. Stability is enhanced if 

apical predators are generalists, while intermediate predators are specialists. 
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Methods 

Generalized modeling. GM is based on the insight that, in general, the computation of steady 

states is much more difficult and computationally expensive than the investigation of the local 

dynamics around them. Once a steady state is given, its stability is determined by the corres-

ponding Jacobian matrix, which can be analyzed at low computational cost. 

In the GM of food webs, computation of steady states can be avoided as follows: for 

every arbitrary steady state, we formally map the species densities 
i

X  and the functions de-

scribing production, predation, and mortality to 1 by a suitable normalization. The Jacobian of 

the normalized system contains a number of unknown terms, which can be identified as free 

parameters with clear biological interpretations. These GM parameters can be treated just like 

parameters in conventional modeling. 

GM parameters fall into two classes: (a) scale parameters, which determine the topology 

and magnitude of biomass fluxes, and (b) exponent parameters, which measure the local non-

linearity of the considered functions. For mononomial functions, the corresponding exponent 

parameter simply is the monomial’s exponent. For instance, a linear function corresponds to a 

parameter value of 1, a quadratic function to a value of 2, and a square-root function to a val-

ue of 0.5. However, we do not restrict the functional forms in our model to monomials. For 

general functions, the exponent parameter measures the sensitivity of a process, say predation, 

to a variable, e.g., prey density (for details, see S1). Exponent parameters are called elastici-

ties in the context of metabolic control theory. 

It is always possible to step back and forth between a conventional model and the cor-

responding generalized model. For a given steady state in the conventional model, the corres-

ponding GM parameters are unique and can be computed straightforwardly. Conversely, for a 

mailto:thilo.gross@physics.org�
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given generalized model, one can always construct a class of conventional models that gener-

ate the given GM parameters. For instance, an exponent parameter 1γ = , indicating a locally 

linear functional response, corresponds to a Lotka-Volterra functional response for all prey 

densities, to a Holling type-II functional response for low prey densities, and to a Holling 

type-III functional response for intermediate prey densities. Utilizing these commonalities, 

analyzing a single set of GM parameters reveals information on a large class of different con-

ventional models. 

Example: Single species. To illustrate the GM approach, we consider a single population 

with density X . We assume that this population grows due to reproduction at rate ( )S X , 

while also suffering from predation at rate ( )G X , and from natural mortality at rate ( )M X . 

In this simple example, we do not model the population of predators explicitly. The popula-

tion dynamics is therefore given by a single differential equation, 

 ( ) ( ) ( )X S X G X M X= − − . (S1) 

In conventional modeling, one would now parameterize the functions S , G , and M , and 

thereby restrict them to specific functional forms. 

Using GM, we instead parameterize the Jacobian matrix that governs the stability of all 

steady states in the whole class of models conforming to Eq. S1. For this purpose, we denote a 

steady state by *
X . Using the notation * *: ( )S S X= , * *: ( )G G X= , and * *: ( )M M X= , we 

define a normalized density *: /x X X=  and normalized functions *( ) : ( ) /s x S X S= , 
*( ) : ( ) /g x G X G= , and *( ) : ( ) /m x M X M= . It is always possible to normalize in this way as 

long as *
X , *

S , *
G , and *

M  are positive. Substituting the scaled quantities into Eq. S1, we 

obtain 

 
* * *

* * *
( ) ( ) ( )

S G M
x s x g x m x

X X X
= − − . 

For this equation, the considered steady state is * 1x = , with * * *( ) ( ) ( ) 1s x g x m x= = = . The 

price we pay for normalizing the unknown steady state to * 1x =  is the introduction of the un-

known factors in front of the functions. These factors, however, are constants and can be 

treated just as unknown parameters in conventional modeling. We define * *: /S Xα =  and 
* * *: /( )G G Mσ = + , which, using * * *

S M G= + , allow us to rewrite the differential equation 

above as 

 [ ( ) ( ) (1 ) ( )]x s x g x m xα σ σ= − − − . 

The parameter 0α >  denotes the per-capita birth rate in the steady state (i.e., the turnover 

rate), while 0σ ≥  denotes the stationary fraction of losses resulting from predation. Together, 

α  and σ  are the system’s GM scale parameters. Although the scale parameters could have 

been defined differently, the present definition is particularly advantageous, as separating the 

turnover rate from the parameters weighting contributions to this rate facilitates interpretation. 
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We can now compute the Jacobian in the considered steady state as 

 
1

[ (1 ) ]
x

J x
x

α φ σγ σ µ
=

∂= = − − −∂  , 

where : (1)sφ ′= , : (1)gγ ′= , and : (1)mµ ′=  are the GM exponent parameters, denoting the 

sensitivities of the corresponding functions around * 1x = . 

The considered steady state is stable if all eigenvalues of the Jacobian have negative 

real parts. In our one-dimensional example, there is only one eigenvalue, which is directly 

given by J . The steady state is therefore stable if 

 (1 ) 0φ σγ σ µ− − − < . 

We can summarize this result by stating that in all models conforming to Eq. S1 every possi-

ble steady state is stable in which the sensitivity of the source term S  is smaller than the sen-

sitivity of the loss terms F  and M , weighted according to their relative contributions to the 

total loss rate. This allows us to infer, for example, that a system with linear reproduction, 

1φ = , constant predation (e.g., through harvesting), 0γ = , and quadratic natural mortality, 

2µ = , can only be stable if less than half of the losses result from predation, 0.5σ ≤ . 

When extending this simple example to multiple species with arbitrary trophic interac-

tions, only two additional difficulties arise. First, as the number of species grows, the eigenva-

lues of the Jacobian have to be computed numerically. Computing the eigenvalue spectrum of 

a real matrix is a standard numerical task that can be accomplished very efficiently by existing 

tools. Second, trophic interactions link the gain of a predator species to the loss of its prey. 

We therefore include algebraic equations that capture the resultant dependencies. These equa-

tions can be normalized just as the differential equations and therefore pose no additional dif-

ficulties. For further details see Ref. S1. 

Food-web generation. Following Ref. S2, each species i  is assigned a niche value 
i

n , ran-

domly drawn from a uniform distribution over the interval [0,1] . This niche value is often in-

terpreted as an indicator of body size. Consequently, a species’ rate of biomass turnover, 
i

α , 

is chosen according to the allometric scaling relation scale
in

i
α α= , with scale0 1α< <  and a de-

fault value of scale 0.008α = . Species i  exploits other species j  that posses a niche value 
1 1
2 2[ )

j i i i i
n c r c r∈ − , + , where the width of the feeding range, 

i
r , is drawn randomly from a be-

ta distribution over the interval [0 ]
i

n, , while the center of the feeding range, 
i

c , is drawn ran-

domly from a uniform distribution over the interval 1 1
2 2[ ]

i i i
r n r, − . Species that do not feed on 

any other species are assumed to be primary producers. The total range of niche values is 

range max min
i i i i

n n n= − , and the average difference in niche value between predators and 

their prey is obtained as 1
diff  with 0| |

ij i jL ij l
n n n>=− ∑ . 

To avoid degenerate food webs, we draw link strengths 
ij

l  from a narrow Gaussian dis-

tribution with a 10% coefficient of variation. In the investigation of link-strength variability 

(Fig. 3), the link strength is instead drawn from a uniform distribution over the interval 
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[1 ,1 ]τ τ− + , where τ  is, in turn, drawn for every food web from a uniform distribution over 

the interval [0,1] . Further results, shown in Figures S1 and S2, are based on link strengths be-

ing drawn from a lognormal distribution. 

For Figures 1 to 4, we only consider food-web topologies that consist of a single con-

nected component and for which double links, self links (through cannibalism), and trophic 

loops (e.g., through parasitism) are avoided. We have checked that the omission of trophic 

loops does not qualitatively change our results. For this purpose, we have repeated the analy-

sis shown in Figure S1 while including a realistic number of trophic loops as generated by the 

niche model. Figure S2 shows that, while trophic loops slightly diminish the overall stability 

of food webs, results are qualitatively equivalent to those found for loop-free webs. 

Stability analysis. We consider a food web as being stable if the real part of all eigenvalues 

of the corresponding Jacobian matrix are smaller than 610−− . As shown in Ref. S1, the di-

agonal elements of a food web’s Jacobian matrix can be expressed in terms of GM parameters 

as 

 
1

[( 1) 1]
N

ii i i i i i i i i ki ki k ki

k

J α ρ φ ρψ σ µ σ β λ γ χ
=

  = + − − − +    ∑   

and the non-diagonal elements (i j≠ ) as 

 
1

( 1)
N

ij i i i ij ij i ji j ki kj k kj

k

J α ρ γ χ λ σ β ψ β λ γ χ        =  
= − + −∑ . 

All  parameters contained in these equations are explained in Tab S1. 

A notable difference between most random-matrix models and GM lies in the diagonal 

entries of the Jacobian, which are particularly important for stability. In many random-matrix 

models, these terms are assumed to equal 1−  (e.g., Ref. S3). By contrast, in the class of mod-

els studied here, the diagonal entries corresponding to intermediate predators are always posi-

tive, if predation is assumed to be linear in predator density and less than linear in prey densi-

ty. 

Correlations with stability. The correlation of a parameter x  with stability is given by 

 ,1 1

s s

s i ii i

x s

x x
R

ν ννννσ σ== −=∑ ∑ , 

where ,s i
x  and 

i
x , respectively, are the sets of parameter values giving rise to the stable webs 

and in the entire ensemble, ν  is the total size of the ensemble, 
s

ν  is the number of stable 

webs, 
x

σ  is the standard deviation of x , and 
s

σ  is the standard deviation of the stability 
i

s , 

with 1
i

s =  characterizing stable and 0
i

s =  unstable webs. 

Measures of trophic position. The trophic index z , defined in the main text, provides a basic 

measure of the trophic position of a species. We have confirmed that using the niche value 
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directly yields very similar results. Other, more advanced, measures of trophic position, pro-

posed in the literature, have a slightly different emphasis and therefore reveal different infor-

mation. 

 

Table 

 

Table S1. List of GM parameters for food-web dynamics 

Parameter Interpretation Range Value 

Scale parameters   

i
α  Rate of biomass turnover in species i  n.a. scale

inα  

ij
β  Contribution of predation by species i  to 

the biomass loss rate of species j  
n.a. /

ij kjk
l l∑  

ij
χ  Contribution of species i  to the prey of 

species j  
n.a. /

ij ikk
l l∑  

i
ρ  Fraction of growth in species i  resulting 

from predation 
n.a. 0 if i  is a producer, 

1 if i  is a consumer 

i
ρ  Fraction of growth in species i  resulting 

from production 
n.a. 1

i
ρ−  

i
σ  Fraction of mortality in species i  result-

ing from predation 
n.a. 0 if i  is a top-

predator, 1 otherwise 

i
σ  Fraction of mortality in species i  not re-

sulting from predation 
n.a. 1

i
σ−  

Exponent parameters   

i
γ  Sensitivity of predation in species i  to the 

density of prey 
[0.5,1.5] 0.95 

ij
λ  Exponent of prey switching in species i  n.a. 1 (passive switching) 

i
µ  Exponent of closure in species i  [1,2] 1 

i
φ  Sensitivity of primary production in spe-

cies i  to the density of primary producers 
(0,1) 0.5 

i
ψ  Sensitivity of predation in species i  to the 

density of predators 
[0.5,1.5] 1 
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Figures 

Figure S1. Dependence of food-web stability on link-strength variability when link strengths 
are drawn from a lognormal distribution. As in Figure 3, link strength is normalized by (A) 
the predator’s total influx or (B) the prey’s total outflux. 

           

Figure S2. Dependence of food-web stability on link-strength variability when link strengths 
are drawn from a lognormal distribution and trophic loops are generated by the original va-
riant of the niche model (Ref. S2). As in Figs 3 and S1, link strength is normalized by (A) the 
predator’s total influx or (B) the prey’s total outflux. 
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