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ADN

The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Abstract

I investigate the evolution of a continuous trait, such as body size or arms level, which
affects the outcome of competitive contests such that the contestant with the larger trait
value has a higher probability of winning. I show that a polymorphism of distinctly
different strategies can evolve in an initially monomorphic population even if mutations
have only small phenotypic effect. In a simple Lotka-Volterra type model of
asymmetric competition, I derive the conditions under which two strategies can
gradually evolve from a single ancestral strategy; the evolution of higher level
polymorphisms is studied by numerical analysis and computer simulations of specific
examples. High levels of polymorphism may build up during evolution. The
coevolution of strategies in polymorphic populations, however, may also lead to
extinction, which decreases the level of polymorphism. I discuss whether the evolution
of several haploid strategies from a single initial strategy may correspond to the evolution
of several sympatric species in a diploid outbreeding population.

Keywords: adaptive dynamics, asymmetric competition, coevolution, ESS, evolutionary
Branching, frequency dependent selection
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Evolutionary Branching

Under Asymmetric Competition

Éva Kisdi

Introduction

The outcome of competitive interactions often depend on traits which influence or
indicate competitive ability, such as body size, weight, armament, or costly signals of
strength (e.g., Clutton-Brock et al., 1979; Clutton-Brock and Albon, 1979; Weiner,
1986, 1990; Weiner and Thomas, 1986; Carroll and Salamon, 1995; Luiselli, 1996;
Mitani et al., 1996; Roberts, 1996; Simmons and Scheepers, 1996). The contestant with
the larger trait value has a higher probability of winning the contest; large values of the
trait, however, are costly in terms of reduced survival probability or reduced fecundity.
Competitive asymmetry between members of a population has been recognized as an
important factor for example in shaping within-population variability (Begon, 1984;
Begon et al., 1996) and in stabilizing population dynamics (Lomnicki, 1989).
Asymmetry is also prevalent in between-species competition (Lawton and Hassell,
1981; Connell, 1983; Schoener, 1983; Englund et al., 1992;), where the larger species is
usually superior in interference competition (Persson, 1985; Alatalo and Moreno, 1987;
Dickman, 1988; Thompson and Fox, 1993).

A wide range of evolutionary dynamics may occur for traits which determine
competitive success. It is intuitively appealing that the competitive advantage of
strategies which are larger than the rest of the population may lead to runaway evolution
or an ‘ams race. Dawkins and Krebs, 1979; Maynard Smith and Brown, 1986). The
evolutionary increase of the trait value, however, may come to a halt either because the
cost of large trait values increases and eventually outweighs the advantage, or because
population size decreases such that competition is relaxed (Parker, 1983; Abrams and
Matsuda, 1994). The population may reach a unique stable strategy, but multiple
attractors are also possible (Abrams and Matsuda, 1994). Evolution may lead to
extinction either because the trait value increases without limit and the associated
population density asymptotically decreases to zero, or because the evolutionarily stable
population has such a low density that it is endangered by demographic or
environmental stochasticity (Matsuda and Abrams, 1994).
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A population of large individuals may be invaded by considerably smaller
mutants, which cannot win competitive contests against the residents, but which are free
from the costs of large size. Invasion of small mutants may give rise to a stable
dimorphism (Abrams and Matsuda, 1994), or to evolutionary cycles in which runaway
evolution towards large trait values is reset when small mutants take over the population
(Maynard Smith and Brown, 1986). Asymmetric competition can also maintain a
continuous evolutionarily stable distribution of trait values (Maynard Smith and Brown,
1986; Geritz, 1995).

A series of coevolutionary models assumed that size differences not only
influence competitive superiority but also imply niche differentiation (Roughgarden,
1979; Rummel and Roughgarden, 1985; Brown and Vincent, 1987; Taper and Case,
1992). These models yield either a stable coalition of several species, or taxon cycles
initiated by the invasion of a new species, followed by directional coevolution,
extinction, and reconstitution of the initial species assemblage. Coevolution of two
species with different within- and between-species competition was modelled by Law et
al. (1997), who found multiple evolutionary attractors, parallel evolution or character
convergence, evolutionary cycles, and extinction of one species.

In this paper, I investigate the evolution of polymorphism under asymmetric
competition. Previous models with evolutionarily stable polymorphic populations or
multispecies coalitions either did not consider the dynamics of evolution leading to
polymorhism, or assumed that invaders had the best strategy given the present
composition of the resident population. Though the latter procedure is apt to identify
evolutionarily stable coalitions, it may be unrealistic for the actual dynamics of
evolution (Taper and Case (1992) discuss this assumption in more detail). Here I
assume that mutants are phenotypically similar to the resident strategies already present,
and investigate how polymorphisms of distinctly different strategies can evolve by
small mutational steps.

In most cases when a slightly different mutant appears in a resident population,
it either invades and replaces the former resident strategy, or dies out; repeated
invasions result in directional evolution of the trait (Eshel, 1983; Taylor, 1989). The
resident and the mutant can coexist only when directional evolution ceases, i.e., near a
so-called evolutionarily singular point. The evolutionary singularity where directional
evolution arrives at may be an ESS; it also may, however, lack evolutionary stability.
Near a singularity of the latter type, the invading mutant can coexist with the former
resident; moreover, the two strategies undergo divergent coevolution, which gives rise
to two phenotypically distinct strategies (Metz et al., 1992, 1996; Eshel et al., 1997;
Geritz et al., 1997, 1998). The emergence of a dimorphism in an initially monomorphic
population (or an n+1-morphism in an n-morphic population) followed by the gradual
differentiation of the two initially similar strategies is called evolutionary branching,
and the singular point at which the process initiates a branching point (Metz et al., 1996;
Geritz et al., 1997, 1998).
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Assuming small mutations, the level of polymorphism can increase only by
evolutionary branching. Hence I explore the evolution of polymorphism under
asymmetric competition primarily by searching for evolutionary branching points.
However, as I will also demonstrate, the coevolution of strategies which have arisen by
evolutionary branching can lead to the extinction of a strategy later, thus the population
can fall back to a lower level of polymorphism again.

The specific model I assume is a Lotka-Volterra competition model, where the
competitive coefficients are determined by the differences between the trait values of
the contestants. First I investigate under which conditions a monomorphic population
can undergo evolutionary branching and thus become dimorphic. This part of the model
analysis can be done without restricting generality by assuming specific functional
forms in the model. Second, I explore the evolutionary dynamics of polymorphic
populations. Since this is possible only by numerical analysis, I give three examples
with different functions assumed. The examples illustrate repeated evolutionary
branching leading to high levels of polymorphism, evolutionarily stable polymorphisms,
and extinction.

The Model

I investigate the evolution of a single continuous trait such as body size or arms level.
The trait has two effects on fitness. First, individuals of the population engage in
competitive interactions, where a trait value larger than that of the contestant confers an
advantage. Asymmetric competition thus exerts frequency-dependent selection for
larger trait values. Second, large values of the trait imply a cost in terms of low survival
and/or fecundity, irrespectively of other individuals. Frequency-independent selection
may be either stabilizing (both small and large trait values are disadvantageous,
intermediate trait values are favoured) or directional (large trait values are costly, small
trait values are favoured). For example, stabilizing selection is likely to operate on body
size. Armaments used solely to gain competitive advantage monotonously decrease
fitness in a competition-free environment.

Let n denote the number of strategies present in the population, with trait values
x1,...,xn and population densities N1, … , Nn. Population dynamics are described by the
Lotka-Volterra equations,









∑ Nx-x - x N = 

dt
Nd

jji

n

j=1
ii

i )()( αρ (1)

where ρ(xi) is the intrinsic growth rate of strategy xi in a competition-free environment,
and α(xi-xj) is the competition coefficient which describes the effect of strategy xj on
strategy xi. ρ(x) is a decreasing function at least for large values of x. The competitive
coefficient, α(xi-xj), is a decreasing function of the difference between the trait value of
the individual and that of its contestant: Individuals with large trait value experience
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little competition by small individuals, while small individuals suffer from high
competition by large individuals. The concave-convex function







))((exp

)(
x-x-k v+1

1
 - 1 c = x-x

ji
jiα (2)

shown in Fig. 1 is a flexible way of modeling this situation.

α(
x i

-x
j)

xi-xj0

v=0.2

1

5

Fig. 1. Concave-convex shape of α as given by Eq. 2 (v=0.2; 1; 5; c=2; k=4).

This model is similar to the one investigated recently by Law et al. (1997), with
the following differences: (i) they considered two species with a single resident strategy
for each; (ii) the intrinsic growth rate function (ρ (x)) was assumed to be linear, and the
competition coefficients were given by Eq. 2 with v=1; and (iii) different intensities of
interspecific and intraspecific asymmetric competition (i.e., different values of k and c
in Eq. 2 for within- and between-species competition) were allowed for. Here I consider
an arbitrary number of coexisting strategies in a population, and assume that
competition is determined solely by the trait values of the contestants. Except in the
examples, I do not assume any particular function for ρ (x) or α (xI–xj).

In order to analyze the dynamics of evolution, I assume that mutations are of
small phenotypic effect. Evolution is mutation-limited, i.e., mutations occur
infrequently such that a mutant strategy either has spread or has been excluded, and the
population has reached its equilibrium by the time the next mutant comes along.

Adaptive Dynamics under Asymmetric Competition

In this section I start with a population of a single resident strategy, and investigate
under which conditions this strategy can undergo evolutionary branching giving rise to
two resident strategies. At the end of this section I briefly describe the generalized
analysis for polymorphic resident populations.

Consider a rare mutant strategy y in the resident population of strategy x. The
mutant increases in number if its growth rate,
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)(( xx)N-(y - y)= (y)rx αρ (3)

is positive (cf. Eq. 1); a mutant with negative growth rate dies out. The resident
population has zero growth rate (rx(x)=0) at the equilibrium population density
N(x)=ρ(x)/α(0). It follows that a mutant strategy y slightly larger than x can invade and
replace the resident if the fitness gradient

(0)(x)/(0) - (x) = 
y

(y)r x

xy=

αραρ ′′



∂
∂

(4)

is positive; smaller mutants can invade if the fitness gradient is negative. Notice that
since the resident and its slightly different mutant take part in competition, the shape of
function α(y-x) is relevant only near y-x=0.

Repeated invasions and substitutions result in directional evolution until the
population reaches an evolutionary singularity, where the fitness gradient is zero. At the
singular strategy x*, the proportionate cost of increasing the trait, )()( x/x ** ρρ ′ , must

balance the constant advantage given by )()( 0/0 αα ′  (cf. Eq. 4). If the cost is too high

for all trait values, then frequency-independent selection drives evolution towards
decreasing trait values despite the competitive advantage of being larger. Runaway
evolution leads to increasing trait values if the proportionate cost is always smaller than
the advantage for all trait values. Notice, however, that if ρ(x) becomes zero at some

maxx , then the proportionate cost must exceed the advantage as x increases, and

therefore evolution must reach a singularity before xmax.

Whether or not the population can undergo evolutionary branching at a
singularity depends on two stability criteria (Metz et al., 1996; Geritz et al., 1997, 1998;
Eshel et al., 1997). First, the singular strategy must be convergence stable such that
directional evolution of a monomorphic population can approach it. This condition is
fulfilled if

0 < 
y

r
 + 

yx

r
 = |

y

(y)r 
dx

d
2

22

x=xy=

xy=
x

x **









∂
∂

∂∂
∂









∂

∂
(5)

(Eshel, 1983; Taylor, 1989; Christiansen, 1991). Second, the singularity must lack
evolutionary stability, i.e.,

0 > 
y

(y)r
2

x
2

x=xy= *









∂

∂ (6)

(Maynard Smith, 1982). Substituting rx(y) from Eq. 3 into Inequalities 5 and 6, a
singular strategy is a branching point if
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′′
′

′ρ
α
α ρ( x ) -  

(0)

(0)
( x ) <  0* *

(7)

and

′′ ′′ρ α
ρ
α( x ) -  (0)
( x )

(0)
 >  0*

*

(8)

The singularities that are both convergence stable and evolutionarily stable (i.e.,
satisfy Inequality 7 and the opposite of Inequality 8) are final stops of evolution; these
were called continuously stable strategies or CSSs by Eshel (1983). Convergence
unstable singularities (that do not satisfy Inequality 7) are evolutionary repellors.

The first derivatives in Inequality 7 are both negative: )(0α ′  is negative by

definition, and )(x*ρ ′  must be negative otherwise the fitness gradient (Eq. 4) cannot be

zero at x*. It follows from Inequality 7 that the singularity is always convergence stable
if  ρ(x) is concave or linear, and may be convergence stable if ρ(x) is convex. As seen
from Inequality 8, convexity of ρ(x) and a locally concave shape of α(y-x) near y-x=0
promote evolutionary branching. Table 1 summarizes the possible outcomes of
evolution for different shapes of ρ and α.

Table 1. Possible evolutionary singularities with different functional forms for ρ and α.

α near zero

concave

)0)0(( <′′α

linear or
inflection

(α″(0) = 0)

convex

)0)0(( ⇒′′α

concave ρ

)0*)(( <′′ xρ

CSS or
branching point

CSS CSS

linear ρ

)0*)(( =′′ xρ
branching point degenerate CSS

convex ρ

(ρ″(x*) > 0)

branching point
or repellor

branching point
or repellor

CSS, branching
point or repellor

If ′′ =α ( )0 0 and ρ(x) is linear, then the monomorphic singular strategy is

degenerate in the sense that 
y=x= x

2
x

2
*

r (y)

y
 =  0

∂
∂



 , i.e., the singularity just undergoes a

bifurcation between an ESS and a branching point. Since both the first and the second
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derivatives of the fitness function vanish at the singularity, it is the third derivative

y=x=x*

3
x

3

r (y)

y

∂
∂



  that determines which mutants can invade. If the third derivative is

positive, then mutants smaller than x* cannot invade the singular strategy, whereas a
larger mutant can invade and coexist with x*. A negative third derivative leads to the
opposite result. The details of evolutionary dynamics in dimorphic populations near
such a singularity are quite complicated, and will be presented elsewhere (Kisdi, in
prep.). Ultimately, however, the population undergoes evolutionary branching at the
degenerate singularity.

Evolutionary branching gives rise to a polymorphism of two substantially
different strategies in an initially monomorphic population. The subsequent coevolution
of the coexisting strategies can be modelled similarly to the monomorphic populations
(Geritz et al., 1998). The fitness of a rare mutant y in the population of resident
strategies x1,...,xn is

N)x-(y - (y) = (y)r jj

n

1=j
x,...,x n1

αρ ∑ (9)

 (cf. Eq. 1). The fitness gradient

N)x-x( - )x( = 
y

(y)r
jji

n

1=j
i

x,...,x

x=y

n1

i

αρ ′′



∂
∂

∑ (10)

determines the direction of evolution of the resident strategy xi. Notice that in
polymorphic populations the shape of function α is significant not only near zero,
because mutants of one resident must compete also with other, substantially different
residents.

Polymorphic evolutionary singularities are coalitions of resident strategies where
the fitness gradient of each strategy is zero. Unfortunately, a general condition for
convergence stability is not straightforward in polymorphic populations (Matessi and Di
Pascuale, 1996). If the population arrives near the singular coalition, a particular
resident strategy xi can undergo evolutionary branching if it is evolutionarily unstable,
i.e., if

N)x-x( - )x( = 
y

(y)r
jji

n

1=j
i2

x,...,x
2

x=y

n1

i

αρ ′′′′



∂

∂ ∑ (11)

is positive. This condition is necessary; however, it is sufficient only if all the other
strategies of the singular coalition are evolutionarily stable, and hence remain at the
singularity. If other strategies also lack evolutionary stability, and they evolve with
different speed, then the fastest of them can undergo branching while the others may lag
behind. As branching in one strategy generally changes the frequency-dependent fitness
function (Eq. 9), the slower evolving strategies may no longer be near a branching
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point, i.e., they may have missed the opportunity for branching. Faster evolution of a
strategy is possible if it is present in greater number (since the speed of evolution is
limited by the appearance of new mutants, and the number of mutants is proportional to
the number of individuals), or if the rate or size of mutations depends on the trait value.

Polymorphic populations with asymmetric competition may have very rich
adaptive dynamics, a full exploration of which is beyond the scope of this paper. The
following examples illustrate the possibility of evolution to a stable polymorphism,
repeated evolutionary branching, “missed” branching, and extinction following
evolutionary branching.

Examples

The following three examples assume different functional forms for the intrinsic growth
rate ρ(x). The competitive coefficient function α (y–x) remains unspecified; in the
numerical analyses of polymorphic populations, however, I use Eq. 2 for α(y–x) with
different values of v. If v<1 then α is convex, if v>1 then α  is concave, and if
v=1then α has an inflection point at y–x=0.

Example 1: Linear )(xρ

If the intrinsic growth rate is a linearly decreasing function of the trait value,

bx   =x −βρ )( (12)

then 0
)(

 = 
y

yr x

x*=x=y





∂
∂

 can be solved explicitly for the monomorphic singular strategy

(0)

(0)
 + 

b
 = x*

α
αβ

′
(13)

The singularity is always convergence stable; evolutionary branching occurs
if  α is concave near zero (Table 1).

Coevolution following evolutionary branching can be analyzed numerically
using Eqs. 10 and 11. The results are shown in Fig. 2a for a dimorphic population where
α is given by Eq. 2. For each pair of coexisting strategies, the direction of evolution of
x1 and x2 can be determined from Eq. 10:  In Fig. 2a, these are indicated by horizontal
and vertical arrows, respectively, within the set of protected dimorphisms. Directional
evolution of one or the other resident strategy ceases at the so-called isoclines. The
intersection of the isoclines thus corresponds to the dimorphic evolutionary singularity.
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Fig. 2. (a) Isocline plot with linear ρ(x). Strategy pairs inside the shaded area can form a
protected dimorphism. The direction of evolution of x1 (x2) is shown by horizontal
(vertical) arrows as determined from Eq. 10. Thick isoclines are evolutionarily stable
(Eq. 11 is negative); thin isoclines are evolutionarily unstable (Eq. 11 is positive). The
open circle indicates the branching point (x1=x2=x*=0.45), the filled circle corresponds
to the dimorphic singular coalition, ( x , x ) =  (-0.32, 0.49)1

*
2
* . At the singular coalition,

x1 (i.e., the smaller strategy) is evolutionarily unstable, x2 (the larger strategy) is
evolutionarily stable. (b) Simulated evolutionary tree. Starting with a monomorphic
population, evolution first converges to x*=0.45 where it undergoes evolutionary
branching; the two branches evolve to ( x , x ) =  (-0.32, 0.49)1

*
2
* , where the smaller

strategy undergoes branching again. Subsequent evolution leads to increasing levels of
polymorphism by repeated branching. The position of the branching point and the
dimorphic singular coalition, as read from the isocline plot, are shown by the vertical
bars above the tree; horizontal dotted lines indicate when the population is at the
monomorphic and dimorphic singularities. Parameter values: β =1, b=1, c=2, v=1.2,
k=4.

The expected course of evolution of the dimorphic population can be read from
the isocline plot in Fig. 2a as follows. For convenience, I assume that the smaller
strategy of the coalition is denoted by x1 and the larger one is x2 (that is, I consider the
upper half of the plot above the x2=x1 diagonal). At the beginning of evolutionary
branching, the population contains two strategies both near x*, which undergo
disruptive coevolution, i.e., x1 decreases and x2 increases. Evolution soon arrives at the
x2-isocline, and proceeds along this isocline towards the singular coalition (x1*, x2* ).
Since the x2-isocline is nearly horizontal, the larger strategy will stay approximately
constant while the smaller strategy evolves towards even smaller trait values. In the
singular coalition, the large strategy is evolutionarily stable, but the small strategy is
evolutionarily unstable (as determined from Eq. 11 and indicated by the thickness of the
isoclines). The small strategy thus undergoes secondary branching, giving rise to a
trimorphic population. Subsequent evolution can be analyzed similarly to the dimorphic
case; however, I do not pursue the numerical analysis further because the results cannot
be visualized.
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With linear ρ(x), a strategy xi in the n-morphic singular coalition lacks

evolutionary stability if − ′′ −
=

∑α ( )x x Ni j j
j

n

1

 is positive (cf. Eq. 11). Notice that this

condition is always satisfied for the smallest strategy of the coalition, provided that α is
concave-convex and ′′α (0) < 0 . The first branching is thus followed by a series of

further evolutionary branching events; the series of repeated branching is interrupted
only if the smallest possible trait value is reached. Depending on the model parameters,
some of the larger strategies can undergo further branching as well.

I also performed direct simulations of the evolutionary process in order to
confirm the model predictions, and to illustrate the evolutionary dynamics of three and
more coexisting strategies (Fig. 2b). In the simulations, I iterated the population
dynamics according to Eq. 1, starting with a monomorphic population. Mutant strategies
were generated by small deviations from strategies already present, and were introduced
at a low initial frequency. By the iteration of the population dynamics some strategies
grew in number, others declined. If the frequency of a strategy dropped below a low
threshold, the strategy was considered extinct and was removed from the iteration. The
evolutionary tree shows the strategies present at various times during the simulation.
The simulations were not mutation-limited, i.e., mutants appeared before the previous
mutants reached their equilibrium density or went extinct. As a consequence, there was
always some variation within a branch of the evolutionary tree. This variation, however,
did not confound the model predictions.

Example 2: Gaussian )(xρ

Stabilizing selection on the trait can be modelled by assuming that the intrinsic growth
rate is a Gaussian function of the trait value,








σ
ρ

2

2

2

)m - (x
- a = (x) exp (14)

In this case, there is a single monomorphic singularity at

σα
α 2*

(0)

(0)
 - m = x

′
(15)

that is larger than the optimal trait value in a competitive-free environment (m) because
′α (0) is negative. The singular strategy is always convergence stable (Inequality 5

reduces to - ( x ) /  <  0* 2ρ σ ).  The monomorphic population undergoes evolutionary

branching if

0 > 
(0)

(0)
 - 

1
 - 

(0)

(0)
 )x( = 

y

(y)r
2

2

*
2

x
2

x=xy= * 









 ′′





 ′



∂

∂
α
α

σα
αρ (16)
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Fig. 3. (a) Isocline plot with Gaussian ρ(x). (b) Simulated evolutionary tree. The
monomorphic population has a branching point at x1=x2=x*=1.1; there is an
evolutionarily stable dimorphic coalition at ( x , x ) =  (0.84, 1.37)1

*
2
* . Notations as in

Fig. 2. Parameter values: a=1, m=0, σ =1, c=2, v=1, k=2.2.

Evolutionary branching is hence promoted if (i) 
′α

α
(0)

(0)
 is large, i.e., there is

strong asymmetry in competition, (ii) σ2 is large, i.e., stabilizing selection is weak, and
(iii)  α is concave at zero. Strong asymmetry and weak stabilizing selection result in a
large x* (cf. Eq. 15), such that the Gaussian function ρ(x) is convex at x*, which favors
branching (Table 1).

Following evolutionary branching, the population may reach an evolutionarily
stable coalition of two strategies provided that the competitive asymmetry is sufficiently
weak, i.e., k is sufficiently small in Eq. 2 (Fig. 3). With stronger asymmetry, however,
further evolutionary branching occurs. The isocline plot in Fig. 4a shows an example
where both strategies of the dimorphic singular coalition lack evolutionary stability. The
population density of the smaller strategy is higher, hence it produces more mutants and
evolves faster. Once the smaller strategy has undergone branching, the fitness function
(Eq. 9) slightly changes such that the singularity shifts away from the present trait value
of the larger strategy. Whether or not the larger strategy will still undergo branching
depends on the size of mutations relative to the magnitude of this shift: If mutations are
not very small, then the larger strategy can still branch, but if mutations are of
sufficiently small phenotypic effect, then the opportunity for evolutionary branching in
the larger strategy is missed. Fig. 4b illustrates a simulation with missed branching; an
analogous simulation with somewhat larger mutations led to branching in both
strategies of the dimorphic coalition.
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Fig. 4. (a) Isocline plot with Gaussian ρ(x). (b) Simulated evolutionary tree. The
monomorphic population has a branching point at x1=x2=x*=1.81. In the dimorphic
singular coalition (( x , x ) =  (1.33, 2.24)1

*
2
* ), both strategies lack evolutionary stability;

in the simulation, however, the larger strategy at the two-strategy stage misses
evolutionary branching. Notations as in Fig. 2. Parameter values: a=1, m=0, σ =1, c=2,
v=1.2, k=4.

Repeated evolutionary branching can lead to high levels of polymorphism (Fig.
4b). Unlike in the case of linear ρ(x), the coexisting strategies are confined in range
such that all strategies are larger than m, the optimal trait value in a competition-free
environment: Strategies below m are disadvantageous with respect to both stabilizing
selection and asymmetric competition, and therefore would experience strong selection
towards larger trait values.

Example 3: Convex )(xρ

If the intrinsic growth rate is a convex function of the trait value, then a monomorphic
population may have multiple evolutionary singularities. Here I assume the monotonicly
decreasing, convex function

( )d + x - xb - a -  = (x) 2ρ (17)

with non-negative a and positive b and d. For large negative values, this function is
approximately linear with slope -2b. As x increases, the function becomes less steep; for
large positive values of x, it asymptotically converges to -a.

If a=0, i.e., if even very large strategies have positive growth rates in a
competition-free environment, then there are two monomorphic evolutionary
singularities at

 d - 
(0)

(0)
 = x

2

*
1,2 





′

±
α
α

(18)

The larger singular strategy is always convergence unstable, hence an initial population
above this singularity undergoes runaway evolution towards large trait values. The
smaller singularity is a branching point unless α is too convex (Table 1). If competitive
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asymmetry is strong such that 
2

(0)

(0)
 <  d

α
α ′







, then there is no evolutionarily singular

strategy: Runaway evolution leads to ever increasing trait values unless the strategy set
is constrained. As the trait value increases, the equilibrium population density,
N(x)=ρ(x)/α(0), decreases: the population evolves towards extinction (Matsuda and
Abrams, 1994).

If a>0, then ρ(x) is negative for large trait values, and therefore runaway
evolution is not possible. The monomorphic evolutionary singularities are the roots of a
third-degree polynomial; the largest one is always convergence stable. Fig. 5 shows the
singular trait values as a function of competitive asymmetry. If α is convex near zero
(Fig. 5a), then there may be one or two convergence stable ESSs; if α is concave
(Fig. 5b), then all convergence stable singularities are branching points (cf. Table 1).
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Fig. 5. The monomorphic evolutionary singularities for convex ρ(x) as given by Eq.
17. α is specified by Eq. 2; increasing k corresponds to increasingly asymmetric
competition. Thick lines denote evolutionarily stable strategies, thin lines are branching
points, and dotted lines are evolutionary repellors. (a) α is convex near zero (v=0.7);
(b) α is concave near zero (v=1.1). Parameter values: a=0.6, b=10, d=3.5, c=2.

Evolutionary branching gives rise to protected polymorphism. It does not guarantee,
however, that the polymorphism is persistent on an evolutionary timescale: Coevolution
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of the coexisting strategies can lead to extinction, and thus the population can fall back
to a lower level of polymorphism. Such an evolutionary scenario is illustrated in Fig. 6.
There are two convergence stable monomorphic evolutionary singularities, an ESS and
a branching point, with a repellor inbetween. A monomorphic population above the
repellor evolves to the branching point and becomes dimorphic. However, there is no
dimorphic singularity in the domain of protected dimorphisms in which the population
is evolving. Therefore the population eventually leaves the set of protected
dimorphisms, and the larger strategy of the dimorphism goes extinct. The remaining
monomorphic population is below the repellor and hence evolves to the
monomorphic ESS.

x2

(a)

x1 x

(b)

tim
e

30

-30
-30 30 -30 30

Fig. 6. (a) Isocline plot with convex ρ ( x) as given by Eq. 17. The monomorphic
population has three singularities, an ESS at x1=x2=x*=-6.86 (filled circle), a repellor at
x1=x2=x*=11.37 (diamond), and a branching point at x1=x2=x*=17.22 (open circle); other
notations as in Fig. 2. (b) Simulated evolutionary tree. Starting with a monomorphic
population above the repellor, the population evolves to the branching point and
undergoes evolutionary branching; the dimorphic population, however, leaves the area
of protected dimorphism, i.e., the larger strategy goes extinct. The remaining
monomorphic population is below the repellor and therefore evolves to the ESS.
Parameter values: a=0.6, b=10, d=3.5, c=2, v=0.7, k=0.24.

Discussion

In a simple asymmetric competition model based on the Lotka-Volterra equations, I
have demonstrated the possibility for evolutionary branching, i.e., the evolution of
polymorphism by small mutational steps in an initially monomorphic population.
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Repeated evolutionary branching readily leads to high levels of polymorphism (e.g.,
Figs. 2b and 4b).

Evolutionary branching is possible only if a large and a small strategy can
coexist in a protected dimorphism. A large strategy can invade the population of small
individuals by its competitive superiority. A small strategy can, however, also invade
the population of large individuals. Though small individuals cannot win a contest
against large ones, they have a good chance to avoid any such contest altogether,
because the large strategy can maintain only a low population density due to the cost of
large trait values. The few contests encountered and lost by small individuals is
overcompensated by their greater intrinsic growth rate, i.e., by not bearing the cost of
large size.

When runaway evolution proceeds up to large trait values, then even a slightly
smaller mutant can invade and coexist with the former resident. This sets the initial
stage of evolutionary branching. If the two coexisting strategies experience disruptive
selection (which is mathematically equivalent to there being no evolutionarily stable
strategy sufficiently similar to them), then divergent coevolution gives rise to two
phenotypically distinct branches.

For simplicity, I always started with a monomorphic population and investigated
whether it can undergo evolutionary branching. Evolutionary branching, however, may
occur more easily in an initially polymorphic population. Such an example is shown in
Fig. 7. Here the monomorphic population has an ESS, therefore no polymorphism
evolves (Fig. 7a). If, however, the initial population is dimorphic, then the smaller
strategy undergoes repeated evolutionary branching whereby a high level of
polymorphism can evolve (Fig. 7b). This implies that there may be a threshold level of
polymorphism above which higher level polymorphisms can be evolutionarily restored.
If some environmental catastrophe were to kill all but two strategies of the rich coalition
built up in Fig. 7b, then highly polymorphic coalitions can evolve again provided that
the two remaining strategies are able to coexist and evolve to the dimorphic branching
point. If only one strategy is left, then it will evolve to the ESS, thus the polymorphism
cannot be regained.
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Fig. 7. Simulated evolutionary trees. (a) Starting with a monomorphic population,
evolution converges to an ESS. (b) Starting with a dimorphic population, the smaller
strategy undergoes repeated evolutionary branching. ρ(x) is linear (Eq. 12), α is given
by Eq. 2; parameter values are β =1, b=1, c=2, v=0.8, k=4.

The Lotka-Volterra type model used in this paper is perhaps the simplest model
of asymmetric competition. It is not, however, a mechanistic model, i.e., it is not
derived from underlying elementary processes of individual life histories. When trading
off ecological realism for simplicity, it is crucial to ask how robust the predictions are
with respect to structural modifications of the model.

A short preliminary analysis of the asymmetric competition model proposed by
Roughgarden in order to explain taxon cycles (Roughgarden, 1979; Rummel and
Roughgarden, 1985; Brown and Vincent, 1987; Taper and Case, 1992) also indicated
evolutionary branching (Kisdi, unpubl.). In these models, however, different strategies
exploit partially different niches, and niche segregation is known to promote
evolutionary branching without competitive asymmetry (Metz et al. 1996).

In a model constructed specifically for the evolution of seed size in plants, the
results obtained by Geritz et al. (in press) were strikingly similar to the present study,
including evolutionary branching, repeated branching, and extinction. This is surprising
because their model was rather different from the simple Lotka-Volterra model used
here. Seeds were assumed to disperse randomly into safe-sites, such that the number of
seeds per site was variable. Competition was restricted to seeds within the same site.
Individuals competed according to a weighted lottery, where an increase in seed size
conferred a disproportionate advantage as larger seedlings oppress smaller ones by
shading. Larger seeds also had higher precompetitive survival probability; large seeds,
however, could be produced in less number given the limited resources provided by a
safe site. The fitness function incorporating these ecological details is analytically
untractable and much more complicated than Eq. 3. Nevertheless the predicted
evolutionary scenarios are similar, which may reflect a fundamental similarity of the
evolutionary mechanism operating in the two models: The evolutionary increase of the
trait value promoted by competitive asymmetry leads to low population density, where
competition is relaxed and smaller mutants can invade.
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It would be premature, however, to conclude that competitive asymmetry
facilitates evolutionary branching in general. A reanalysis of four asymmetric
competition models used by Abrams and Matsuda (1994) shows that evolutionary
branching is possible in only two of them (Kisdi, in prep.). Further research is required
in order to identify the critical ecological factors which determine whether asymmetric
competition can lead to evolutionary branching.

As most previous models with evolutionary branching (Metz et al. 1996;
Doebeli and Ruxton, 1997; Meszéna et al., 1997; Geritz et al., 1998, in press; Geritz and
Kisdi, in press; Mathias and Kisdi, in press; Meszéna and Metz, in press), I modelled
evolution on a phenotypic level and assumed that strategies breed true (i.e., there is
haploid or clonal inheritance). Phenotypic adaptive dynamics of monomorphic
populations (termed often as the ‘ESS-approach’) is largely compatible with
quantitative genetic models (Charlesworth, 1990; Iwasa et al., 1991; Taper and Case,
1992; Abrams et al., 1993a,b; Taylor, 1996). In polymorphic populations, however,
random mating and recombination re-creates the intermediate phenotypes which are
selected against during evolutionary branching, and thereby prevent the emergence of
two phenotypically separate branches. Abrams et al. (1993a) therefore argued that the
evolution of polygenic traits gets stuck at the branching point, in spite of that the
population is at a fitness minimum.

In a one-locus diploid adaptive dynamics model, Kisdi and Geritz (ms) showed
that alleles undergo evolutionary branching much like haploid genotypes in the
phenotypic model, giving rise to a protected genetic polymorphism of distinctly
different alleles. Since intermediate heterozygotes are inferior during evolutionary
branching, there is selection for assortative mating which reproductively isolates the
branches. Although the evolution of assortative mating due to hybrid inferiority
(reinforcement) is highly controversial, there is some empirical evidence which seems
to support the possibility (e.g., Coyne and Orr, 1989, 1997; Johannesson et al., 1995;
Noor, 1995; Saetre et al., 1997; Rundle and Schluter, 1998). If the population has split
up into two reproductively isolated species, further evolution proceeds according to the
phenotypic (haploid) adaptive dynamics: The two sibling species diverge from the
branching point and become phenotypically distinct.

If the trait under selection determines mate choice, then evolutionary branching
immediately results in prezygotic isolation (Templeton, 1981; Rice, 1984; Smith, 1988;
Rice and Salt, 1990; Rice and Hostert, 1993; Doebeli, 1996; Galis and Metz, 1998).
Body size has a strong influence on mate choice, and disruptive selection on body size
is thought to lead to sympatric speciation in several species (Schluter and Nagel, 1995;
Nagel and Schluter, 1998). Body size is often a main factor in competitive asymmetry.
It is thus reasonable to expect that asymmetric competition, by generating disruptive
selection on body size at an evolutionary branching point, may cause sympatric
speciation when mating is size-assortative.

If there is no assortative mating based on body size (or on some other primary
trait) in the initial population, it may still evolve when the population is at the
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evolutionary branching point. Under disruptive selection on the primary trait, an allele
influencing mate choice such that carriers prefer mates with primary trait similar to their
own is spread by selection (Maynard Smith, 1966; Seger, 1985; Doebeli, 1996; Doebeli
and Dieckmann, in press). Unlike other preferential mating mechanisms, assortative
mating based on the primary trait evolves easily because no linkage disequilibrium is
needed between the primary trait and the mate choice loci (Felsenstein, 1981). Ensuring
reproductive isolation between the branches, assortative mating essentially restores true
breeding and makes evolutionary branching of polygenic traits possible.
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