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Foreword 

In order to perform a proper, integrated assessment of potential climate change 
impacts on Egypt it was necessary to accurately identify important and impending 
issues and problems which are and will be facing the Egyptian agriculture sector into 
the next century. To this aim, two experts in the fields of l ~ ~ r o n o m ~  and 2~rrigated 
Agriculture in the Middle East were asked to travel to Egypt in order to assess the 
current state of Egyptian agriculture and pose possible questions and scenarios that 
will face Egypt in light of its current agricultural practices and management strategies. 
The paper examines two possible future scenarios for Egypt, one from a non-climate 
change perspective and the other from a climate change outlook. These scenarios are 
derived from the authors perspective of the current state of Egyptian agriculture. One 
viewpoint is that of the pessimist, where Egypt continues to practice poor agriculture 
management; the other is that of the optimist, with Egypt adopting sound management 
practices - adapting its cropping pattern and water use practices. Also addressed are 
the potential impacts of climate change on crop yields and recommendations for 
agronomic research to mitigate its potential impact. 

Professor Liszl6 Somly6dy 
Leader 
Water Resources Project 

I Dr. Cynthia Rosenzweig; Columbia University and the Goddard Institue for Space Physics 
2 Dr. Daniel Hillel; University of Massachusetts and World Bank consultant 





EGYPTIAN AGRICULTURE IN THE 21ST CENTURY 

Cynthia Rosenzweig and Daniel Hillel 

INTRODUCTION 

Egyptian agriculture is entirely based on irrigation and hence 

is utterly dependent on a tenuous balance between the supply of 

water (from the Nile, and to a lesser degree from groundwater) and 

the demand for it by crops. That balance is mainly dictated by the 

climate, inasmuch as climate determines both the supply of water by 

the Nile and the evapotranspirational demand for water imposed by 

atmosphere. The water balance is affected secondarily by the 

pattern of water use (i. e., the specific crops grown and the mode 

o P  irrigation), as well as by soil conditions and water quality 

(both of which appear to be deteriorating). 

Any attempt to assess the future of Egyptian agriculture must 

consider the complex interactions of those factors, as well as the 

inexorable growth of population (now increasing at the rate of 2.3 

percent per year) and urban encroachment (currently estimated at 

10,000 to 20,000 hectares per year). The future is thus hard to 

project even assuming the continuation of current climate 

conditions, which are subject to fluctuations but not to long-term 

change. The task is made all the more difficult by the possibility 
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of a significant warming trend expected to result from the enhanced 

greenhouse effect (IPCC, 1990; 1992). 

SCENARIOS OF THE FUTURE 

Recognizing that in the future, even more than in the present, 

the primary constraints in Egyptian agriculture will be water and 

land, we present herewith a number of alternative scenarios 

(hypothetical cases) regarding the availability, quality, and use 

of water, and regarding soil fertility, salinity, and drainage. We 

then briefly describe the present cropping systems in Egypt, 

discuss methods for projecting crop yields under climate change 

conditions, and offer definitions of some concepts critical to 

projecting the future of Egyptian agriculture. 

Scenario 1: The Future Without Climate Change 

Suppose, hypothetically, that Egypt experiences no essential 

change of climate in the coming decades. We can then compare and 

contrast two extreme visions of the future: a pessimistic !!worst- 

caseu scenario in which environmental degradation proceeds 

unchecked versus an optimistic '!best-casen scenario of wise 

management of Egypt's rich natural resources. 

Pessimistic Case: No Change in Crop Patterns or Water Use 

A continuation of current trends in Egypt will lead to an 

intensifying loss of agricultural land to waterlogging and 

salinization, as well as to urbanization. Field water application 
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efficiency values (defined as the fraction of the water applied 

that is actually used, or transpired, by the crop) in Egypt are 

typically well below 50 percent, and in many cases are below 30 

percent. Such low values imply that more than half (and often two- 

thirds) of the water applied in the field exceeds the irrigation 

requirement of the crop. 

Excess irrigation will lead to reduced crop yields below 

potential insofar as it impedes aeration, leaches nutrients, and 

induces water-table rise, salinization, and the need for expensive 

drainage. Concurrently, irrigation water quality will deteriorate, 

altogether resulting in a decrease in agricultural productivity. 

Average crop yields will diminish, notwithstanding the expectable 

improvements of varieties, fertilization, and pest control. 

Especially vulnerable to the progressive degradation of land 

and water resources are the ill-drained areas of the lower Nile 

Delta that are already subject to land subsidence, water-table 

rise, and saline-water intrusion. Combatting these processes will 

require large investments in expensive drainage, and greater 

government intervention and regulation; if investments, 

interventions, and regulations are lacking or are haphazardly 

implemented, these lands will certainly become unusable for 

agriculture. The strains to the coastal and delta system may also 

lead to clashes among competing interests, e.g., among 

agricultural, urban, and industrial sectors. 
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Optimistic Case: Improvement of Water Use Efficiency and Crop 

Management 

There is an opportunity and a challenge for Egypt to conserve 

water and reduce drainage requirements while raising crop yields in 

both the Old and New Lands (see Clarifications section). This is 

the essence of the optimistic vision of Egypt's agricultural 

future. Although yields in the fertile lands of the Nile Valley 

and Delta are already high, there is certainly room for improvement 

in water use efficiency. The potential increase in prod~~ctivity 

inherent in the improvement of irrigation in the Old Lands probably 

exceeds the potential production increase from the reclamation of 

New Lands in desert areas outside the Nile Valley and Delta. The 

latter undertaking is not to be precluded, however, and in fact 

will he enhanced by water conservation in the Old Lands. 

The experience of Israel is instructive, particularly in 

regard to the development of New Lands. In the last forty years, 

the average seasonal irrigation applied to field and orchard crops 

has been reduced by nearly 50 percent, from more than 10,000 to 

little over 5,000 cubic meters per hectare. At the same time, in 

large measure as a result of the more precise optimization of soil 

moisture and nutrients (as well as the improvement of crop 

varieties and microclimate control), average crop yields have 

approximately doubled. The irrigated crop productivity ratio 

(defined as the yield (kg) obtained per unit volume of water 

applied (m3) has tripled (Figure 1). 

The means necessary to achieve the potential improvement in 
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water use efficiency are not easy to undertake and implement. 

Needed is a strong system of rewards and penalties to create 

incentives for water conservation and the installation of modern 

irrigation technology. Water metering and water pricing must be 

instituted, water must be made available on demand or at high 

frequency (rather on a fixed schedule at infrequent intervals) , and 

credit as well as training should be offered to farmers willing to 

modernize their irrigation. In addition, efforts should be made to 

promote the preferential adoption of high-return, specialized and 

water-conserving crops instead of the presently grown water- 

profligate crops such as rice and sugarcane. Given Egypt's already 

high yields, perhaps water use efficiency values will not be 

quadrupled, but they can very probably be doubled. 

Given a willingness to modify irrigated agriculture, to 

conserve water and maintain water quality, and to substitute high- 

return specialized crops for the subsistence grain and fodder crops 

now predominating, we foresee at least a doubling of agricultural 

production within the next fifty years or so. 

Scenario 2: The Future with Climatic Warming 

Herein we assume that Egypt will experience a significant rise 

of mean temperature in the coming century. Prediction of 

hydrological changes is more uncertain and solar radiation changes 

are projected to be small (see Table 1 for seasonal temperature, 

precipitation, and solar radiation changes projected for doubled 

atmospheric C02 by three global climate models (GCMs)). If no 
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timely measures are taken to adapt Egyptian agriculture to such a 

warming, the effects may be negative and serious. Egypt appears to 

be particularly vulnerable to climate change, because of its 

dependence on the Nile River as the primary water source, its large 

traditional agricultural base, and its long coastline, already 

undergoing both intensifying development and erosion. If 

appropriate measures are taken, negative effects on these major 

resource sectors may be obviated or lessened. So, once again we 

contrast a worst-case versus a best-case scenario. 

Pessimistic Case: No Adaptation to Climate Change 

The expectable impact of climate change on the supply of water 

(i.e., on the flow of the Nile) is greatly uncertain (Strzepek et 

al., 1994). On the other hand, we may be certain that a warmer 

climate will impose a greater evaporational demand and hence will 

increase irrigation water requirements. This effect may be 

mitigated in part by the higher water use efficiency of some crops 

in a C02-enriched atmosphere (~osenzweig and Hillel, 1993). Higher 

evaporation rates will have the secondary effect of worsening the 

tendency toward soil salinization, by speeding the transport of 

damaging salts to the soil surface. 

In the traditional regime of infrequent irrigation common in 

Egypt, sensitive crops are therefore likely to suffer from 

increased moisture stress and salt stress. Yields may suffer 

additionally from the hastened maturation in a warmer climate and 

greater infestations of pests (Rosenzweig and Hillel, 1993). Heat- 
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sensitive crops that are already near the limit of their heat 

tolerance will be especially vulnerable. 

Equally serious is the potential effect of sea-level rise 

resulting from the thermal expansion of seawater and the melting of 

land-based glaciers. Even a slight rise of sea-level will 

exacerbate the already active process of coastal erosion along the 

shores of the Delta (currently 50 m per year at the head of the 

Rosetta branch of the Nile at Rashid), a process that accelerated 

after the building of the Aswan High Dam. For a 1 meter sea-level 

rise, 12 to 15 percent of the existing agricultural land in the 

Delta may be lost (Nicholls and Leatherman, 1994). Sea-level rise 

will also accelerate the intrusion of saline water into surface 

bodies of water (the lagoons and lakes of the northern Delta) as 

well as into the underlying coastal aquifer (El-Raey, pers. com; 

Sestini, 1992). The rise in the base level of drainage will 

further increase the tendency toward waterlogging and salinization 

of low-lying lands, with the consequence that significant areas 

will become unsuitable for agriculture. At the very least, the 

costs of drainage will increase. 

Coupled with the deleterious effects described in the 

pessimistic case'without climate change, global warming is likely 

to reduce agricultural productivity in Egypt yet further. Crop 

modeling simulations with GCM climate change scenarios at the high 

end of the IPCC range ('4OC) found that maize and wheat yields 

declined in the Delta by as much as 30 percent and in Middle Egypt 

by more than 50% (Figures 2 and 3) (Eid, 1994). In view of the 
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continuing increase of population, Egypt may suffer a worsening 

shortage of food and an eventual crisis. This is indeed a worst- 

case scenario. 

Optimistic Case: Improved Resource Management and Effective 

Adaptation to climate Change 

Much can be done to mitigate the potential dire consequences 

of climate change, and the earlier the task is recognized and 

undertaken - the more likely it is to succeed. The first 

imperative is to improve both the technical water application 

efficiency and the agronomic water use efficiency. This involves 

nothing less than revamping the entire system of water delivery and 

control. 

Ideally, water should be made available on demand (rather than 

on a fixed schedule), and be delivered in measured quantities in 

closed conduits subject to effective monitoring and regulation 

while avoiding seepage losses. While this will be difficult to 

achieve in the Old Lands, where traditional systems exist and 

traditional concepts die hard, it is certainly achievable from the 

outset in the New Lands. 

To facilitate adoption of water conservation, the authorities 

should provide farmers with explicit guidance regarding optimal 

crop selection, irrigation, and fertilization, and should institute 

strong incentives to avoid excessive water use (including the oft- 

suggested but seldom implemented pricing of water in increasing 

proportion to the amount used). Modern methods of irrigation based 
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on the high-frequency, low-volume application of water and 

fertilizers directly to the plants need to be adapted to the scale 

of operation and local practicalities of Egyptian farming. 

Fortunately, such systems are flexible and lend themselves readily 

to downsizing so as to accommodate the small-scale nature of most 

Egyptian farming units. Moreover, such systems can be applied 

successfully to sandy and even to gravelly desert soils (potential 

New Lands) that are not considered irrigable by the traditional 

surface-irrigation methods. 

An additional set of measures involves the careful selection 

and/or breeding of heat tolerant, salinity tolerant, water 

conserving crops; as well as controlled-environment production 

methods that minimize water use while maximizing the production of 

high-value crops (e.g., all-season vegetables and fruits, spices, 

medicinals) . 
A further set of mitigation measures involves the management 

of the low-lying lands on the northern fringe of the Delta, where 

the consequences of sea-level rise (submergence and salinization) 

are certain to wreak their greatest damage. Some of those lands 

must be retired from agriculture, and the amount of water made 

available consequently should be diverted to the irrigation of New 

Lands outside the Nile Valley and the Delta. 

The overall effect of the measures listed herewith, in light 

of the future either with and without climate change, will be to 

raise the potential and actual productivity of   gyp ti an 

agriculture. Thus, climate change may not thwart progress toward 
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the goal of providing sufficiently for the Egyptian people. A 

final caveat, however, is that much depends on whether the rate of 

population growth in Egypt, which has already begun to decline, 

continues to do so fast enough to allow agricultural productivity 

to keep pace with the countryts growing needs. 

CLARIFICATIONS 

Here we offer explication of several key concepts and 

definitions used in the text regarding the present and future 

practices of Egyptian water use and agricultural management. These 

include concepts of water use efficiency, definitions of t'Old. 

Landstt and "New Landstt (key terms in Egyptian agricultural land use 

and development), and an assessment of land vulnerability to sea- 

level rise in the Nile Delta. 

Concepts of Efficiency 

Distinctions must be made among alternative types of 

efficiency in the management of irrigation. Three efficiencies may 

be defined: field water application efficiency, system water 

application efficiency, and agronomic water use efficiency. 

Field water application efficiency (FWAE) is the fraction of 

the water applied that is consumed by the crop in transpiration in 

a given field. In practice, local FWAE values cannot attain 100 

percent, nor should that be the aim, since a certain fraction of 

the water applied must be allowed to seep away and leach the salts 

that would otherwise accumulate in the root zone. However, with 
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careful management FWAE values of 90 percent are possible, and of 

80 percent are practicable. At present, typical values of FWAE in 

Egypt are considerably below 50 percent, and in many are 

even below 30 percent. 

System water application efficiency (SWAE) is the fraction of 

the volume of water taken from the source- (generally, the river) 

that is used consumptively by crops along the entire irrigation 

district or region. In Egypt, especially, SWAE tends to be much 

greater than the local FWAE, for although it includes additional 

losses in conveyance (generally in open, unlined canals), it is 

enhanced by the repeated use in successive downstream sites of 

water drained from upstream sites. For the entire Nile Valley 

irrigation system, therefore, SWAE may be as high as 70 percent. 

However, this seemingly high value of ttefficiencyll has it.?= 

drawbacks. With each successive use, the water reused undergoes 

degradation in energy and quality; i.e., it loses elevation and 

becomes progressively salinized. Hence the entire system stands to 

gain from efforts to improve the local FWAE. 

An entirely different concept is the agronomic water use 

efficiency (AWE), defined as the economic yield obtained per unit 

volume of irrigation applied. As such, A W E  is a truer measure of 

the productivity of irrigated agriculture. It is not expressed in 

percentage terms but in weight of produce per unit volume of water- 

Because of excessive irrigation, poor drainage, salinization, and 

nonoptimal management (e.g., insufficient or inappropriate 

fertilization, or poor pest control, or poor choice of crop or porn 
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germination, etc.) , A W E  may be much below the potential 

productivity. 

616 Lands and New Lands 

In our usage, Old Lands refer to lands along the Nile Valley 

and in the Delta that are irrigated directly from the Nile or from 

groundwater fed by the Nile. By and large, these lands have been 

under irrigation for long periods of time. The predominant soils 

here are alluvial silt and clay loams. In contrast, New Lands 

refer to desert areas outside the Nile Valley, to which water must 

be conveyed over some distance from the Nile, or supplied from deep 

wells. The New Lands are distributed west of the Delta (Nubaria), 

east of the Delta (Salhia and along the western side of the Suez 

Canal), in the northern Sinai, and in the New Valleys of the, 

Western Desert. The soils here are generally sandy and calcareous, 

not nearly as naturally fertile as the alluvial soils. However, 

they are often readily drainable, though often more prone ta 

salinity. 

Degraded (waterlogged and salinized) Old Lands that need to be 

rehabilitated are not included in the New Lands category. As these 

are reclaimed through drainage and leaching, they are referred to  

as @'New-Old Lands. " 

Lands Most Vulnerable to Sea-level Rise 

Most vulnerable to sea-level rise are the low-lying lands 

along the northern strip of the Delta, where the surface elevatiam 



13 

is less than 1 meter above sea level. owing to land subsidence 

(perhaps 0.1 meter in 50 years), as well as expectable sea-level 

rise (variously estimated to total 0.2 to 0.5 meter in the same 

time period), that widening strip of land may reach 20 kilometers 

or more. Within this strip, the maintenance of agriculture will 

become progressively more difficult, and eventually much land will 

be retired from production. Urban and industrial development, too, 

will be problematic because of waterlogging, and the ecology and 

economy of the lagoons will be affected by saline water intrusion. 

Drainage to control waterlogging will become increasingly 

expensive. 

CURRENT CROPPING.SYSTEMS 

Egypt's warm mean annual temperature, high solar radiation 

receipts, fertile soils, and abundant water supplies from the Nile 

River have created a rich agricultural system that has been in 

place for approximately 5000 years. The Old Lands of the Nile 

Delta and river-fed ~ idd le  and Upper Egypt have been continuously 

farmed throughout this period. In the last twenty years, the 

Egyptian government has promoted expansion of agriculture into New 

Lands located in desert regions, and the reclamation of long-used 

areas now salinized or water-logged called New-Old Lands. 

In the Nile Delta and along its banks, agriculture is 

characterized by complex year-long cropping patterns carried out by 

traditional farmers on small units of land with complicated land- 

tenure relationships. Two-thirds of the landowners in Egypt own 
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less than 5 feddans (one feddan equals 0.4 hectare) (Table 2) 

(CAPMAS, 1993). Agriculture in the Old lands is so intensively 

managed that it may be better represented by the term "gardeningw 

rather than 

Three cropping periods are utilized per year. Winter crops 

are sown in October and November; summer crops are sown in April 

and May; and ~ i l i  (or Kharif) crops are sown in July and August. 

Perennial crops, such as sugar cane and alfalfa, are sown either in 

the spring (March) or in the autumn (October). Cotton is a 

relatively long duration summer crop and is planted in March. 

Vegetables are planted all year long, with spring and autumn 

plantings added to summer and winter plantings. In the New Lands, 

major crops are primarily fruit and oil trees, and vegetables, 

planted in larger fields. Intensive management of modern irrigation 

is needed to sustain these crops at high productive levels. 

Twenty-eight major seasonal crops may be identified in the current 

cropping system (Table 3) . 

PROJECTING CROP YIELD CHANGES 

A task at hand for climate change studies is to estimate the 

potential impacts on yield and water use for the crops listed in 

Table 3. Crop models are now available for most of the major crop 

grown in Egypt to accomplish this task (Table 4). ~ynamic process 

crop simulation models are recommended so that changes in agronomic 

processes, such as water stress, crop phenology, and crop failure, 

may be studied in detail. Crop models are also useful for testing 
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potential adaptations to climate change such as changes in planting 

dates and shifts in cultivars or crops (Rosenzweig and Parry, 

1994). 

The simulation of climate change effects on agricultural 

production in Egypt requires a coordinated effort in which data, 

computer software, and expertise from various disciplines and 

institutions are integrated. The first step is to calibrate and 

validate the models with local agronomic experimental data for a 

set of sites representative of major Egyptian agricultural regions 

(e.g., Eid, 1994). Next, simulations with observed climate provide 

a baseline. Then, the crop model simulations are run with a suite 

of climate change scenarios. Examples of crop simulations for two 

sites in Egypt are shown in Figures 2 and 3. 

CONCLUSION 

While Egypt's future is likely to be neither as dire as our 

pessimistic scenarios or as bright as our optimistic ones, it is 

clear that the country's vulnerability to climate change is acute. 

Rapid increases in population and urbanization will only exacerbate 

this vulnerability. Given the intertwined linkages of the Nile 

River, its Delta, the coastal resources, and the surrounding 

deserts, potential impacts of climate change must be addressed in 

an integrated mode by joining the disciplines of hydrology, 

agronomy, and coastal zone geography. By so doing, progress will be 

made in understanding critical environmental processes, thus 

improving the future for the Egyptian people, whatever it holds. 
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Table 1. GCM climate change scenarios for Egypt. 

GCM CLIMATE CHANGES AT SAKHA AND GIZA 

Temperature Change (OC) 

GISS GFDL UKMO 

spring 5.1 4.5 4.7 

Summer 3.2 4.4 4.1 

Autumn 4.4 4.1 4.5 

Winter 4.0 3.7 4.5 

Annual 4.2 4.2 4.4 

Precipitation Change ( % )  

GISS GFDL UKMO 

Spring -7.1 -19.2 -12.5 

Summer 350.0 0.0 -37.0 

Autumn 27.3 -20.0 1.2 

Winter 5.9 -10.0 -8.9 

Annual 55.7 -15.3 -13.8 

Solar Radiation Change (%)  -- 
GISS GFDL UKMO 

Spring -0.3 2.0 6.2 

Summer -4.2 -0.6 6.1 

Autumn -1.2 0.6 1.3 

Winter 0.0 0.8 8.7 

Annual 1.7 0.6 5.5 

GISS, Goddard Institute for Space Studies 
GFDL, Geophysical ~ lu id  ~ynamics Laboratory 
UKMO, United Kingdom Meteorological Office 



Table 2. Ownership of land, by number of feddan, and percent of 
total landowners (CAPMAS, 1993) . 

Ownership Landownezs 
( f eddan) (percent) 

less than 1 12.6 

1 feddan = 0.4 hectare 



Table 3 .  Current crops and cropping pattern i n  Egypt. 

Season Crop Season Crop 

Long Berseem Summer Maize 

Short Berseem Summer Sorghum 

Wheat Soybeans 

Barley Groundnut 

Horse-bean Sesame 

Lentils Summer Potato 

Other legumes Summer Tomato 

Flax Summer Vegetables 

Winter Onion Nile Maize 

Winter Tomato Nile Sorghum 

Winter Vegetables Nile Potato 

Seed cotton Nile Tomato 

Rice Nile Vegetables 

Citrus Suqarcane 

Long = 4-5 cuts 
Short = 2 cuts 

Nile = sown in July or August 



Table 4 .  Selected dynamic process crop growth models. 

Crop Model Name Reference 

Bar ley  

Cot ton 

Dry Bean 

Maize 

Peanut 

P o t a t o  

R ice  

Sorghum 

ALSPM (Leva1 2 )  

ALFALFA 

CERES-Barley 

GOSSYM 

COTCROP 

COTTAM 

BErnGRO 

CERES- P ze 

( unnamed ) 

CORNF 

SIUAIZ 

CORNGRO 

CORNMOD 

(unnamed) 

VT-Maize 

GAPS 

CUPID 

PNUTGRO 

(unnamed) 

RESCAP 

(unnamed) 

SUBSTOR 

CERES-Rice 

RICEMOB 

(unnamed) 

SORGF . 

CERES-Sorghum 

SORKAM 

RESCAP 

F ick  (1981) 

Dennison and Loomis (1989) 

R i t c h i e  et a l .  (1989) 

Baker e t  a l .  (1983) 

Brown e t  a l .  (1985) 

Jackson et  a l .  (1988) 

Hoogenboom e t  a l .  (1989) 

Jones  and K in i ry  (1986) ;  R i t c h i e  
e t  a l e  (1989) 

S t o c k l e  and Campbell (1985) 

S tapper  and Arkin (1980) 

Duncan (1975) 

C h i l d s  et a l .  (1977) 

Baker and Horrocks (1976) 

Morgan e t  a l .  (1980) 

Newkirk e t  a l .  (1989) 

B u t t l e r  (1989) 

Norman and Campbell (1983) 

Boote e t  a l .  (1989) 

Young e t  a l .  (1979) 

Montei th e t  a l .  (1989) 

Ng and Loomis (1984) 

Hodges e t  a l .  (1989) 

Godwin e t  a l .  (1990) 

McMennamy a ~ d  Q'Too le  (1983) 

Hor ie  (1988) 

Arkin et  a l .  (1976) 

R i t c h i e  and Alagarswamy (1989) 

Rosentha l  et a l .  (1989) 

Montei th e t  a l .  (1989) 



Table 4. Cont . 

Soybean SOYGRO 

GLYCIM 

REALSOY 

SOYMOD 

Sugar-cane CANEMOD 

Wheat CERES-Wheat 

(unnamed) 

T AMW 

(unnamed) 

(unnamed) 

S IMTAG 

General EPIC 
Mode 1 

Wilkerson et al. (1983); Jones 
et al. (1989) 

Acock et al. (1983) 

Meyer (1985) 

Curry et a1 (1975) 

Inman-Bamber (1991) 

Ritchie (1985); Godwin and Vlek 
(1985) 

Stockle and Campbell (1989) 

Maas and Arkin (1980) 

Aggarwal and Penning de Vries 
(1989) 

van Keulan and Seligman (1987) 

Stapper (1984) 

Williams et al. (1984) 



FIGURES 

Figure 1. Change in annual water application and productivity 
of irrigated crops in Israel (1948-1982) (Bielori, 
1983). 

Figure 2. Simulated maize yield under GCM 2xC02 climate change 
scenarios. 

Figure 3. Simulated wheat yield under GCM 2xC02 climate change 
scenarios. 
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Source: E. BLeloraF, I r r i g a t i o n  R e a e ~ c h  in t h e  ~ n a t i t u t e  o f  soFla  and Water 
of the  Volcanic Center - Goals and AchFeveaente. 
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