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The Adaptive Dynamics Network at
IASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.

Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the

central node.

Scientific progress within the network
is reported in the I[IASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability

to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.

Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.

These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.

A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.

The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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About this Report

In addition to reciprocation based on repeated interactions within a pair, there exists
another, indirect reciprocity, where the donor does not obtain a return from the recipient,
but from a third party. Donors provide help if the recipient has helped others in the
past. This works if the cost of an altruistic act is offset by a raised ‘score’, or status, which
increases the chance to subsequently become the recipient of an altruistic act. Cooperation
is channelled towards the ‘valuable’ members of the community. For Richard Alexander,
‘indirect reciprocity involves reputation and status, and results in everyone in the group
continually being assessed an re-assessed’.

In the first part of the report this is modelled by a population of individuals having
the options of helping another or not. In each generation, a number of potential donor-
recipient pairs are chosen randomly: if the help is actually provided, this implies a cost ¢
to the donor, a benefit b to the recipient, and it increases the donor’s score by one. The
score of a player refusing to help is decreased by one. Initially all scores are zero. We
consider strategies given by integers k; a player with such a strategy helps if and only
if the score of the potential recipient is at least k. We can follow the frequencies of the
strategies from generation to generation, allowing for occasional mutations.

In the second part, models which are even more simplified help to explain analytically
cycling behaviour, with its long bouts of cooperation interspersed by short periods of
defection, which is reminiscent of the lack of stability near a critical state. Somewhat
surprisingly, cooperation is more robust if the society is challenged more frequently by
invasion attempts of defectors. One can compute the minimal amount of discriminators,
the minimal number of rounds per generation and the maximal size of the society, for
indirect reciprocity to work. This yields as necessary condition for cooperation that the
degree of acquaintanceship (the probability that a player knows the score of the co-player)
is larger than the cost-to-benefit ratio ¢/b. This result is analogous to Hamilton’s rule
which states that the degree of relatedness (the probability that an allele in the player’s
genome is also present in the co-player) must exceed ¢/b.
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Evolution of Indirect Reciprocity
by Image Scoring

Martin A. Nowak
Karl Sigmund

Abstract

The question of cooperation is crucial for understanding Darwinian evolution. Theories of cooper-
ation have been based on kin selection!2, group selection®~?, and reciprocal altruism®—°. The idea
of reciprocal altruism usually involves direct reciprocity: repeated encounters between the same
individuals allow for the return of an altruistic act by the recipient'®~16. Here we present a new
theoretical framework, which is based on indirect reciprocity!” and does not require the same two
individuals ever to meet again. Individual selection can nevertheless favour cooperative strategies
directed towards recipients that have helped others in the past. Cooperation pays because it con-
fers the image of a valuable community member. We present computer simulations and analytic
models to specify the conditions for evolutionary stability'® of indirect reciprocity. In particular,
we show that the probability of knowing the image of the recipient must exceed the cost-to-benefit
ratio of the altruistic act. We argue that the emergence of indirect reciprocity was a decisive step
for the evolution of human societies.

Humans have achieved one of the pinnacles of sociality, and the complexity of their co-
operative actions is without parallels. In constrast to other examples of ultrasociality 922
(e.g. clones, or bee hives, or termite colonies), human cooperation is due less to kin selec-
tion based on genetic similarity, than to cultural forces rooted in pervasive moral systems.
From hunter tribes and village communities to nation states and global enterprises, the
economic effects of nepotism, while certainly present, are minor compared with those of
reciprocity. The latter is usually understood as direct reciprocity: help someone who may
later help you. But there exists another, indirect reciprocity prevailing in human commu-
nities. In this case, one does not expect a return from the recipient, but from someone
else, according to the pious advice of ‘give, and you shall be given’. Cooperation is chan-
neled towards the ‘valuable’ members of the community. This has been called the ‘I won’t
scratch your back if you won’t scratch their backs’-principle?®. A donor provides help if
the recipient is likely to help others (which often means, if the recipient has helped others
in the past). In this case, it pays to advertise cooperation, since the cost of an altruistic
act is offset by a greater chance to subsequently become the recipient of an altruistic act.
Animal and human behaviour may be influenced by the attempt to increase the image (or
status) in the group?4=25.

According to Richard Alexander!'”, indirect reciprocity, which ‘involves reputation and
status, and results in everyone in the group continually being assessed and reassessed’
plays a large role in human societies (and possibly in some primates, social canines, etc).
Alexander interprets moral systems as systems of indirect reciprocity. Clearly, indirect
reciprocity presupposes rather sophisticated players, and therefore is likely to be affected



by anticipation, planning, deception, and manipulation. The politicking needed to con-
tinually assess the status of all members of our community and to bolster our own has
probably been a major force for shaping our intelligence. But if we want to understand the
basic mechanisms of indirect reciprocity, we have to analyse drastically simplified models.

Imagine a population of individuals having the options to help one another or not.
Random pairs of players are chosen, of which one is the potential donor of some altruistic
act and the other is the recipient. The donor can cooperate and help the recipient at a cost
¢ to himself, in which case the recipient receives a benefit of value b (with b > ¢). If the
donor decides not to help, both individuals receive zero payoff. Each player has an image
score, s, which is known to every other player. If a player is chosen as donor and decides
to cooperate then his (or her) image score increases by one unit; if the donor does not
cooperate then it decreases by one unit. The image score of a recipient does not change.
At first, we consider strategies where donors decide to help according to the image score
of the recipient. A strategy is given by a number k: a player with this strategy provides
help if and only if the image score of the potential recipient is at least k.

Figure 1 shows computer simulations of a population consisting of n players. The
strategies are given by k; and the image levels by s;. In the beginning of each generation,
the image levels of all players are zero (assuming that children do not inherit the image of
their parents). In succession, m donor-recipient pairs are chosen. A donor, ¢, cooperates
with a recipient, j, if k; < s;. The fitness of a player is given by the total number of
points received during the m interactions. Some players may never be chosen, in which
case their payoff from the game will be zero. On average, a player will be chosen 2m/n
times, either as donor or as recipient. At the end of each generation, players leave offspring
in proportion to their fitness. We find that if the game is played for a large number of
generations, then eventually all players will adopt the same strategy. If the k-value of this
strategy is 0 or less then cooperation is established; if the value is 1 or more then defection
has won. Cooperation is more likely to win the greater the number m of interactions per
generation. (A totally different model of indirect reciprocity has been studied by Boyd
and Richerson?®, who assumed that individuals interact in loops such that a cooperative
action can be returned, after several steps, to the original donor. According to Boyd and
Richerson their model is unlikely to lead to a cooperative outcome, as it requires the loops
to be relatively small, closed, and long-lasting. We think that this is because their model
does not include image scores.)

We can also include mutation, by assuming that there is a small probability that a
strategy does not reproduce accurately but gives rise to an offspring adopting a different
strategy (Fig 2). In this case, several strategies can persist. We study the frequency dis-
tribution of various strategies and analyse how often a cooperative regime is achieved. A
minimum number of rounds per generation is needed for cooperation to prevail. Interest-
ingly this number can be very small: it suffices that each player is chosen only for about
2 interactions per life-time. (In this case there is only a probability of 1/4 that a defector
can be punished; namely if he is first chosen as a donor and subsequently as a recipient.)
Below we present an analytic model for evaluating the minimum number of interactions
compatible with cooperation.

Long term simulations, including mutation, usually do not converge to a simple equi-
librium distribution of strategies, but show endless cycles. In very simple terms, what
happens is that defectors are invaded by discriminators, who only help players whose score
exceeds some threshold. Next, discriminators are undermined by unconditional cooper-
ators. The prevalence of these indiscriminate altruists subsequently allows the return of
defectors. In a population consisting only of discriminators and unconditional cooperators,
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Figure 1. Cooperation wins in a computer simulation of indirect reciprocity. The population
consists of n = 100 individuals. The image scores range from —5 to +5, the k-values from —5
to +6. The strategy, k = —5, represents unconditional cooperators, while the strategy, k = +6,
represents defectors. In each round of the game, two individuals are chosen at random; one as donor,
the other as recipient. The donor cooperates if the image score of the recipient is greater than or
equal to the donor’s k. Cooperation means the donor pays a cost, ¢, and the recipient obtains a
benefit, b. There is no payoff in the absence of cooperation. In the beginning of each generation all
players have image score 0. Hence, strategies with k& < 0 are termed “cooperative”, because they
cooperate with individuals that have not had an interaction. In each generation m = 125 pairs are
chosen; each player has, on average, 2.5 interactions. The chance that a given player meets the
same co-player again, or that a chain of possible altruistic acts ever leads back to the original donor,
is negligibly small. Therefore, direct reciprocity cannot work here. At the end of each generations,
players produce offspring proportional to their payoff. At generation, ¢ = 0, we start with a random
distribution of strategies. After ¢ = 10 generations, the strategies k = —1,0, +2, +5 have increased
in abundance. After ¢ = 20 generations, the strategies k = —4, —1,0 dominate the population.
After t = 150 generations, the population consists almost entirely of the strategy k& = 0, which
is the most discriminating among all cooperative strategies. It cooperates with everyone who has
image score 0 or greater. After ¢ = 166 generations, all other strategies have become extinct and
k = 0 is fixed in the population. Parameter values: b = 1, ¢ = 0.1 (to avoid negative payoffs we
add 0.1 in each interaction).
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Figure 2. Long-term evolution of indirect reciprocity under mutation and selection. We perform
the same computer simulation as in figure 1, but include mutation: there is a probability of
0.001 that an offspring does not act like its parent, but uses another randomly chosen strategy.
We observe endless cycles of cooperation and defection. Cooperative populations are relatively
stable if they consist of discriminating strategies such as k = 0 or —1. But after some time these
populations get undermined (through random drift) by strategies such as & = —4 or —5 which
are too cooperative. Then defectors, k¥ = 4 or 5, can invade, which in turn can be overcome by
stern discriminators again. In the long run, cooperation is harmed by unconditional cooperators,
because they enable defectors to invade. In the absence of unconditional cooperators, cooperative
populations persist much longer. (a) The average k-value of the population. (b) The average
payoff per individual, per generation. (c) Frequency distribution of strategies sampled over many
generations (¢ = 107). Parameter values: as for figure 1, but m = 300 rounds per generation.



there is no selection against the latter, who can spread by random drift. In simulations
without unconditional cooperators, cooperative populations persist much longer.

Cooperation based on indirect reciprocity depends crucially on the ability of a player
to estimate the image score of the opponent. In the above model we assume that the image
score of each individual is known to every other member of the population. This should
only be seen as an idealised scenario. It is more realistic to assume that an interaction
between two individuals is observed by a (possibly small) subset of the population. Only
these “on-lookers” (and, of course, the recipient) have the possibility to update their
perception of the donor’s image score. The on-lookers are chosen at random for each
particular interaction. Therefore each player has a specific perception of the image score
of the other players. The same player can have different image scores in the eyes of different
individuals. The information is contained in a matrix whose elements s;; denote the image
score of player ¢ as seen by player j. In a donor-recipient interaction between j and 1,
player j will cooperate if s;; > k;. If j has no information on ¢ then s;; = 0.

The model now depends on the probability that a given individual observes an interac-
tion between two other individuals. Figure 3 shows computer simulations of this extended
model. Again cooperation can easily be established and dominate the population, but a
larger number of interactions per generation is needed. There is also an effect of group
size. For larger groups, it is more difficult to establish cooperation, because the fraction
of individuals that obtain information about any particular interaction will be smaller.
Therefore, more interactions are required (relative to group size) in order to discriminate
against defectors.

Another interesting expansion of the basic model is to include strategies that consider
both the recipient’s and the donor’s image score. We explored two types of strategies.
“AND”—strategies cooperate if the image score of the recipient is larger than a certain
value and the own image score is less than a certain value. The idea is that if an individual
has already a high image score, it is not necessary to aim for a still higher image score
(by helping others). On the other hand, “OR”-strategies cooperate if the image score of
the recipient is larger than a certain value or the own image score is less than a certain
value. Here the idea is that if an individual has a low image score it may be advantageous
to increase the score by helping others regardless of how low their image score is. In both
cases we find highly cooperative societies (Fig 4). If, in contrast, we simulate strategies
that only consider their own image and do not take into account the image of the recipient,
then cooperation does not emerge.

The above models are based on computer simulations, but we can derive analytic
insights from a simplified model. Suppose that there are only 2 image levels: 0 (for bad)
and 1 (for good). The image of a player depends on his or her last action as a donor: players
who defected have score 0, and players who cooperated score 1. Let us only consider two
strategies: (i) defectors, who never provide assistance, and (ii) discriminators who help
players having image 1, but not players having image 0. A given player knows the score
of only a fraction, ¢, of the population. A discriminator who has no information on
potential recipients will assume, with a certain probability, p, that they have image 1. In
each round of the game all individuals of the population are chosen, each with the same
probability as a donor or a recipient. If w < 1 denotes the probability of another round,
there are on average 1/(1 — w) rounds per generation. In the Methods Section we derive
the equations that describe how the frequencies of discriminators and defectors of image 0
and 1 change during subsequent rounds of the game. We also calculate the average payoff
in each round and analyse how the frequencies of discriminators and defectors change from
one generation to the next. It should be stressed that discriminators are not Tit For Tat
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Figure 3. Indirect reciprocity with incomplete information about the image score of other players.
We perform the same simulation as in figure 2, but the image score of a donor is updated only
for the recipient and the observers of an interaction. Each interaction is observed, on average,
by 10 randomly chosen players. The figure shows the frequency distribution of strategies for
three different population sizes, n = 20, n = 50, and n = 100, sampled over many generations
(t = 107) in order to obtain representative results. There is a clear effect of group size: cooperation
predominates for n = 20, but is rare for n = 100. For n = 50 we find cooperative and defective
strategies at roughly equal frequencies. The time averages of the frequency of cooperative strategies
(defined by k < 0) are 90%, 47% and 18% for, respectively, n = 20, 50 and 100. Parameter values:
as for figure 2, but m = 10n rounds per generation.
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Figure 4. A further dimension is added to the game if donors base their decision to cooperate not
only on the image score of the recipient but also on their own score. In (a) and (b), we consider
strategies that cooperate if the image score of the opponent is at least ¥ AND the own image score
is less than h. The idea is that if the image score of an individual is already high, then it makes
no sense to invest in a still higher image. The figures show the frequency distribution of strategies
that are defined by their k and h—values sampled over many generations. In (a), we assume perfect
information about the image of all players. The most frequent strategy is (k = 0,h = 1). This
strategy cooperates if the image score of the opponent is at least 0 and the own image score is
less than 1. If the whole population adopts this strategy then it clearly does not pay to aim for
an image exceeding 0. For the same reason, other strategies with h = k + 1 are successful in this
simulation. Strategies with k& > 0 are unsuccessful, because they are too uncooperative. In (b), we
assume imperfect information about other players’ image. Here it pays to invest in a higher image
than strictly necessary, because a given altruistic act is only seen by a subset of other players. The
most frequent strategy is k = 0, h = 4. In (c) and (d), strategies are explored that cooperate if the
image score of the recipient is at least ¥ OR the own image score is less than h. The idea is that
players with low image may want to increase their image by helping others indiscriminately. Such a
scenario also leads to cooperative societies (dominated by strategies with & < 0) but unconditional
defectors (k = 6,h = —b) benefit from the reduced level of discrimination and represent the most
frequent single strategy. Again (c) is based on perfect information while (d) assumes imperfect
information of the co-players’ image score. In (a), (b), (c), and (d), respectively, the frequency
of cooperative interactions is 55%, 57%, 70% and 80%. This has to be compared with less than
0.1% cooperation in simulations where strategies only consider their own image score and do not
discriminate according to the image score of the recipient. Parameter values: (a,c) as in figure 2,
but m = 500 rounds per generation; (b,d) as in figure 3 with n = 20. The frequency of a strategy is
proportional to the area of the circle. Strategies with a frequency of less than 0.5% are not shown.



players; Tit For Tat strategists base their decisions on their own previous experience with
the co-player, whereas discriminators use the experience of others. This is an essential
advantage for a player who interacts with many co-players, but only a few times with
each. (Such discriminators are also different from strategies based on ‘standing’?".)

We observe a frequency threshold: a minimum amount, x,,;,, of discriminators is nec-
essary to ensure the establishment of cooperation. We also obtain the minimum number of
rounds per generation which are necessary for the evolutionary stability of discriminators.
In particular, cooperation through indirect reciprocity can only be stable if

q>c/b.

The probability to know the image of another player has to exceed the cost to benefit
ratio of the altruistic act. This is remarkably similar to Hamilton’s rule, which states that
cooperation through kin selection works whenever the coefficient of relatedness between
two individuals exceed the cost to benefit ratiol"2. In our case, relatedness is replaced by
acquaintanceship.

In summary, cooperation based on indirect reciprocity works in the follwing way: a
potential donor can choose whether to accept a certain cost in order to help another
individual, or to avoid this cost. In the short term, avoiding the cost yields, of course,
the higher payoff. In the long term, however, performing the altruistic act increases the
image score of the donor and may therefore increase the chance of obtaining a benefit
in a future encounter as a recipient. On the other hand, a discriminator who punishes
low-score players by refusing them help pays for this by having his own score reduced.
The decisive idea, relevant to human societies, is that information about another player
does not require a direct interaction, but can be obtained indirectly either by observing
the player or by talking to others. The evolution of human language as a means of such
information transfer has certainly facilitated cooperation based on indirect reciprocity.

Methods

Defectors and discriminators.

Here we develop a simplified model for indirect reciprocity which can be fully understood
in analytic terms. Consider two image scores: 0 for someone who has defected last round
and 1 for someone who has cooperated last round. Thus the image score only depends on
the last move of a player as a donor. Consider two types of players: discriminators, who
only help players having image score 1, and defectors, who never help. Let us suppose that
there is a probability, ¢, that discriminators have information about the image score of the
potential recipient. In the absence of information, they assume an image score of 1 with
probability p. (One can show that if indirect reciprocity works at all, then discriminators
with larger p always outcompete the others?®. Therefore we shall restrict ourselves in the
following to the limiting value p = 1. The discriminator strategy in this case coincides
with a variant of Tit For Tat which begins by defecting if the future co-player has been
seen defecting in his last interaction® — a confirmation of Alexander’s view that ’indirect
reciprocity is a consequence of direct reciprocity occuring in the presence of others’”).
For a defector, information about the image score does not matter. We denote by x,
1, Yo and yi, respectively, the frequencies of discriminators with image 0 and 1, and
the frequencies of defectors with image 0 and 1. The total frequency of discriminators is
x = xg+ 1 and that of defectors y = yo+y1. We have x+y = 1. A generation consists of
several rounds of the game, during which x and y do not change. In each round all players



are paired up, half of the players being donors, the other half recipients. The frequencies of
players of image 0 or 1 change from round to round according to the difference equations:

zy = [zo+x(1—)g]/2
By = [z +x(1—q+q0)]/2
Yo = [vo+yl/2

v = y1/2

Here ¢ = x1 + v is the frequency of players with score 1. In each round the payoff to the
individual types is P(zo) = [—c(1 —q+q¢) +bx(1 —q)]/2, P(x1) = [-c(1 —q+q¢p) +bx]/2,
P(yo) = bx(1 —q)/2, P(y1) = bx/2. The difference equation yields the expected payoff
values D, (k) and D;(k) to defectors and discriminators in the k-th round: D.(k) = bx(1—
g+ q2"*"1)/2, and D;(k) = De(k) + {(1 — q)(bgz — ¢)(1 — gz) ™" — bg2~ "~V 4 ¢(b —
c)(1 —z)(1 —qx)"1[(1 + gz)/2]F71}/2. We can either assume that the number of rounds
per generation is constant, or that there exists a fixed probability w for a further round.
In the latter case, the total payoff to defectors is D, = 33 ; w*~1 D, (k), and similarly for
discriminators. We find that

bqx — ¢
(1= w)(1—qa)

Modelling the change in frequency of discriminators and defectors from one generation to
the next by the standard replicator equation®’, we find that defectors win if = is below
a threshold value x,,;, given by D; = D,., whereas discriminators win if x is above this
threshold. Discriminators are evolutionarily stable if and only if x,,;, < 1, i.e. if D; > D,
for x = 1. This can only happen for ¢ > ¢/b, i.e. if the probability to know the image
of the co-player exceeds the cost to benefit ratio, and if the average number of rounds,
ie. 1/(1 —w), exceeds (bg+ c)/(bqg — ¢). Note that for our numerical example of Figs. 1
and 2 , where b=1 ¢ = 0.1 and ¢ = 1, we only need about 1.2 rounds per generation for
cooperation to be stable against invasion by defectors.

(b—c)(1—2x) b
(1—gz)2—w—wgx) 2—w

2(Di = De) = (1-q)

2q|

The good, the bad, and the discriminating.

Clearly, indirect reciprocity only works when donors discriminate between individuals
that have or have not helped others in the past. In order to understand the role of
indiscriminate altruists, we add to the population of defectors and discriminators a fraction
z of cooperators, who always give help, irrespective of their co-player’s score. We can
calculate the payoffs in each round as before. The cooperators’ total expected payoff D,
differs from that of the defectors, D, by [—c + (bwgz)/(2 — w)]/[2(1 — w)], whereas

o (bgz—c)(1—g+g2) bg(z+y) qy(b — c)
Pi=De= 2(1 —w)(1 - qz) 2—w +(1—qa0)(2—w—wqx)'

The population is in equilibrium whenever y = 0 (no defectors) or x = ¢(2 — w) /bwq. If
z lies below the latter value, defectors win; if z exceeds it, then a mixture of discriminate
and indiscriminate altruists gets established, depending on the initial value. This mixed
state is proof against invasion by unconditional defectors, but in such a population both
discriminate and indiscriminate altruists do equally well. Their frequencies will only be
altered by random drift, not by selection. If the frequency of discriminators falls below
¢(2 —w)/bwq then defectors can invade and take over. Defectors in turn can be overcome
by discriminators if their frequency fluctuates above .
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A universal constant of nature.

Let us now consider a situation where the image score can be any integer number between
—oo and +oo, but all players adopt the same strategy, & = 0. Denote by x; the frequency
of players with image score ¢. In the next round it is =} = [z; + z;—1¢ + i1 (1 — ¢)]/2
where ¢ = > 72, x;. If all players start with an image score greater than or equal to 0, then
all players will cooperate in the first and all subsequent rounds. If all players start with an
image score less than 0, then all players will defect in the first and all subsequent rounds.
The situation becomes interesting if there is an initial distribution of image scores above
and below 0. The question whether the system will ultimately converge to cooperation
or defection is non-trivial. We find there is a maximum fraction of players with an initial
image score below 0, such that the system ultimately converges to all-out cooperation.
Numerical simulations show that this number is 0.7380294688360...
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The Dynamics of Indirect Reciprocity

Martin A. Nowak
Karl Sigmund

Abstract

Richard Alexander (1987) has argued that moral systems derive from indirect reciprocity. We
analyse a simple case of a model of indirect reciprocity based on image scoring (see Nowak and
Sigmund, 1998). Discriminators provide help to those individuals who have provided help. Even if
the help is never returned by the beneficiary, or by individuals who in turn have been helped by the
beneficiary, discriminating altruism can be resistant against invasion by defectors. Indiscriminate
altruists can invade by random drift, however, setting up a complex dynamical system. In certain
situations, defectors can invade only if their invasion attempts are sufficiently rare. We also consider
a model with incomplete information and obtain conditions for the stability of altruism which differ
from Hamilton’s rule by simply replacing relatedness with acquaintanceship.

1 Introduction

Altruistic behaviour is usually explained by inclusive fitness, group advantage, or reci-
procity. The idea of reciprocal altruism, which is essentially economic, was introduced by
Trivers (1971): a donor may help a recipient if the cost (to the donor) is less than the ben-
efit (to the recipient), and if the recipient is likely to return the favour. This principle was
explored in many papers, we mention only Axelrod and Hamilton (1981), Axelrod (1984),
Sugden (1986), Boyd and Lorberbaum (1987), May (1987), Lindgren (1991), Nowak and
Sigmund (1992, 1993), Nowak, May and Sigmund (1995), Sigmund (1995), Leimar (1997).

In his seminal paper of 1971, Trivers mentioned the further possibility of a ‘generalised
altruism’;, where the return is directed towards a third party. ‘Individuals ... may re-
spond to an altruistic act that benefits themselves by acting altruistically toward a third
individual uninvolved in the initial interaction.” Trivers goes on to say: ‘In a system
of strong multiparty interactions, it is possible that in some situations individuals are se-
lected to demonstrate generalised altruistic tendencies.” This possibility is further stressed
in Triver’s book on Social Evolution (1985), where it is speculated that a sense of justice
may evolve ‘in species such as ours in which a system of multi-party altruism may operate
such that an individual does not necessarily receive reciprocal benefit from the individual
aided but may receive the return from third parties.’

Richard Alexander greatly extended this idea, and coined the term of ‘indirect reci-
procity’ (see Alexander, 1979 and 1987, and references quoted therein). In this case, one
does not expect a return from the recipient (as with direct reciprocity), but from someone
else. Cooperation is thereby channelled towards the cooperative members of the com-
munity. A donor provides help if the recipient is likely to help others (which is usually
decided on the basis of experience, i.e. according to whether the potential recipient has
helped others in the past). According to Richard Alexander (1986), indirect reciprocity,
which ’involves reputation and status, and results in everyone in the group continually
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being assessed and reassessed’, plays an essential role in human societies. Alexander ar-
gues (convincingly, to our mind) that systems of indirect reciprocity are the basis of moral
systems.

The principles of direct reciprocity are usually studied by means of games (like the
Prisoner’s Dilemma) repeatedly played between the same two players. In this paper we
investigate situations where the players engage in several rounds of the game, but with a
negligible probability of ever encountering the same co-player again. This is, of course,
an idealisation, and in human communities, both direct and indirect reciprocity occur
together. In fact, Alexander stresses that ‘indirect reciprocity is a consequence of direct
reciprocity occurring in the presence of others’. But in order to better understand the
mechanism of indirect reciprocity, we shall entirely eliminate direct reciprocity from our
model.

In Nowak and Sigmund (1998), we analysed populations of individuals having the
options to help one another or not. Following usual practice, we denote the benefit of the
altruistic act to the recipient by b, the cost to the donor by ¢, and assume ¢ < b. If the
donor decides not to help, both individuals receive zero payoff. The payoff is in terms of
incremental fitness.

Each player has an image score, s. The score of a potential donor increases by one unit
if he or she performs the altruistic act; if not, it decreases by one unit. The image score of
a recipient does not change. At birth, each individual has score 0. We consider strategies
where potential donors decide to help according to the image score of the recipient. A
strategy is given by an integer k: a player with strategy k provides help if and only if the
image score of the potential recipient is at least k. Players who provide help must pay
some cost, but they increase their score and are, therefore, more likely to receive help in
the future. During their lifetime, individuals undergo several rounds of this interaction,
either as donors or as recipients, but the possibility of meeting the same co-player again
will be neglected in our model. At the end of each generation, individuals leave offspring
in proportion to their accumulated payoff, which inherit the strategy of their parent (we
assume clonal reproduction, as is usual in evolutionary games, see Maynard Smith, 1982).

In extensive computer simulations, Nowak and Sigmund (1998) showed that even for
a very low number of rounds per generation, a cooperative regime based on indirect reci-
procity can be stable. If one allows for mutations, then long-term cycling becomes likely.
Populations of altruists discriminating according to the score of the recipient are under-
mined by indiscriminate altruists. Then, unconditional defectors invade, until discrimi-
nating cooperators return, etc. We also extended the model so that individuals would only
witness a fraction of the interactions in their community, and therefore have incomplete
information about their co-player’s score.

In this paper we shall study analytically a class of simple models for indirect reciprocity,
based on two score values only, which we denote by G (for ‘good’) and B (for ‘bad’). We
obtain some of the cycling behaviour seen in the computer simulations. Furthermore, we
show that the probability ¢ that a player knows the score of another player must exceed
¢/b, if indirect reciprocity is to work. This is an intriguing parallel to Hamilton’s rule,
the cornerstone of the kin-selection approach to altruism (Hamilton, 1963). Hamilton’s
rule states that the coefficient of relatedness must exceed ¢/b. In this sense, indirect
reciprocity differs from kin selection in replacing relatedness with acquaintance. If the
average number of rounds per lifetime exceeds (bg + ¢)/(bg — ¢), then cooperation based
on score discrimination is evolutionarily stable.
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2 The basic model

For indirect reciprocity to work, some members of the group must assess the ’score’ of other
members, and discriminately channel their assistance toward those with a higher score. Of
course, the group may also contain members who do not discriminate, and either always
give help, or never. We shall denote the frequency of the former by x1, and that of the
latter by xo. By x3, we denote the frequency of the discriminators. These individuals
assess their group members and keep track of their ’score’. If they only remember the
last round, they distinguish between those who have helped and thereby acquired score G,
and those who have withheld assistance, and acquired score B. Discriminators help only
G-players.

We shall now assume that each generation experiences a certain number of rounds of
interactions. In each round, every player is both in the position of a donor and in the
position of a recipient. (This simplifies the calculations without changing the basic results.
In Nowak and Sigmund, 1998, as well as in the last section of this paper, we assume that
every player can be, with the same probability, a donor or a recipient.) In each of these
roles, the player interacts with a randomly chosen co-player. If only few rounds occur,
then the likelihood of meeting the same co-player twice is very small. The strategies which
we consider take no account of this possibility.

In the first round, discriminators do not know the score of the potential recipient of
their altruistic action. They have to rely on an a priori judgement, and assume with a
certain ‘subjective’ probability p that they are matched with a G-individual. If they help,
they acquire G-status and become possible beneficiaries of other discriminators in the next
round. We first consider the case 0 < p < 1, and later the case p = 1.

With g,, we denote the frequency of G-players in round n (it is convenient to set g1 = p,
the discriminators’ initial guess). Clearly

gn = T1 + gn—123 (1)
for n =1,2, ..., so that by induction

1 Tl

+a5 7 (p - )- (2)

9n

:l—xg 1—.283

Hence g,, converges to x1/(z1 + x2), the percentage of cooperators among the indiscrimi-
nating players.

In order to compute the payoff, we have to monitor whether a recipient who meets
a discriminating donor is perceived by the donor as a G-player. In the first round, this
happens with probability p. From then on, it happens with probability 1 to the undiscrim-
inate altruists (who have had occasion to prove their altruism), with probability 0 to the
unconditional defectors (who are unmasked in the first round), and with probability g,—1
to the discriminators (since this is the probability that they have encountered a G-player
and consequently provided help in the previous round).

In the first round, the payoff for an indiscriminate altruist is —c+b(z1+pzx3) (he always
provides help, and he receives help from the indiscriminate altruists as well as from those
discriminators who believe that he has label G). The payoff for unconditional defectors is
similarly b(z1 + px3) and that for discriminators is —cp + b(z1 + pz3). Obviously, if there
is only one round, unconditional defectors win.

In the n-th round (n > 1), the indiscriminate altruists receive payoff —c+b(z1+x3), and
unconditional defectors obtain bx;. The proportion of G-scorers among the discriminators
is gn—1 and their payoff is —cg,, + b(x1 + z3). The other discriminators obtain —cg,, + bz1.
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Adding up, we receive as the discriminators’ payoff in the n-the round —cg, + b(x; +
Z39gn—1), which by (2) is just (b — ¢)gn.

If we assume that there exactly IV rounds per generation, then the total payoff for
indiscriminate altruists is

Py = N[b(zy + x3) — ¢] — (1 — p)bas, (3)

that for defectors is
= Nbxq + bpxs, (4)

and that for discriminators is
pg =({b-0c)(g1+ ...+ gn) + b(z1 + px3 — p). (5)

It is easy to check that

1 1-—
g1+..+gn = [(91 - 92) + le], (6)
1—.283 1-—

so that

b—cl—xz¥  N(b-c)x )
1-— I3 1-— I3 1-— I3
It is well-known that the structure of a game is unchanged if the same function is subtracted
from all payoff functions (see e.g., Hofbauer-Sigmund, 1998). It turns out that it is most
convenient to substract P». We then obtain as normalised payoff values P; := =B Pg, the

values P, = 0,

Py = (p—pxs —21)(—b+

P1 = (N — 1)b$3 — Nc (8)
and ( )N
T T brz —c— (b—c)xs

P = P+ (p— . 9

3 1 + T2 ! (p .CC1+.7)2) 1— 23 ()

For instance, if the game is stopped after the second round already, i.e. N = 2, then
Py = —2c¢ + baxs, (10)

P, =0, and
Py = —cp—cxy1 + (b— ¢)pzs. (11)

3 The replicator equation for a constant number of rounds

This allows to investigate the evolution of the frequencies of the three types of players
under the influence of selection. We can use either a discrete game dynamics monitoring
the frequencies from generation to generation, or the continuous replicator dynamics (see
Hofbauer-Sigmund, 1998)

.Ci?i = .CCZ(PZ — P) (12)

on the (invariant) simplex S3 = {x = (x1,%2,x3) € R3 : x; > 0, x; = 1}. Here,
P = Y ;P is the average payoff in the population. We stick to the latter, somewhat
more transparent dynamics, emphasising that it is obtained as a limiting case of the
dynamics with discrete generations (see Hofbauer-Sigmund, 1998).

For simplicity, let us start with the case N = 2. If b > 2¢, as we shall assume in the
following, then there exists a unique fixed point p = (p1, p2, p3) in the interior of Ss, i.e.
with all three types present. It is given by P; = P, = P3, which yields (since P, = 0)

2c 2c 2c

pm=pl-=), p=>0-p-=)  p3=—

2 2 b (13)
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Figure 1. Phase portrait of the model described in Section 3. There are 3 strategies: cooperators,
defectors and discriminators (corresponding to the three corner fixed points e1, e2 and es, respec-
tively). Discriminators help everyone with a good standing. In the first round, they help other
individuals with a fixed probability, p We assume the game is played for 2 rounds; the payoff values
are given by egs (10,11). In the absence of discriminators, z3 = 0, defectors win. In the absence of
defectors, o = 0, a stable equilibrium between cooperators and discriminators is reached. In the
absence of cooperators, 1 = 0, there is an unstable equilibrium between defectors and discrimi-
nators. If all 3 strategies are present, there is a seperatrix connecting the two boundary equilibria
on the edges. If the initial frequency of discriminators is below a critical value, then defectors will
win. If it is above this critical value, then we obtain neutral oscillations around a center.

This point is a center. Indeed, one checks by a straightforward computation that the
Jacobian at p has trace 0 and determinant 2¢’p(1 — p)(1 — 2¢)2. The eigenvalues are
therefore purely imaginary.

On the boundary of the simplex S3, we find five fixed points. In addition to the corners
e1, ez and eg (where only one type is present), we find two mixed equilibria, namely

b — 2c c )
b—c’'b-c

Fa3 = (0, (14)
and Fi3, which is obtained from Fa3 by exchanging the first and the second coordinate.
In the absence of discriminators (i.e. on the edge z3 = 0), the flow points from e; to es:
defectors win. In the absence of defectors, i.e. for x5 = 0, the flow on the edge ejes leads
toward F13. In the absence of indiscriminate altruists, i.e. when x; = 0, the system on
the edge egeg is bistable (see Fig.1).

Since (b— c)xs = c is an invariant line (along this line, one has 3 = 0), it follows that
there exists an orbit in the interior of S3 which points along this straight line from Fi3
(its a-limit) to Fag (its w-limit). The boundary of the triangle spanned by es, F13 and
F23 is a heteroclinic cycle: it consists of three saddle-points connected by three orbits.

Using the classification of phase portraits of the replicator equation due to Zeeman
(1980) and Bomze (1983), we can conclude that the fixed point p is surrounded by closed
orbits filling the afore-mentioned triangle (in Bomze’s notation, we obtain phase portrait
13). The time-averages of these orbits all converge toward the point p. In the remaining
part of the simplex S3, all orbits converge to es. If the frequency of discriminators xj3 is
less than ¢/(b — ¢), therefore, then defectors take over. If not, then the frequencies of the
three types oscillate periodically. We note however that this situation is not persistent:
a sequence of random fluctuations can lead to larger and larger oscillations, and finally
cause the system to cross the separatrix line (b — ¢)zs = ¢ and end up with a regime of
all-out defection.

We mention without proof that if there are N > 2 rounds, nothing much changes. The
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unique fixed point p in the interior of S3 has now the coordinates

Nc

pr=p(l—p3), p2=0-p)(L-p3), p3 N =% (15)
(The third equation follows because P; = 0, the first because for this value of p;, one has
p— 1= ;3 = 0.) Again, the eigenvalues at p are pure imaginary; this fixed point is a center

surrounded by periodic orbits. The points F13 and Fa3 now satisfy
34 ...+ ) P =c/(b—c) (16)

(the equation for Fag is given by P; = 0, that for F13 by P, = P3.) We note that the
solution of (16) satisfies x3 > ¢/b.

4 The prejudice p as an evolutionary variable

So far we have treated p, the prejudice of the discriminator, as a parameter. But p is
likely to be an evolutionary variable. So let us consider a model where, in addition to the
types used so far, with frequencies x1, 2 and z3, we have another type of discriminator
with a prejudice p # p. The frequency of this new type is denoted by x4 (with > z; = 1).
Again we can describe the payoffs of the different types of players in the different rounds.
In the first round, all players receive (as recipients) the payoff b(z1 + pxs + pz4), which we
neglect henceforth, since it is the same for all; as donors, indiscriminate altruists pay —c,
unconditional defectors 0, and the two types of discriminators —cp and —cp, respectively.
In the first round, it pays to have as low an opinion as possible concerning the score of
the unknown partner. From then onward, the score is always G for the indiscriminate
altruists, and never G for the unconditional defectors. The two types of discriminators
have score G, in the second round, with probability p and p, respectively. It follows that
in the second round, the frequency of G-players is go = x1 +prs+ px4. For the n-th round,
with n > 2, the frequency g,, of G-players satisfies the recurrence relation

gn = 21 + (T3 + T4)Gn-1. (17)

In the second round, the payoff for p-discriminators is therefore given by —cgs + b(z1 +
p(zs+x4)), and that for p-discriminators by —cga + b(x1 + p(z3 + x4)). In the n-th round
(n > 2) the payoff is —cgy,, + bgp,—1 for both types of discriminators. If there are altogether
two rounds or more per generation, then the total payoff for the p-discriminators differs
from that of the p-discriminators by (p — p)(—c+ b(z3 + z4). By the quotient rule for the
replicator dynamics (see Hofbauer and Sigmund, 1998) it follows that

(z3/74) = (23/24)(p — p)(—C + b(T3 + 24)). (18)

If the total frequency x3 + x4 of discriminators is sufficiently high (namely larger than
¢/b), then (18) shows that the ratio z3/x4 increases if and only if p > p. In particular,
in a population where the p-discriminating type is established and defectors have gone
to extinction, or are on their way to vanish (which means, as we have seen, that zs is
larger than c¢/b), then the p-discriminating type can invade and take over, if and only if
p > p. Thus we can conclude that if indirect reciprocity works at all, then it favours those
discriminators having larger p-values, i.e. with a more positive prejudice in favour of an
unknown partner. This leads to a trait-substitution sequence in the sense of Metz et al
(1992): mutations introducing larger and larger p-values will successively take over under
the influence of selection. The p-value will therefore grow, as an evolutionary variable,
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until it approaches its maximal value 1. We shall therefore restrict our attention to the
limiting case p = 1.

iFrom now on, a discriminator is a player who, in the first round, gives help, and from
then on helps recipients with G-score only. (The first help can be viewed as an entrance
fee to the club of G-players.) It should be stressed that discriminators are not Tit For
Tat players. Tit For Tat is a very successful strategy for the iterated Prisoner’s Dilemma,
and consists in cooperating in the first round, and from then on doing whatever the co-
player did in the previous round. Tit For Tat strategists base their decisions on their
own previous experience with the co-player, whereas discriminators use the experience of
others. Pollock and Dugatkin (1992), in their interesting paper on reputation, described
this strategy as ‘observer TFT".

It should also be mentioned that this discriminator strategy is related to, but different
from the so-called Ti-strategy in the book by Robert Sugden on The Evolution of Rights,
Cooperation and Welfare (1986). The T}-strategy is based on the concept of good standing.
Every player is born with a good standing, and keeps it as long as he extends help to other
players with good standing. If he does not, he loses his good standing. Sugden argues
that such a strategy can work as a basis for an insurance principle within the population
(in each round of his game, a randomly chosen player needs help, and all other players
can contribute to it). We stress that a player can keep his good standing by refusing to
help someone of bad standing, whereas in our model, he would lose his G-score whenever
he refuses help, even if the potential recipient is a B-scorer. Sugden’s Tj strategy is more
sophisticated, but like Contrite Tit For Tat, another strategy based on standing, it is
vulnerable to errors in perception (see also Boerlijst et al, 1997).

5 Pyrrhic victories, or the advantage of rarely showing up

If we denote the frequency of discriminators by x3, again, then the payoffs for indiscrimi-
nate altruists, unconditional defectors and discriminators are, in the first round, given by
—c+b(z1 +x3),b(z1+ x3), and —c+ b(z1 + x3), respectively, and in the following rounds
by —c+b(z1+ x3), bxy resp. —cgpn + b(x1 + x39n—1) = (b — ¢)gn, where g, is, as before, the
frequency of G-players in round n and g; = 1. We now have by (2):

gn = [z1+ xg_lxg]/(xl + xz2). (19)

If there are exactly N rounds (with N > 1), then the total payoffs Py, P, and P; of
indiscriminate altruists, unconditional defectors and discriminators, respectively, are given

by

Py = N[—c+ b(x1 + z3)], (20)
pg = Nbzxi + bz, (21)
pg :(b—C)(gl +g2+...—|-gN)—b$2 (22)

which yields

CA+as+...+2a¥ - N). (23)

Py=N(b- —
3 (b C)—i-.%‘g[ b+1—x3

Normalising such that P» = 0, this yields

P, =—Nc+ (N —1)bxs (24)
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and
Py = P+ 2l(N = 1)b+ 7 xc 1+ ... +2) 1= N)
— 3
and hence
Py =Py +[—(N —1)(bxz +c) — cxz(1+ ... + 2 )]/ (1 — x3). (25)

Let us consider first the case N = 2 of two rounds only. In this case, we have
Py = —2c¢+ bxs, (26)

and
Py = Py + cxs. (27)

It follows immediately that the replicator equation admits no interior fixed point. The
edge ejeg consists of fixed points: in the absence of unconditional defectors, both types
do equally well. Along the edge x3 = 0, the flow points from e; to es. On the edge eqes,
there exists a fixed point Fag, with z3 = ¢/(b —¢). The restriction to this edge is bistable:
in a competition between unconditional defectors and discriminators, discriminators win
if and only if their initial frequency is larger than c/(b— c). Since the average payoff P is
equal to x1 Py + x3( Py + cxa), if follows that at Fag, the transversal eigenvalue #;/x; is
given by %, which is negative. Hence Fa3 is saturated.

Along the fixed point edge ejes, the transversal eigenvalue i3 /2o is equal to —P (i.e.
to 2c — bxs). If we denote by F the point with xo = 0 and #y/z9 = 0, i.e. with 3 = 2¢/b,
then the points on the edge between ez and F are saturated, and hence w-limits of orbits
in the interior of S3, whereas all points on the segment between F and e; are a-limits.
If (b—c)xz = c then &3 = 0 in the interior of Ss. It follows that the line ! given by
x3 = ¢/(b — ¢) is invariant. It corresponds to an orbit whose w-limit is the saddle point
F23 and whose a-limit, which we denote by F13, has coordinates o = 0 and z3 = b/(b—c).
This separatrix [ divides the interior of the simplex S35 into two regions. In one region,
all orbits converge toward ez. In the other region, all orbits lead from the fixed point
edge ejes back to that edge; their a-limit is between F13 and F, their w-limit between F
and eg; they surround F. (See Fig. 2.) The equation also admits an invariant of motion:
z125 2 [—c + (b — ¢)x3] (courtesy of Josef Hofbauer).

The interplay between the three strategies leads to a fascinating long-term dynamics.
Depending of the initial condition, selection leads either toward a homogeneous regime of
all-out defectors, or to a mixture of discriminators and indiscriminate altruists (with no
unconditional defectors). In such a mixture, no type has a selective advantage. Random
drift takes over, and the mixture fluctuates along the ejesg-edge. From time to time,
mutation can also introduce unconditional defectors. If such an invasion is attempted
when the state lies between es and F, it is promptly repelled. If it occurs while the
state is between F13 and eq, then it succeeds and defectors take over. But if the invasion
attempt occurs while the state lies between F13 and F, then it knows a transient success
only; the frequency of defectors increases at first, but then the proportion of discriminators
grows at the expense of the indiscriminate altruists, and causes the defectors to vanish.
The end result of this failed invasion attempt is, as before, a mixture of discriminators and
indiscriminate altruists, but now with a much higher amount of discriminators, so that
now it is able to stop any invasion attempt by defectors in the bud. Somewhat related
examples of successful invasions which are ultimately self-defeating (Pyrrhic victories, so to
speak) can be found in Mylius et al, 1998, where strategies are studied which are invasible
yet unbeatable.
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Figure 2. Phase portrait of the model described in Section 5 (eqs 26-27). As for figure 1, we
consider cooperators, defectors and discriminators, but this time discriminators always help in the
first round (p = 1). Again there is a seperatrix connecting two fixed points on the edges ejes
and eges, but there is no fixed point in the interior of the simplex. Instead the whole edge e;es
consists of fixed points, some of which are stable against invasion by defectors, while others are
not. The overall dynamics of the system are as follows. Imagine a mixture between cooperators
and discriminators. There is random drift along the edge ejes. If there are sufficiently many
discriminators then defectors cannot invade. There are two threshold levels of discriminators. If
the frequency drops below the first value then defectors can invade, but will go extinct again
leaving the system in a state with a higher frequency of discriminators. If the discriminator
frequency fluctuates below the second value, then defectors can invade and take over. Hence, if
defectors appear too often they cannot win. They only win when showing up rarely. This seems
to be an interesting example for a more general, counter-intuitive principle where a mutation can
only win if rare.

Of course, random drift can slowly lead the state back into the threatened zone. But if
invasions by defectors occur frequently enough, these invasions will be attempted while the
state is between F13 and F, and hence the state will be led back into the invasion-proof
zone. It is only if the frequency of invasion attempts by defectors is low that random drift
along the fixed point edge ejes can lead the state across the 'gap’ between Fi3 and F
(whose width is ¢(b—2¢)/b(b— ¢)). In this case the state enters into the segment between
F and e; where an invasion by defectors knows an irreversible success. Thus we see a
remarkable phenomenon: a mutant that can succeed only if it occurs rather rarely!

Essentially the same situation holds when there are N > 2 rounds. The point Fa3 now
has a coordinate x3 which is given as the solution of the equation

c

xg—l—x%—i—...—i—xév_l:b_c (28)

(see (16)). This is a value which, with increasing N, shifts from ¢/(b — ¢) towards ¢/b.
The point F has a coordinate zy given by Nc¢/(N — 1)b. This is simply the limit of the
interior fixed point p given by (15), if p converges to 1.

This cycle of invasions is related to a phenomenon found in the numerical simulations
by Nowak and Sigmund (1998), which are based on a more sophisticated model of indirect
reciprocity where scores can take all integer values (see Fig. 3).

6 Random numbers of rounds

Let us now assume, not a constant number of rounds per generation, but rather a constant
probability w for a further round. The total number of rounds per generation is then a
geometrically distributed random variable with mean value 1/(1 — w). The payoffs are of
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Figure 3. Cycling behaviour in the model by Nowak and Sigmund (1998). Donor-recipient pairs
are formed at random. The score of a newborn is 0, it increases by one unit whenever the individual
provides help and decreases by one unit if the individual refuses to help. A strategy is given by
an integer j. An individual with strategy j provides help to all potential recipients with score at
least j. Players with strategy 7 = 0 can be viewed as discriminate altruists. Players with a low
j (for instance j = —3) are de facto indiscriminate altruists, because they help every co-player;
indeed, if players experience only two or three rounds per lifetime, there will be no players with
score less than —3. Players with a high j (for instance j = 4), on the other hand, are defectors;
they will never provide help. Numerical simulations show how populations of discriminate altruists
are eventually undermined by indiscriminate altruists (the average j-value drops), that defectors
cash in (the average j-value sharply increases) and that this brings discriminators to the fore again
(the average j-value drops back to 0). (a) The average j-value of the population. (b) The average
payoff per individual, per generation. (c) Frequency distribution of strategies sampled over many
generations (¢t = 107). Parameter values: b = 1, ¢ = 0.1 (to avoid negative payoffs we add 0.1 in
each interaction); m = 300 rounds per generation.
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the form A; +wAy +w? Az + ..., where A, is the payoff in the n-th round. Then, by using
the first paragraph of section 4,

N 1
P1 = m[—c + b($1 + .CCg)], (29)
. 1 b —wb
Py = by + by — ELT T8) —wbes (30)
1—w 1—w
pg =(b-c)(g —|—wgg+w2g3+...)—bac2. (31)

Writing g := g1 + wgs +w?gs + ..., we see that g = 1+ w(x1 + g173) + w?(21 + go3) + ...,
and hence that

wx
g =14 —= +z3wg. (32)
1—w
Therefore . n
— w4 wzy
= 33
g (1 —w)(1—wxs) (33)
and thus b- o0 )
A —cC —w + wx
P;=-b 34
3 T2t (1 —w)(1 — wzs) (34)
It is convenient again to normalise the payoff values such that P, = 0. In this case
wbxrs — ¢
pp=— " 35
1= (35)
e 6o ) )
—c)(1 —w+wx T
P = — by — brs — 36
3 (1 —w)(1 —wzs) T T, (36)
which yields
(1-w+wzy), b—c
Py = —b 37
and thus finally
1—
Py = Lowtwn g, (38)

1 — wxs

In contrast to the case of a fixed number of rounds, we now obtain a line [ of fixed points
in the interior of S3, given by z3 = c¢/wb (we assume from now on that w > ¢/b). The
edge ejeg consists of fixed points too. On the edge ejes the flow leads towards es, and
on the edge ezes we have a bistable competition, with threshold point Fag given by the
intersection with the fixed point line [. This line [ acts as separatrix. It divides S5 into two
regions, in one region the ratio x; /x5 decreases and in the other it increases. All orbits in
the former region converge to es and lead to a population of unconditional defectors; in
the other region, all orbits converge to the fixed point edge, and hence lead to a mixture
of discriminators and indiscriminate altruists.

7 An analogy with the Prisoner’s Dilemma game

Although the dynamics of indirect reciprocity given by (29)-(32) is based on a model which
is quite distinct from the repeated Prisoner’s Dilemma game, it yields a remarkably similar
dynamics. Indeed, let us consider the Prisoner’s Dilemma (PD) game, where each of the
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two players has, in each round, two options: to play C (to cooperate) or D (to defect).
The payoff matrix is given by
R S
( B ) (39)

where T" > R > P > S, i.e. the reward R for mutual cooperation is larger than the
punishment P for joint defection, but a unilateral defector receives the highest payoff T
(the temptation) and a unilateral cooperator the lowest payoff S (the sucker’s payoff).
Let us assume that in each generation, each player is matched with one randomly chosen
co-player for a variable number of rounds. Again, we assume that the probability for a
further round is constant and given by some w < 1. Let us assume that the population
contains only three types of players, the unconditional cooperators, the unconditional
defectors, and the Tit For Tat players. Let x1, x2 and x3 be their respective frequencies.
The expected payoffs are (as is well known, see for instance Nowak and Sigmund, 1987)

A 1
A Pxo +Txy wP
Ph=— T 41
2 1—w +(T+ 1-— w)x?’ (41)

P
R(T%wa?’) + (S + lw_ w).ﬁCQ. (42)
If we normalise these payoff values, such that P, = 0, and if we set, as is natural, for the
temptation by unilateral defection T = b, for the reward by mutual cooperation R = b—c,
for the punishment of bilateral defection P = 0 and for the cost of being suckered S = —c,
then the payoffs in the PD model become

Py =

bwxg — ¢
P =2 - 43
e (43)
and . N
WT cwry — ¢ cwzT
P3: 3 2 :P1+ 2, (44)
1—w 1—w

which behaves like the dynamical system with N = 2. In fact, for w = 1/2 it is exactly the
same system. (If however w = (N —1)/N for N > 2, then the equations do not agree with
the dynamics given by (10)-(11); we also note that the system (29)-(32) with a random
number of rounds is different, and in particular contains higher order terms.)

8 A model with incomplete information

Even in small groups, where everyone knows everyone else, it is unlikely that all group
members witness all interactions. Therefore each player has a specific perception of the
image score of the other players. The same player can have different image scores in the
eyes of different individuals. Furthermore, it is unrealistic to assume that episodes as
donor and recipient alternate in a well synchronised way. Some individuals will be more
often in a position to give help than others.

We shall therefore assume from now on that in each round, a given individual is with
probability 1/2 either a donor or a recipient. If there are only few rounds, it is quite
possible that a given individual is never a donor. This is more in line with the stochastic
simulations in Nowak and Sigmund (1998). We extend the previous two-score model by
assuming that with probability ¢ a given individual knows the score of a randomly chosen
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opponent. A discriminator who does not know the score of the co-player will assume with
probability 1 that this score is G. If g,, denotes, as before, the frequency of G-scorers in the
population, and z15(n), zog(n) and x3c(n) are the frequencies of indiscriminate altruists,
unconditional defectors resp. discriminators in round n, then clearly z1g(n) = x; and
zacg(n) = (1/2)zeg(n — 1), since a defector is with probability 1/2 in the role of a donor
and then unmasks himself. Therefore

zog(n) = 2?5—31 . (45)

The score of a discriminator remains unchanged if he is a recipient. If he is a potential
donor, he will either know the co-player (with probability ¢) and help if the co-player has
score G (as happens with probability g,), or else he will not know the co-players score,
and help (this happens with probability 1 — ¢). Altogether, this yields

z3g(n) = (1/2)xsa(n — 1) + (1/2)x3(1 — g + qgn)- (46)
Since g, = z16(n) + z2g(n) + x3G(n), it follows that
gn = $gn—1 + (21 + (1 — q)z3) (47)

with s = (1 + gx3)/2. This recurrence relation implies (together with g; = 1) that

1+qgx3,, 1 <« 1+ (1 —q)x
n = ( qrs )n 1 2 1 ( Q) 3 ) (48)
2 1—qx3 1 —qxs
The payoff for the indiscriminate altruists in round n is
A(n) = ~(¢/2) + (b/2)(21 + a3). (49)

The payoff P, for the unconditional defectors depends on their score. Those with score B
receive b(z1 + (1 — ¢)x3)/2 and those with score G in addition gbzs/2, so that

As(n) = (b/2)[1 + (1 - @)zs + z3q(226(n) /22)] - (50)

Finally, a discriminator receives [—c(qgn + 1 — q) + bx1 + (1 — q)bx3)]/2 if he has score B,
and in addition bgzs/2 if he has score G, so that we obtain

Az(n) = —(¢/2)(agn + 1 = q) + (b/2) (21 + 23) — (b/2)qws[1 — (z36(n)/z3)].  (51)
Normalising by subtracting As(n), this yields
Ai(n) = —(c/2) + (b/2)qus(1 — 27 "7V) (52)

and
As(n) = —(c/2)(1 = q) + (a/2)(b— ¢)gn — (b/2)qz1 — (b/2)q(z2 + 3)2~ "V (53)

If we assume that w < 1 is the probability for a further round, then the total payoff for
unconditional defectors is P, = 0, that for indiscriminate altruists is

1 bwqxs

P=gawlet

] (54)

2—w
and that for discriminators is

_ (bgrs —c)(1—g+gz1)  bg(xs + 3) q(b—c)x2
BTN e 2w (g v )
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Figure 4. Phase portrait of the model described in Section 6 (eqs 29-31). We consider the same
situation as for figure 2, but this time there is not a fixed number of rounds, but a probability, w,
of a next round. The separatrix becomes a line of fixed points. The edge e; e is also a line of fixed
points. Again there are two regions in phase space. If there are sufficiently many discriminators
then defectors become eliminated, if the frequency of discriminators drops below a critical Level
then defectors take over.

and hence 5 5
qry Cc — 0qx3 —C
P;=P . 56
3 1—i_l—quc?,[2(1—w) 2—w—wqx3] (56)
It is obvious that P; = 0 holds iff
c(2 —w)

= —F". 57
3 bwq (57)

A straightforward computation shows that for this xs-value, P3 = 0. Hence the fixed
points of the corresponding replicator equation are (apart from the vertices of the simplex
S3) the edge ejeg and the line | given by bwgzs = ¢(2 — w). This line divides the interior
of S3 into two regions: in one region, all orbits converge to es, in the other region, towards
a point on the ejes-edge which depends on the initial value. This is exactly as in section
5 (see Fig.4).

Of course this holds only if the value of z3 is less than 1, i.e. if w(c+bg) > 2¢, in other
words if the expected number of rounds, i.e. (1 —w)~!, satisfies

1/(1 —w) > (bg+c)/(bg—c). (58)

If we consider only the two strategies defector and discriminator, then discriminator can
be evolutionarily stable only if

q>c/b. (59)
This looks exactly like Hamilton’s rule for altruism through kin selection, except that the
coefficient of relatedness, k, is replaced by the probability to know the co-player’s score,

q.

9 Discussion

Several authors, starting with Trivers himself, have stressed that reciprocal altruism
need not be restricted to dyads of interacting individuals (see Trivers, 1971, Boyd, 1988,
Dugatkin et al , 1992, May, 1987, Axelrod and Dion, 1988, Binmore, 1992, and chapter 7
of Sugden, 1986, for instance.)
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There are several ways to model generalised or indirect reciprocity. Alexander, who
elaborated on the importance of this notion, did not fully specify the mechanisms involved,
but mentioned several possibilities. One conceivable form of reward (see, e.g., Alexander,
1987, p.94) consists in having the success of the group contribute to the success of his own
descendants, which is simply group selection in the modern sense, see Wilson and Sober
(1994). One other form has been investigated by Boyd and Richerson (1989): individual A
helps B, who helps C, who helps D, who finally returns the help to A. Thus individuals are
arranged in closed, oriented loops, reminiscent of the hypercycles in the theory of Eigen
and Schuster (1979) on catalytic loops of selfreplicating molecules. Boyd and Richerson
investigate two strategies: upstream Tit For Tat (A keeps helping B if D keeps helping
A) and downstream TFT (A keeps helping B if A observes that B keeps helping C). They
find that the second type is much more efficient than the first, but that it is also more
difficult to perform. (It should be noted that for two-member loops, both strategies reduce
to Tit For Tat.) Boyd and Richerson conclude that this type of indirect reciprocity is less
likely to evolve than pairwise reciprocity, and is only effective for relatively small, closed,
long-lasting loops.

In a sense, this indirect reciprocity is still quite direct, and the social networks in human
groups (or primates, for that matter — see de Waals, 1996) are much more fluid than the
‘long-lasting loops’ indicate. Alexander (1987) envisions a more diffuse mechanism when
he stresses (p.85) that ‘the return [of the beneficence] may come from essentially any
individual or collection of individuals in the group’, and emphasised the importance of
assessment and status. We have tried to model this in Nowak and Sigmund (1998) by
means of ‘scores’ assigned to each group member. If the model is reduced to the minimum
(two scores only), we obtain the discriminator strategy.

The same strategy has been reached, through a different approach, in Pollock and
Dugatkin (1992), who termed it Observer Tit For Tat. They studied it in the context
of the repeated Prisoner‘s Dilemma, which is the usual framework for analysing direct
reciprocity. Pollock and Dugatkin allowed the players to occasionally observe a co-player
before starting the repeated interaction. If the future co-player was seen defecting in
his last interaction, then Observer Tit For Tat prescribes to defect in the first round.
Pollock and Dugatkin were mostly interesting in comparing this strategy with the usual
Tit For Tat, but they also found that it could hold its own against defectors when no
degree of future interaction with the current partner was presumed. They also obtained
a condition similar to (53), but without modelling the different rounds in an individual’s
lifetime, and in particular without (52). The approach by Pollock and Dugatkin is truly
remarkable. They did not aim at a model of indirect reciprocity, but actually investigated
what Alexander would view as its prerequisite, namely ‘direct reciprocity occurring in the
presence of interested audiences’ (Alexander, 1987, p.93), and came out with what we
believe is the simplest strategy under which indirect reciprocity can be implemented — an
unintended support for the correctness of Alexander’s intuition.

The success of a discriminating player is somewhat hampered by the fact that whenever
he refuses to help a B-scorer, he loses his G-score. A more sophisticated strategy has been
studied by Sugden (1986) in a context which is only slightly different. In Sugden’s model,
in each round a randomly chosen player needs help, and each of the other players can
provide some help (thus the needy player can get as payoff (m — 1)b, where m is the group
size). Sugden’s T} strategy is based on the notion of standing: a player is born with good
standing, and keeps it as long as he helps needy players who are in good standing. Such a
player can therefore keep his good standing even when he defects, as long as the defection
is directed at a player with bad standing (this in contrast to the discriminator strategy).
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We believe that Sugden’s strategy is a good approximation to how indirect reciprocity
actually works in human communities: it offers, as Sugden remarks, a workable insurance
principle. But as stressed in Boerlijst et al (1997) in connection with Contrite Tit For Tat,
strategies based on standing are prone to be affected by errors in perception. If information
is incomplete, then a player observed while withholding his help may be misunderstood;
he may have defected on a player with good standing, or punished someone with bad
standing. An eventual error can spread. The discriminator rule is less demanding on
the player’s capabilities, and still works. We expect that in actual human communities,
indirect reciprocity is based on more complex reckonings, and believe that this should be
amenable to experimental tests.

Finally, we mention that according to Zahavi (1995), Arabian babblers ‘compete with
each other to invest in the interests of the group, and often interfere with the helping
of others’. This jostling for the position of the helper cannot be explained in terms of
group selection, kin selection or direct reciprocation. However, if helping raises one’s score
and therefore one’s fitness, this type of competition can easily be understood: indirect
reciprocity based on image scoring provides a simple explanation.
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