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Speciation Along Environmental Gradients

Michael Doebeli

Ulf Dieckmann

Traditional discussions of speciation are based on geographical patterns of

species ranges1,2. In allopatric speciation, long-term geographical isolation gen-
erates reproductively isolated and spatially segregated descendant species1,3.

In the absence of geographical barriers, diversification is hindered by gene
flow1,3,4. Yet a growing body of phylogenetic and experimental data suggests
that closely related species often occur in sympatry or have adjacent ranges

in regions over which environmental changes are gradual and do not prevent
gene flow5−14. Theory has identified a variety of evolutionary processes that

can result in speciation under sympatric conditions15−25, with some recent
advances concentrating on the phenomenon of evolutionary branching18,23−25.

Here we establish a link between geographical patterns and ecological pro-
cesses of speciation by studying evolutionary branching in spatially structured

populations. We show that along an environmental gradient, evolutionary
branching can occur much more easily than in non-spatial models. This fa-

cilitation is most pronounced for gradients of intermediate slope. Moreover,
spatial evolutionary branching readily generates patterns of spatial segrega-
tion and abutment between the emerging species. Our results highlight the

importance of local processes of adaptive divergence for geographical patterns
of speciation, and caution against pitfalls of inferring past speciation processes

from present biogeographical patterns.

We extended generic Lotka-Volterra models for frequency-dependent competition to
individual-based stochastic models of populations occupying a continuous spatial area. In
these models, individuals vary in a quantitative trait u, e.g. a morphological, behavioral
or physiological character. In addition, each individual is characterized by its spatial lo-
cation (x, y) in a square spatial area. In this area resources are distributed such that for
each spatial location (x, y) there is a phenotype u0 with maximal carrying capacity. This
phenotype varies linearly with one spatial dimension, u0(x) = ax+b, which represents the
most gradual environmental structure possible; the other spatial dimension y is ecologically
neutral (Fig. 1). Such a resource gradient in one spatial dimension could, for example,
represent variation in temperature, humidity, soil nutrients, or prey items along an altitu-
dinal gradient. Accordingly, the carrying capacity K depends on the phenotype as well as
on the spatial location, and is assumed to be of Gaussian form: if Nσ(x) = exp(−

1

2
x2/σ2)

denotes a Gaussian function with variance σ, then K = K0 · NσK (u − u0(x)). At each
spatial location, carrying capacity decreases with phenotypic distance from its maximum
at u0; the width of this peak is given by σK .
We assumed that the strength of competition between two individuals depends on their

phenotypic distance, so that competition is strongest between individuals with similar
phenotypes, as e.g. when similarly sized individuals prefer similar types of food. We
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Figure 1: Environmental gradient in carrying capacities. Bright colors correspond to
phenotypes that maximize local carrying capacity; these gradually change with spatial
location in the x-direction, while the y-direction is ecologically neutral. At any given
location, the carrying capacity decreases with phenotypic distance from the capacity-
maximizing phenotype (indicated by diminished brightness).

also assumed that the strength of competition decreases with spatial distance between
individuals. Thus, in our individual-based models the effective population size determining
the death rate of a given individual due to competition depends both on the number of
other individuals in its neighborhood and on their phenotypes. Specifically, in our models
the relative strength of competition between two individuals with phenotypic distance ∆u
and spatial distance d is proportional to a product of Gaussian functions: Nσc(∆u)·Nσs(d).
The parameters σc and σs determine how fast the intensity of competition declines with
phenotypic and spatial distance, respectively. In particular, small values of σs ensure that
severe competition is only felt from individuals that are close-by in the spatial arena.
Finally, to describe spatial movement we assumed that individuals move around in

the spatial arena with mean movement distances σm and at rates that are independent
of location or phenotype. Movement over short distances and localized ecological inter-
actions between individuals allow the population to become spatially structured, whereas
frequent movement over long distances tends to result in well-mixed and hence spatially
unstructured populations.
Based on these ecological determinants, the evolutionary dynamics of the quantita-

tive trait u were investigated first in asexual populations by allowing for small mutations
during birth events. For a variety of reasons (see methods), no reliable analytical or even
deterministic theory for the resultant evolutionary dynamics is available at present, so that
the direct investigation of individual-based spatially explicit models is necessary. Evolu-
tionary branching of traits determining competitive interactions has already been studied
extensively in analytically tractable models without spatial structure18,24,25, which can be
recovered from our models by setting all spatial coordinates to 0. In particular, in the non-
spatial version of the adaptive dynamics of the quantitative trait u, evolutionary branching

2



occurs if the strength of competition decreases faster than the resource abundance with
phenotypic distance from the capacity-maximizing phenotype, that is, if σc < σK

18.
Critical aspects of spatial structure are determined by the steepness of the environ-

mental gradient and the movement distance. If the gradient is shallow, the environment
becomes essentially spatially homogenous. If movement distances are large, the population
becomes well-mixed and hence spatially unstructured. In either of these cases the system’s
behavior approaches that of the non-spatial model. In particular, evolutionary branch-
ing then occurs for the same parameter combinations as in the non-spatial model,that is,
for σc < σK . When evolutionary branching does occur under such conditions, the two
evolving phenotypic clusters are scattered randomly over space.
The system’s behavior is dramatically different if the environmental gradient is steep

enough and movement distances are short. Evolutionary branching is then accompanied by
spatial segregation of the diverging phenotypic clusters (Fig. 2a). Thus, in spatially struc-
tured populations evolutionary branching driven by localized and frequency-dependent
ecological interactions can generate a sharp phenotypic abutment across a linear environ-
mental gradient. Depending on parameter values, it is possible to observe more than two
distinct and spatially segregated lineages (not shown).
A second and perhaps more important effect is that with significant environmental

gradients and short movement distances, evolutionary branching occurs for a much wider
range of parameters than in the non-spatial models, that is, for values of σc that are much
larger than σK . The degree to which spatial structure facilitates branching, as well as the
abrupt onset of this facilitation as a function of movement distances, are surprising (Fig.
3a). If movement distances exceed a certain threshold value, parameter requirements for
branching in the spatial and non-spatial models are almost exactly the same. However,
as movement distances are decreased below this threshold, parameter requirements in the
spatial model are suddenly and drastically less restrictive than in the non-spatial model.
In fact, if the width σs of the spatial interaction kernel is sufficiently small, as is the case
in Fig. 3a, evolutionary branching occurs independently of σc.
The mechanisms generating these effects can be understood as follows. An environ-

mental gradient initially induces gradual spatial differentiation due to local adaptation
along the gradient. Thus, local adaptation results in a correlation between spatial loca-
tion and phenotype. When, as assumed here, significant competition only occurs between
individuals that are spatially sufficiently close, this correlation decreases the strength of
competition between phenotypically distant individuals, and hence increases the degree
of frequency dependence in the system. This effect tends to disappear if local adaptation
is very incomplete due to gene flow along shallow gradients, or if dissimilar phenotypes
are spatially close owing to local adaptation along a very steep environmental gradient.
Therefore, facilitation of evolutionary branching due to gradient-induced frequency de-
pendence is expected to be highest for intermediate environmental gradients. This is
demonstrated in Fig. 3b for a case in which the width σc of the phenotypic interaction is
very large, so that frequency dependence is entirely due to localized interactions between
spatially differentiated individuals, and no evolutionary branching at all is expected in
the non-spatial model. Fig. 3c shows the full characterization of the branching behaviour
in asexual populations as a function of the three essential parameters of the model (see
methods). It illustrates that for a range of intermediate environmental gradients, evolu-
tionary diversification is greatly facilitated once movement distances or rates fall below a
critical level.
We have extended the spatially structured models to sexual populations in which

the quantitative character u is determined additively by a number of diploid loci (see

3
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Figure 2: Evolutionary dynamics of adaptive divergence. In each row the left panels show
the distribution of phenotypes as a function of time (same color scheme as in Fig. 1). The
middle panels show the distribution of phenotypes across space at the end of the time series,
and the right panels show the corresponding frequency distribution of phenotypes as a
function of spatial x-location. The white lines indicate the environmental gradient (Fig. 1).
(a) Evolutionary branching with spatial segregation in an asexual population. See Methods
for parameter values. Note that σc = 2.5·σK, hence no branching would be expected in the
corresponding non-spatial model. (b) Evolutionary branching with spatial segregation in
a sexual population with the same parameter values as in (a) and with assortative mating
based on ecological similarity. The evolution of the degree of assortativeness is shown
as an insert in the left panel (intermediate values of the mating character correspond to
random mating, low values to disassortative mating, high values to assortative mating).
(c) Evolutionary branching with spatial segregation in a sexual population with assortative
mating based on a marker trait. The evolution of assortativeness, as well as the branching
in the marker trait, are shown as inserts in the left panel (the two marker branches are in
linkage disequilibrium with the two branches of the ecological trait). Parameters values
as given in methods, except for σc = 0.5, σs = 0.3 and σ̃m = 0.38. (d) Evolution of a
phenotypic gradient in a sexual population with random mating. Parameter values are
the same as in (b), except that random mating with respect to phenotype was enforced.
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Figure 3: Requirements for spatial evolutionary branching in asexual populations. The
model’s three dimensionless parameters (see methods) are displayed on all axes: scaled
width of competition function σc/σK , scaled movement distance σ̃m/σs, and scaled slope of
gradient a·σs/σK . The first two panels show a subdivision of parameter space into polygons
(Voronoi tessellation based on simulation data), shaded according to the recorded time to
evolutionary branching: black corresponds to branching within the first 500 generations,
white corresponds to no branching after 5000 generations, and shades of gray correspond to
branching between generations 500 and 5000 (including multiple branching, which occurs
for very small movement distances). (a) Effect of direct frequency dependence. Variation
of time until branching with scaled width of competition function and scaled movement
distance for asexual populations (at a · σs/σK = 0.425). In non-spatial models

18,24 only
conditions to the left of the dashed line would be expected to induce branching. (b) Effect
of gradient-induced frequency dependence. Variation of time until branching with scaled
slope of gradient and scaled movement distance for asexual populations (at σc ≫ σK). In
non-spatial models no branching would be expected at all. (c) Complete characterization
of the asexual model, obtained by extrapolating from Figs. 3a and 3b and from additional
numerical simulations. Evolutionary branching occurs for parameters within the shaded
block. The positions of slices in panels (a) and (b) are indicated.

methods). The ecological processes remain the same, but instead of reproducing asexually
individuals now choose partners within a given spatial neighborhood (see methods). If
mating is random with respect to phenotypes, evolutionary branching does not occur
anymore, regardless of the choice of parameters. Just as in the non-spatial models, random
mating brings about recombination between extremal phenotypes, which prevents the
evolution of phenotypic bimodality18. By contrast, evolutionary branching is possible in
spatially structured sexual populations if one allows for the evolution of assortativemating.
Assortative mating can be based on similarity in the primary character determining the
ecological interactions, or it can be based on a selectively neutral marker trait18. In the
latter case, a linkage disequilibrium between the marker trait and the primary trait must
evolve for evolutionary branching to occur18.
Results for spatially structured sexual populations with assortative mating are in gen-

eral agreement with those from the asexual models. When evolutionary branching occurs
in sexual populations, the emerging phenotypic clusters are essentially reproductively iso-
lated because mating is assortative, and the spatial gradient again separates the emerging
species into a pattern of spatial segregation (Fig. 2b,c). Such geographical differentiation
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in the presence of a spatial gradient has been previously observed in a model for competi-
tion between two species26; this model did not, however, address the question of speciation.
It is important to note that, if divergence is prevented by random mating, one expects the
evolution of a phenotypic gradient along the environmental gradient2,27,28. Such a pheno-
typic gradient does indeed evolve in our sexual models when individuals mate randomly
with regard to their phenotypes (Fig. 2d). Thus, the speciation processes described here
are ultimately due to evolutionary branching and to the evolution of assortative mating
caused by frequency-dependent interactions under conditions of ecological contact. In
sexual populations, speciation through spatial evolutionary branching again occurs for a
much wider range of parameters than in the corresponding non-spatial sexual populations,
and is most likely with environmental gradients of intermediate slope. The behaviour of
the sexual model in which assortative mating is based on similarity in the ecological trait
is summarized in Fig. 4. Notice that parameter requirements for spatial evolutionary
branching in sexual populations are generally stricter than for asexual populations.
Our results show that intrinsically sympatric processes of adaptive speciation can gen-

erate sharp geographic differentiation in the absence of abrupt environmental changes2,21.
In traditional models of parapatric speciation due to isolation by distance15,22, diversifica-
tion is driven by divergent local adaptation or genetic drift in spatially distant locations
and is hindered by gene flow. In contrast, our models show that ecological contact may in
fact be the driving force for parapatric speciation. Gene flow is of course still a hindrance
to local divergence, but the mechanisms generating local disruptive selection require eco-
logical contact. Local disruptiveness in turn selects for assortative mating, which reduces
and eventually eliminates gene flow between the emerging species. The latter process is
akin to reinforcement22, but for the fact that selection for prezygotic isolation emerges
dynamically from frequency-dependent ecological interactions and is not a consequence
of secondary contact. Spatial segregation between closely related species7,13,29 is often
used to infer allopatric speciation processes. However, our results show that this inference
of process from pattern may be misleading, and that instead the origin and distribution
pattern of species abutments is consistent with spatial evolutionary branching. This per-
spective may be important for understanding the origin of species abutments such as those
reported for giant senecios along altitudinal gradients8, and the origin of hybrid zones such
as those between intertidal snails7,13.
Our results also show that gradual spatial structure, potentially even more so than

complete spatial isolation, facilitates speciation, because local adaptation along an en-
vironmental gradient increases the degree of frequency dependence in spatially localized
ecological interactions, and hence the likelihood that these interactions generate disruptive
selection. Interestingly, this facilitation is most pronounced for environmental gradients
of intermediate slope, a result that is fundamentally different from those expected in clas-
sical parapatric speciation models. Other things being equal, we can thus hypothesize
that speciation rates are highest in populations exposed to environmental gradients with
slopes around σK/σs (Figs. 3b,c,4b,c), a measure that varies widely between taxa. This
conjecture appears to be testable empirically, both by comparative analyses and by study-
ing the effects of environmental gradients on the experimental evolution of diversity in
microorganisms10. In sum, the theory presented here offers a new perspective on the
importance of geographical structure for the evolution of diversity by showing that spa-
tially localized interactions along environmental gradients can facilitate speciation through
frequency-dependent selection and result in patterns of geographical segregation between
the emerging species.
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Figure 4: Requirements for spatial evolutionary branching in sexual populations. Same as
Fig. 3, but for sexual populations in which assortativemating based on ecological similarity
can evolve.

Methods

Events. Individuals are assigned birth rates bi, death rates di, and movement rates
mi, i = 1, ..., n, where n is the current population size; these rates are updated as necessary
after each event. Time is continuous and generations are overlapping. Based on the total
rates B =

∑n
i=1 bi, D =

∑n
i=1 di, M =

∑n
i=1mi, and E = B + D +M , the time lapse

until the next event is drawn from an exponential probability distribution with mean
1/E; the type of event is chosen according to the probabilities B/E, D/E, andM/E. The
affected individual i is then chosen with probability bi/B, di/D, or mi/M , and the chosen
individual either gives birth to one offspring, dies, or moves, depending on the event type
occurring.
Phenotypes. In the asexual models, ecological phenotypes 0 ≤ u ≤ 1 vary contin-

uously. In the sexual models, ecological, mating and marker phenotypes are each deter-
mined by l diallelic diploid loci with additive effects and free recombination. Ecological
and marker phenotypes vary between 0 and 1. The mating character varies between −1
(disassortative mating) and +1 (assortative mating); 0 encodes random mating18,24.
Gradient. Individuals have a spatial location (x, y), with 0 ≤ x, y ≤ L. The carrying

capacity for the ecological phenotype u at spatial location (x, y) is K(u, x, y) = K0 ·
NσK (u− u0(x)), where u0(x) = a(x−

L
2
) + L

2
is the phenotype maximizing K at location

x, and 0 ≤ a ≤ 1 is the slope of the environmental gradient (Fig. 1); u0 thus varies over
space in the range [(1− a)L/2, (1+ a)L/2].
Death. The effective density experienced by an individual i with phenotype u at

location (x, y) is a weighted sum, neff(u, x, y) =
1

2πσ2s

∑
Nσc(∆u)·Nσs(d), extending over all

pairs (∆u, d) of phenotypic and spatial distances between the focal and other individuals.
The resultant logistic death rate is di = neff(u, x, y)/K(u, x, y).
Birth. In asexual populations, individuals reproduce at a fixed rate bi = b. Offspring

express the parental phenotype unless a mutation occurs at probability µa, in which case
their phenotype u′ is chosen according to Nσa(u

′ − u). For sexual populations, refs. 18,24

describe how an individual i slated for reproduction chooses a partner j according to
phenotype-based mating probabilities pij depending on its mating character and the part-
ner’s phenotypic distance in either ecological or marker character. While this does not
yet imply a cost to choosiness (the pij are normalized), there already is a cost to rarity
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when mating is assortative (individuals with uncommon phenotypes will rarely be chosen
as mating partners). In our spatial models, the location-based component qij of mating
probabilities decreases according to 1

2πσ2p
Nσp(d) with the spatial distance d between poten-

tial partners. This induces a cost to preferring locally rare phenotypes: bi = b/(1+ c/np),
where np =

∑n
j=1,j �=i pijqij is the number of suitable mating partners locally available

to individual i, and c determines the cost’s strength. Notice that assortativeness often
evolves despite this cost. (For sexual populations, only females are modeled; males are
assumed to have the same density and frequency distributions as females. Given the
probabilistic recipe for finding mates, this simplification is uncritical and seems justified
in view of otherwise even more computationally demanding sex-structured simulations.)
After recombination, the offspring genotype is subjected to allelic mutations according to
a reversal probability µr . Offspring undergo an initial movement event from the location
of their parent.
Movement. Individuals move at a fixed rate mi = m, undergoing displacements d in

the x- and y-directions drawn independently according to Nσm(d), resulting in an average
movement distance σm. Boundaries are reflective in the x-direction and periodic in the
ecologically neutral y-direction. For aiding interpretation it is convenient to consider the
expected movement distance during the average lifespan of an individual at demographic
equilibrium, σ̃m =

√
m/b · σm (where b is the birth rate).

Parameters. Unless otherwise stated: l = 10, L = 1, K0 = 500, σK = 0.3, a = 0.95,
σc = 0.9, σs = 0.19, b = 1, µa = 0.005, σa = 0.05, σp = 0.2, c = 10, µr = 0.001, m = 5,
σ̃m = 0.27. In the salient limit of large L,K0 and small µaσ

2
a the asexual model has no more

than three essential dimensionless parameters: σc/σK , σ̃m/σs, and a · σs/σK (obtained
from choosing units for time, space, and phenotype as 1/b, σs, and σK). This important
simplification allows for a complete characterization of the asexual model as shown in
Figs. 3abc. To illustrate the biological meaning of the three dimensionless parameters,
we note that if the first, σc/σK , is equal to 1, then the phenotypic distance reducing the
strength of competition by a given amount is the same as the phenotypic distance from
the capacity-maximizing phenotype reducing the carrying capacity by the same amount; if
the second, σ̃m/σs, is equal to 1, then the expected movement distance during an average
lifespan equals σs, the width of the spatial interaction kernel; and if the third, a · σs/σK ,
is equal to 1, then movement of a capacity-maximizing phenotype by σs in the x-direction
reduces its carrying capacity by 1/e.
Approximations. We also investigated approximations of the asexual individual-

based model. Although being more tractable by deterministically describing the dynamics
of a population density n(x, u), these approximations are problematic. First, such contin-
uum approximations are based on the limit of infinite local population sizes (local both
in x and u), which is even more difficult to justify biologically than the limit of infinite
global population size, widely used in population ecology. Second, a conveniently simple
reaction–diffusion approximation of this system, derived for small σm and σs, is dynami-
cally unstable. Third, these approximations ignore the implications of reproductive (and
other) pair correlations and local density fluctuations, both of which have been shown to
critically affect ecological and evolutionary dynamics30. Fourth, the deterministic approxi-
mation blurs the sharp bifurcation boundary in Fig. 3a and is also inaccurate in predicting
the boundary’s location. Fifth, extending the deterministic approximation to multilocus
genetics is not feasible without incurring further unjustified assumptions.
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