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SUMMARY

The paper presents a survey of known results and some. new
developments in the use of reference objectives -- that is, any
reasonable or desirable point in the objective space -- instead
of weighting coefficients in multiobjective optimization. The
main conclusions are as follows: '

-— Any point in the objective space -- no matter whether it is
attainable or not, ideal or not -~ can be used instead of weight-
ing coefficients to derive scalarizing functions which have
minima at Pareto points only. Moreover, entire basic theory

of multiobjective optimization -- necessary and sufficient con-
ditions of optimality and existence of Pareto-optimal solutions,
etc. —— can be developed with the help of reference objectives
instead of weighting coefficients or utility functions.

-- Reference objectives are very practical means for solving
a number of problems such as Pareto-optimality testing, scanning
the set of Pareto-optimal solutions, computer-man interactive
solving of multiobjective problems, group assessment of solu-
tions of multiobjective optimization or cooperative game prob-
lems, or solving dynamic multiobjective optimization problems.
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THE USE OF REFERENCE OBJECTIVES
IN MULTIOBJECTIVE OPTIMIZATION
-=- THEORETICAL IMPLICATIONS AND
PRACTICAL EXPERIENCE

A.P. Wierzbicki

1. INTRODUCTION

This paper is aimed at a revaluation of some basic assump-
tions in multicriteria optimization and decision-making from a
pragmatical point of view, addressing the question why the known,
highly developed methods and techniques in multicriteria analysis
are not fully operational in applications. It is assumed that
the reader is well acquainted with the state-of-the-art in multi-
criteria analysis as represented, for example, by [2,3,7,9,12]
and that he has also encountered some of the vexing problems in
the applications of this highly developed theory. The basic
question in applications of multicriteria analysis is, in fact,

only one though it may take various forms:

-- What is more valuable? - the perfection of a compromise
based on a model which is never perfect, or the time of
a top-rank decision maker? If confronted with a multi-
tude of questions "would you prefer this alternative to
the other one?", would not the decision maker simply

send the analyst back to where he belongs?

-- Does a deciélon maker think in terms of trade-offs and
weighting coefficients or is he rather concerned with
aspiration levels and values?

-- Has a decision maker consistent preferences, which under
known assumptions could be revealed in the form of a
utility function, or does he simply want to attain
certain goals?

-- 1Is it easier in applications to determine marginal rates
of substitution between various objectives, or to choose
reasonable ranges or scales for those objectives?



-- 1Is a compromise in a group of decision makers attained
through a balance of their preferences or rather by an
agreement on goals?

-~ 1Is not the term "a decision maker" an abstraction, con-
venient for the analyst? Or do we rather deal with
decision making organizations as usual, where the top-
level decisions are based on a careful and extremely
well prepared, but highly intuitive appraisal of a few

crucial indices?

Many similar questions can be stated and all these questions
have puzzled many researchers. In fact, some recent papers --
see Ackoff 1979, [1] --go as far as questioning entirely the
practical value of decision analysis and optimization. Some
authors prefer a retreat to purely heuristical procedures for
decision making to psychological, "soft-science" approaches.
"Though having much respect for careful, logical analysis of a
problem, for deep intuition and psychology, I am not entirely
convinced. I would rather address another question, which in a
sense summarizes all the above doubts:

AY

-- What is wrong with the basic tools of multicriteria

analysis? Should we not reexamine its basic axioms?

Historical reflection can help us in reaching this goal.
When, in 1896, Pareto [17] has formulated the foundations of
multicriteria optimization and used weighting coefficients to
this end, he opened an entire field of research. Weighting co-
efficients play therefore a central role in the contemporary
paradigm of multicriteria analysis -- all necessary and sufficient
conditions of multiobjective optimality, all equilibria and trade-
offs, all utility maximization is basically related to wéighting
coefficients. When the foundations of the general economic
equilibrium theory were formulated, a consumer was assumed to
maximize a utility function representing his preference ordering
of commodity bundles --what, in the equilibrium, directly corre-
sponds to Pareto weighting coefficients forming a linear approxi-
mation of the utility function. This was a most satisfactory
development of economic theory and still is a contemporary part
of its basic paradigm. It has also found confirmation in empir-
ical studies of the free market -- as far as any market is fully

free —- and resulted in further deep theoretical studies providing



for an axiomatic basis of preference orderings and utility theory

at a high mathematical level (see, e.g., Debreu 1959 [5]).

But here is a place for reflection: while a nameless agent
on a free market may be well described by his utility function,
no individual thinks in terms of preferences of commodity bundles
when buying in a supermarket. When I am going to do some shopping,
I know that I have to buy, for example, a quantity of milk, sugar,
bread, and a shirt for my son; if I have enough money, I might
also buy a toy for him and a tool for my gardening. In fact, I
am thinking in terms of goals; if they are attainable, I might
want to improve them. Moreover, my way of thinking does not
change very much when I have to make decisions as a science

manager.

However, further extensive studies [2,9,12] on decision
making with multiple objectives were related strongly to pref-
erences and utility theory. Identification methods for indi-
vidual and group preferences as well as utility functions have
been developed; statistical approaches have been considered to
take into account uncertainty and risks; and even interactive
procedures devised to involve a decision maker more directly
into decision analysis have been based on learning about his
preferences. Moreover, most of the applied studies in multi-
objective optimization and decision making are implicitly or
explicitly formulated in terms of weighting coefficients, trade-

offs and utility functions.

On the other hand, many researchers have realized the need
of an alternative approach. Savlukadze [20,21] and others consid-
ered the use of utopia points as unattainable objective values
representing some aspiration levels. Dyer [6], Kornbluth [13] and
others introduced goal programming -- the use of variable bounds
on objective values in an interactive process of multicriteria
optimization. Yet these and related works have not had the

impact they deserved because of several reasons.

First, it was not clear whether it is possible to develop
a consistent, basic theory of multiobjective optimization and

decision making based on the use of reference objectives --
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that is, any desirable aspiration levels for objectives --
rather than weighting coefficients. In other words, the neces-
sary and sufficient conditions, existence conditions, relations
to preference orderings, etc., had to be formulated in terms of
reference objectives. This question has been attached to some
of my earlier works [22,23,25]; a synthesis and further develop-
ment of relevant results is presented in the next chapter of

this paper.

Second, the use of reference objectives implies a choice of
distance or norm in objective space and this choice has been con-
sidered, erroneously, as being equivalent to the choice of
weighting coefficients. 1In order to work with reference objec-
tives one has, admittedly, to choose reasonable scales or ranges
for all criteria. But the choice of a reasonable range is in-
herent to any computation or measurement and does not necessarily
imply the choice of trade-offs. After having made a decision
based on reference objectives, the corresponding weighting co-
efficients can be a posteriori determined (see next chapter) and
examined. This is one of the links between the theory based on
reference objectives and the more classical theory, but it does

not impede the practical usefulness of reference objectives.

Third, the use of reference objectives has not been widely
tested in applications, and various problems related to consider-
ation of uncertainties, to group decision making, to interactive
procedures of decision making, etc., have not been solved yet.

Another chapter of this paper is devoted to these problems.

2. BASIC THEORY

Fundaments

Let EOCZE be a set of admissible decisions or controls or
alternatives to be evaluated. We do not specify yet the nature
of space E. Let G be the space of objective values or performance
indices or goals. We assume that G is a Hilbert space, out of
several reasons. First, some abstract properties of the Hilbert
space --mostly the properties of a projection on a cone -- sim-

plify the reasoning and proofs. Second, a Hilbert space is the



least abstract one that includes trajectories of dynamical sys-
tems or probability distributions and we would like to consider
also dynamical trajectories or probability distributions as pos-
sible goals of multiobjective optimization. Third, the Euclidean
space E" is a (finite-dimensional) Hilbert space, and we can
therefore use graphical illustrations and intuition to comment

on results.

Let a mapping Q :Eof*G be given, defining numerically the
consequences of each decision or alternative. Let Qp = Q(E0)<:G
be the set of attainable objectives. To choose between them,
suppose a partial preordering in G is given by means of a positive

cone (any closed, convex, proper cone) D5§G:
(1) 44/9, €G qq $£q, e gq,-g,€D .

A corresponding strong partial preordering in G can be defined by:

(2) q9,:9, €G , 9y <9, = g, -q edb & p\(pn-p) .

Suppose, to simplify the exposition thatwe are intérested inmini~
mizing all the objectives (losses, risks, etc.). In the Hilbert
space G, we define correspondingly a minimal element of Qq with

respect to the partial preordering (1) or a D-minimal element of
Qo

(3) g €Qy is D-minimal = QN (§-D) = ¢ .

Let us denote by 60 the set of all D-minimal points in QO' If
G = R2 and D = Rf_ = {(q1,q2) ER2 : q1 >0 ,qzzo}, then a D-minimal
point of Q is Pareto-minimal, see Figure 1. 1In fact, in finite-
dimensional cases we are mostly concerned with Pareto-minimal
points; the possibility of using other positive cones illustrates

only possible generalizations of infinite-dimensional spaces.
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a) b)

FIGURE 1. D-MINIMAI. POINTS AND SETS:
a) PARETO-MINIMAL POINTS
b) MORE GENERAI D-MINIMAL POINTS

Projections on Cones

One of the most important properties of partial preorderings

induced by a positive cone in Hilbert space is that we can give

a precise answer to the typical question: given two outcomes qq»

q, which are incomparable (that is, neither q4 §q2 nor g, X94) s

what is the part of q, that has improved with respect to q,?

The answer results from the following lemma.

Lemma 1 (Projections on Cones in a Hilbert Space -- Moreau

1962 [16]).. Given a Hilbert space G and a closed, convex cone
DCG, each element Q€G can be uniquely and orthogonally de-
composed into its projections on the cones -D and D¥ =
{g*eG:{(g*,g) 20 ¥YgeD}:

— = _ = —_ = — - _ *
(4)  (q=9+3,3€-D,3eD*,(q,3)=0) = (@=q °,F=q")
. . -D D* .
where the projections q and q are defined by:
- — * =
(5) q D . arg min g -gl ; qD = arg_min lq-qgl .
qe-D q € D*

and {+,*) denotes the scalar product, l<l denotes the norm.



The cone D* is called the dual cone; ~D and D* are called

*
mutually polar. If D = Ri, then D¥ = D = R2, and qD =

(max(O,q1),max(0,q2)) is just the vector co;posed of the posi-~
tive components of the vector g. This is interpreted in Figure 2,
where Lemma 1 is applied to the difference a, — 494 = 4 in order
to discern the part of q, that has improved when compared to q,

and the other part that is worse than dq-

The projection on a cone has several additional useful
properties of norm-minimality, Lipschitz-continuity, Fréchét-
differentiability of its square norm, etc. - see Wierzbicki and
Kurcyusz 1977 [24].

b)

a)

FIGURE 2. DETERMINATION OF THE NEGATIVE AND THE POSITIVE PART
2
OF 9 -9 VIA PROJECTION ON CONES: a) D = R+ ;

b) MORE GENERAL CASE

Ornden-Presenving Functions and Penalty Scalarization;
Suf ficient Conditions for Multicniteria Optimality

Now we approach the basic question in the use of reference
objectives in multicriteria optimization: given any aspiration
level or reference objective q €G, can we construct a scalar-
izing function s :G:><Q0-+R1 which is strictly order-preserving
in its second argument {(thus can be considered as a type of
arbitrarily chosen utility function)? Recall that s(q,q) is

strictly order-preserving in q, iff:



(6) a, < a; = s(q,9,) < s{q,q)

and that each minimal point of a strictly D-order-preserving

function is a D-minimal point (see, e.g., [5,23]1):

(7) § = arg min s(g,q) = (§-D)n Qg = ¢

q€Qq
The answer to the above gquestion is not only positive but also
vague: there are many scalarizing functions that are strictly
order-preserving. For example, choose any vector of positive
weighting coefficients -- or, more generally, Lagrange multi-
pliers A ED* = {g*€G : (g*,g)>0 quﬁ}, where D* is called the
quasi-interior of D* - and define the known linear function
s(q,q) = {A,qg~q) which in the simplest case is just the sum of
weighted objective differences i§1xi(qi.-qi). This function is
strictly order-preserving, and each of its minimal points is
D-minimal, or Pareto-minimal. But the minimal points of this
function do not depend on the information contained in g and
require the information contained in A. Therefore, we should
look for nonlinear strictly order-preserving functions that do
not require the specification of weighting coefficients X and
have minima dépendent on the reference objective g. One such
function has the following form:

(8) s(3,q) = -lg-3l + pl(g-5P°*

or to provide for differentiability

(8a) s(@,q) = -lg-aI® + ol (g- %12

where p >1 is an arbitrary scalar coefficient. These functions
are called penalty scalarizing functions. One of the basic

properties of these functions is the following:

Lemma 2 (Wierzbicki 1975, [22]).. If G is a Hilbert space,
DCG Zs a closed convex cone satisfying the condition D CD¥,
and p >1, then, for any q€G, the function s(q,q) defined by

(8) or (8a) is strictly order-preserving.
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Observe, first, that the condition DCD* is not very re-

strictive, since if D = E, then D* = D CD*; generally, the

’
condition means that the :one D should not be "too broad".
Secondly, observe that the lemma is valid for any g €G and,
therefore, generalizes and puts two known approaches into a
common frame: utopia point approach, where EQQO and Qg cqg+ D
(a point q satisfying the last requirement is called D-preceding
QO), and goal programming approach, where EQEQO. In fact, ob-
serve that if QOCE + D, then q-geDCD* for all q€Q,, and
(q-—E)D*= g -q; thus, function (8a) takes the form s(q,q) =
(p-—1)ﬂq-§H2 and we minimize the distance from point g to Qp»
see Figure 3a. If EGEQO is attainable, then there are always
points g€Q, such that g€q - D, (q—_q')D* = 0, and s(q,q) =
-Hq-—EHZ, see Figure 3b. Now, minimizing the minus norm or
maximizing the norm of the objective improvement g - g, subject

to the constraint q-ge€-D is a variant of goal-programming:

we would like to get the best point (g, in Figure 3b) we can
once the aspiration levels are satisfied. But the basic prop-
erty of the scalarizing function (8) or (8a) is that the addi-
tional constraint g -ge&-D need not be treated as a hard con-
straint; its violation is expressed by the penalty term

oll (q - )12
q are slightly violated (depending on the penalty coefficient o,

, as a soft constraint. Even if the aspiration levels

see Figure 3b) at a minimal point § of s(g,q), the point q is
D-minimal. and, finally, if neither geQ, nor Q,Cq + D, see
¥¢igure 3¢, then the known approaches could not use the informa-
tion contained in q, whereas the minimization of function (8)

and (8a) still results in a D-minimal point.

Thus, any desirable reference objective point g can be used
to determine a corresponding D-minimal point g. The latter depends
clearly not only on reference objective g, but also on the pen-
alty coefficient ¢ and the particular norm chosen (or on the
scaling of separate objectives). But this dependence has only
technical character: we do not assume that a scalarizing function
of the form (8) or (8a) represents the utility function of a
given decision maker, we rather use this scalérizing function to

approximate locally his preferences (and his utility function,
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if he actually has one) via an interactive procedure, through
asking him questions he understands well. An illustration of

such a procedure is represented in Figure 3d. The corresponding

question is: "You have asked us to attain objective levels

ai = (ql,qf,... ). The best we can do under the limitations of
- A A /\2 .

our model is q; = (ql,qi,... ) . Do you accept this, or would

you like to modify your desired levels to some §i+1
(§1+1,§f+1,...) ? In the latter case, please specify new de-
sired levels." Obviously, this procedure can have many variants:
the analyst can respond with more than one Qi to a given Ei by
varying the coefficient p, or the norm, or even by applying
specially designed variations Aai in order to present the de-
cision maker with more than one alternative. But the basic idea
remains the same: to ask the decision maker about aspiration

levels and not about preferences.

a)
21
I
- |7
q A
) N
2
D-preceeding points utopia point q
D
} 200407 —
1 : 1
c) q
A
q2
Fr777
D—preceeding points
0 .
Yy f .
1 1
q

FIGURE 3. MINIMAL POINTS OF THE PENALTY SCALARIZING FUNCTION (8):
a) WHEN q IS D-PRECEDING Q.; b) WHEN q IS ATTAINABLE;
c) WHEN g IS NEITHER D-PRECEDING NOR ATTAINABLE;
d) AN INTERACTIVE PROCEDURE
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Necessary Conditions, Relation to Wedighting Coefficients, and
Existence of Multicrniteria Optimal Solutions

The scalarizing function (8) or (8a) has other useful prop-
erties. The most important one is that of order-approximation:
the level set S; = {q€G: s(q,q) <0} approximates the set of
improvement g - D from above and arbitrarily - closely for suf-
ficiently large p - see Figure 4a. More precisely, the following

lemma holds:

Lemma 3 (Wierzbicki 1977, [23]). Denote

D, = {q€G : dist(q,D) =lq > I <elql}. For arbitrarily
small €, choose p >€_2. Then the level set S0 of the
function (8) or (8a) satisfies the following relation:

(9) q - Dcs, = {geG :s(q,q) <0}cqg - D, .

From this lemma, the following necessary condition of D-minimal-

ity can be easily deduced:

Lemma 4 (General Necessary Condition of Multicriteria
Optimality). If G Zs a Hilbert space with a positive
cone DCD¥, and if q s a De—minimal point of Qq = Q(E)
(that is, if (§-D_) NQy = ¢ with DB, = D \(Dg N-D) and
D, defined as in Lemma 3), then

(10) min s(q,q) = 0
quo

where s(§,q) is defined as in (8) or (8a) with p >max(1,€_2)

and the minimum in (10) is attained at q = §. Moreover,

if QGEQO 18 attainable but not D -minimal, then min s (§,q)<0.

If @€Q, is not attainable, then min s(§,q) >0. T

qEQO
In contrast to the known necessary conditions of multi-

criteria optimality via weighting coefficients A, Lemma 4 is
easily applicable and valid even for nonconvex sets Q0 of
attainable objectives. Lemma 4, in fact, corresponds to sup-
porting the set Q0 at § by the set S0 contained in the cone

q - Da' while the known necessary conditions of multicriteria



_.12_

optimality correspond to supporting the set Q, at g by a

hyperplane, cf. Figure 4a,b.

a) b)
4 A
2 q2 o
9\
&
. S
q - _D'e N
So. 7
q-D]
’ A
2 §-D 7 q
D v - r D
_&1///1// Z So a DG 1 » _&//1/ 2224
q

FIGURE 4. NECESSARY CONDITIONS OF MULTICRITERIA OPTIMALITY:
a) GENERAL CASE, WITH THE USE OF PENALTY SCALARIZING FUNCTIONS;
b) CONVEX CASE, WITH THE USE OF WEIGHTING COEFFICIENTS A.

It is also interesting to note that, if the reference ob-

jective g is not D-minimal, the corresponding minimal point §

of the scalarizing function (8a) defines uniquely a related

vector \ of weighting coefficients:

Lemma & (A Posteriori Determination of Weighting Co-
efficients, [25]). Suppose the assumptions of Lemma 2
are satisfied and let § be a minimal point of the
function (8a), § # q. Suppose Q0 is locally convex in
a neighborhood of q. Then:

R - + p( -
(11) f-9°4d q-4q

- ~ ~ — *
Ig - § + p(g-°%1

18 a (normalized) vector of weighting coefficients at q,
that is, the set éO = {gEG: (’):,q—(;‘[)_<_0} supports locally
the set Qy at q.

Another result of rather theoretical importance, related

to the notion of reference objectives, is the following simple

lemma:
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Lemma 6 (Sufficient Conditions for the Existence of
Multicriteria Optimal Solutions). Suppose there exists
a reference objective q such that the set (E-—D)HQ0

18 nonempty and (weakly) compact. Then there exist

D-minimal points § of the set Q-

This lemma has been given in [22] under the additional
assumption that the cone D* has nonempty quasi-interior
D* = {q* €G : {q*¥,q) >0 ¥q €D}, and was proved via consider-
ation of the linear form (X,q), rcD*. But we can omit the
additional assumption, since the function (8a) is weakly lower
semicontinuous, see [24], and thus has a minimum in (g - D) ﬂQo
under the assumptions of the lémma. This minimum is a D-mini-

mal point of the set (g -D) ﬂQO, hence also of the set Qq-

Practical Fonms of Penalty Scalarizing Functions

If G is finite~dimensional with the Euclidean norm, G = En,

and D = E®

1 then the penalty scalarizing function (8a) takes

the form:
- n . n . .

— —i - 2

(12) s(@,q) = - ] (ql--ql)2 +p ) (max (0,q* -g"))
i=1 i=1

which might be convenient for nonlinear depéndence of ql on the
decision variables erEo, but is not convenient for multicriteria
linear programming problems. However, penalty scalarizing func-
tions based on other norms in R", that is, the sum of absolute
values norm:

- ERNE o i_—i
(13) s(q:q) = - J |[a-q7| +p ] max (0,qg° -q)

i=1 i=1

or the maximum (Chebychev) norm

(14) s(q,q) = - max|q -g | +pmax (0,q" -q")

i i
possess almost all properties of the function (12): if p > 1,
then the function (13) is strictly order-preserving in q for

any g, and the function (14) is order-preserving (hence her
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minimal points are Pareto-minimal except in some degenerate
cases). These functiops are also order-approximating, see [25].
If the dependence of ql on decision variables xEEEO is linear,
then the minimization of functions (13), (14) can be reduced
after typical transformations into linear programming problems.
For practical applications of reference objectives in multi-
criteria linear programming, a combination of functions (14) and

(15) might be also useful, see [14].

Another practical form of penalty scalarizing functions is
related to a typical procedure in goal programming, where one of
the objectives is minimized, subject to vériable attainable
levels of aspiration for other objectives treated as constraints.
The use of penalty scalarizing functions results in a more uni-
versal procedure of this type, since the assumed levels for other
objectives do not necessarily have to be attainable when using
penalty terms. To represent this method, it is necessary to split
the space of objectives in a Cartesian product of the space R1
of values of the first objective, and a space G, for other obijec-
tives, G = R1><Gr, with D = RJ_xDr and q = (q1,qr). Then the

corresponding penalty scalarizing function is:
— — — D*
(15) s(@a) = a - a + pl(a, g,

or, if differentiability is important:

%

(15a) s(@@ = q - ?;'1_+ 50l (qr-Eir)Drll2

If the space G_ is Hilbert and DrSZD;, then the functions
(15), (15a) are order-preserving for any p > 0 and the function
(15) is order-approximating (to obtain the order approximation
property in the function (15a), one had to square also q1 - 51).
The reference level 61 matters actually only in the order-approx-
imation property since it does not influence the minimum of the
functions (15), (15a). The reference objective a;*EGr is not
necessarily attainable and p can be small, provided it is posi-
tive; nevertheless, each minimal point of the functions (15),

(15a) is a D-minimal point.
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n-1 n-1

If Gr = R and D. =R, then any norm can be used in
(15), (15a). The functions:
n - . . %
— 1 - —-1i,,2
(16) s(g,q) = a9 - q1 + ol 1 ¢max (0,97 -q)) )
i=2
- 1 -1 th i =iy, 2
(16a) s(q,9) =q -q + % ] (max(0,q° -g))
: i=2

1

n . .
(17) s(@,@) =q -4q +p ) max (0,g -3)

i=2
are strictly order-preserving, whereas (16) and (17) are also

order—-approximating, and the function

(18) s(q,q) = q1 - 51 + p max max (O,qi-?ii)

i>2
is order-preserving and order-approximating, see [25]. All
these functions actually express a simple approach to goal pro-
gramming: treat the objectives qz,...,qn as constraints, given
aspiration levels 52,...,§n, and introduce penalty components
for them. But new, compared to typical goal programming, is
the fact that Ez,...,an need not be attainable and that the
penalty coefficient p need not be increased to infinity, nor
other iterations on penalty terms need to be performed: even
if some or all of the constraints q2 5_62,...,qn < " are
violated, all minimal points of the functions (16), (16a), (17),

(18) are Pareto-minimal.

Convengence of an Interactive Procedunre o4 Multicriteria Optimization
with Variable Goals

Consider now a practical interactive procedure for choosing
a Pareto-minimal point, where the actual decisions are made by
a decision maker and the mathematical model of a given problem
and the optimization techniques serve only as a tool to help
him to recognize quickly a relevant part of the Pareto-minimal

set.
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At the beginning, the decision maker is presented with all
the information about the model of the problem he desires -- for
example, with the minimal levels of objective functions when
minimized separately, and with the corresponding decisions.
After that, he is asked to specify the vector of the desired
levels for all objective functions, aO = (aé,..,,ES)GERn
(only the finite-dimensional case is considered here, although
generalizations to the infinite-dimensional case are possible

and even have applicational value).

For each desired objective vector Ei, the mathematical model

and the optimization technique respond with:

1) The Pareto-minimal attainable objective vector q;, ob-
tained through a minimization of the function (12), and the
corresponding decision variable levels (any other penalty scalar-
izing function from the previous paragraph can also be used,

depending on the particular nature of the model);

2) n other Pareto-minimal attainable objective vectors
Qi 5 j=1,...,n, obtained through minimization of the function
7
(12) with perturbed reference points:

(19) qi,j = qi-+adiej; ej = (0,...1j,...0); di==Hqi-qu; ac(0;1]
where di is the distance between the desired objective vector

g; and the attainable one g;, e; is the jth unit basis vector,

J
and a is a scalar coefficient. Only the case o = 1 is consid-
ered in the sequel, which corresponds to the widest-spread

additional information for the decision maker and is also more

Tdifficult to obtain convergence of the procedure.

To obtain any additional information at the beginning of
the procedure, the decision maker can change EO several times
(without counting it as iterations, i is kept equal 0) and
analyze the responses. Once he is ready for "real bargaining",
he specifies a desired objective vector 61, i =1, and the
iteration count begins. Now his modifications of the desired
vector to §i+1 from §i are limited by the responses Qi . cor-

]
responding to q. . through two requirements:
g i,]
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(20)

Il ~3

— _ n . _
-q;€8; = Ag€ER" : Aq =

n
. aj)m20, L n;<t
3 i=1

95 41 39,57

(21) lg;,q —q;ll 2Bd; =BlIQ; -q;l ;  BE(0;1]

where B is a prespecified parameter. The requirement (21) states
that the decision maker has to move at least some part of the
distance to the Pareto set, the requirement (20) limits his di-

rections of movement to the simplex spanned by Ei and Qi 5
14
Actually, the decision maker should not be bothered by techni-

calities (20), (21); it is sufficient that he is informed about

them and, after he has specified any ﬁi a complementary auto-

+17

matic procedure projects Ei - Ei on §; to satisfy (20) and

+1
adjusts its length to satisfy (21), if necessary.

The above procedure and limitations of the adjustments of

the desirable objective vector Ei are depicted in Figure 5.

2 4

;o M 9,1

‘?ad7 >

q1

FIGURE 5. ILLUSTRATION OF THE INTERACTIVE PROCEDURE OF MULTIOBJECTIVE
OPTIMIZATION. SHADED REGION DENOTES THE SET OF ADMISSIBLE Eé.
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It is clear from Figure 5 that, once the decision maker has
specified 51, he can usually obtain from this point only a limited
part of the Pareto-minimal set QO' This is both weakness and
strength of the procedure. The weakness can be compensated by
the initial, exploratory part of the procedure, where the deci-
sion maker can gather as much information as he wishes. The
strength consists precisely of the limitation of the procedure
to the region of interest for the decision maker. Observe that

this region would decrease if « were smaller than 1.

The conditions of the convergence for this procedure are

given by the following lemma:

Lemma 7 {(Convergence of the Interactive Multicriteria

Optimization Procedure). Suppose the set of attainable

objectives Q0 18 convex, G = En, D = Ei (the norm used in

scalarization is Euclidean). Then, for any o,B € (0;11],

the procedure described above with requirements (19),(20),

(21) 18 convergent, that is, }im d, = 0.

isoo
The proof of this new though not very astonishing result

1s given in the Apvendix. The lemma can probably be proved for
other than Euclidean norms in R". Observe that if the require-

ment (20) were substituted by a simpler one, for example,

q.
i+1
would result in divergence. But these moves would also be un-

— n . - .
- q; eR+, one could devise moves for the decision maker which

reasonable from his point of view and, counting on his reason-
ability, we can simplify the requirements (20), (21), or even
simply drop them asking the decision maker to move generally in
the direction of the Pareto-set.

In the lemma we did not assume any preference-ordering or
underlying utility function describing the behavior of the de-
cision maker, and we did not conclude anything about the final
point of the procedure, §_ = %ig éi' although the existence of
such a limit is easy to prove. From a purely mathematical point
of view, it would be interesting to examine under which assump-
tions on the decision maker's behavior we can prove that g

actually maximizes (or minimizes) his utility function. From a
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pragmatical point of view, such an investigation would only
confuse the issue since the underlying motivation of the inter-
active procedure is to find a compromise directly in terms of
goals, not in terms of utility functions. Also, we do not expect
the decision maker playing with the interactive procedure until

i +»o; experiments show that he very soon accepts some ai’ putting

q.
i+1
can also be informed on the trade-offs implied by his decision:

= &i and thus stopping the procedure. At this point, he

weighting coefficients ii related to the point &i can be computed

from equation (11).

Observe also that the interactive procedure does not depend
on the scaling or ranges for separate objective functions. Nat-
urally, the scaling must be reasonable in order not to impede
computational efficiency nor exposition of the results to the
decision maker, and it is advisable to use scales that correspond
to approximately equal ranges of attainable values of objective
functions. But this requirement of a reasonable scaling does not
imply an a priori specification of a vector of weighting coeffi-
cients, and the results are relatively invariant to the scaling
transformation (after changing scales, both &i and a posteriori

determined ii-"-if not normalized -- change proportionally).

3. APPLICATION AREAS OF REFERENCE OBJECTIVES AND PENALTY
SCALARIZATION

Multiobjective Optimization Problems

"In typical multiobjective optimization, penalty scalariza-
tion can be used not only in interactive procedures of decision
making but also in analyzing possible outcomes. For example, a
typical question: is a given decision Pareto-efficient, or not? -
can be conveniently resolved by applying Lemma 4, while an ap-
plication of weighting coefficients results in rather complicated

procedures.

One must bear in mind however, that a decision that is not
Pareto-efficient in the optimization model might be Pareto-
efficient for the decision maker, for various reasons. First,

the decision maker might consider other criteria -- for example,
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of aesthetical or political nature -- than those expressed by the
model. Second, the decision maker might have intuitively a more
precise assessment of various constraints, etc., only inadequa-
tely expressed by the model. Consequently, by looking at the
optimization model only as a tool to aid the decision maker, it
is possible to analyze these interesting questions further, and
reference objectives are certainly better suited than weighting
coefficients for such an analysis. However, much has to be done

yet in this direction of research.

Another convenient application of penalty scalarizing func-
tions in the analysis of multicriteria problems is the scanning
of the Pareto set, naturally under the assumption that the num-
ber of criteria is not too large. Scalarizing functions of the
type (16),(16a),(17),(18) can be used for this purpose. An
example of application to control engineering, see Wierzbicki
1978 [25], shows that the use of weighting coefficients for that
purpose can lead to disastrous results, while reference objec-

tives give reliable answers. This is depicted in Figure 6.

qzﬁ

FIGURE 6. REFERENCE OBJECTIVES VERSUS WEIGHTING COEFFICIENTS
WHEN SCANNING AN IRREGULARLY SHAPED PARETO -~ SET
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Reference Trajectondies

In many applications of dynamic modelling, scalar-valued
objective functions do not precisely express the goals of a
decision maker or a modeller. Of primary interest is often a
function of time, a trajectory of the model. For example, an
economist might want to compare the trajectories of inflation
rates and of GNP while not being ready to average them and to
use scalar indices. Thus, a function of time is an equally
reasonable goal in decistion making as a scalar index, and ana-
lysts avoided the use of functions as goals only because of the
lack of appropriate technigues. However, the possibility of using
reference objectives in a Hilbert space provides for an appro-
priate technique. This is explained in Figure 7 where, as a
goal, an economist specified a desirable GNP and a reasonable
inflation rate as functions of time. A model after an optimiza-
tion, say, in respect to taxes, responds by attainable (and, in
a sense, Pareto-optimal) functions of GNP and inflation, and the
economist can modify then his reference functions in order to .
influence the outcomes.

4 UL

GNP | IR « 4@

Desirable

Model Response Inflation Rate

42(0)

Reasonable

FIGURE 7. FUNCTIONS OF TIME OR TRAJECTORIES AS REFERENCE OBJECTIVES
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If the dynamic model is time-continuous, as depicted in
Figure 7, then we might choose, for example, the L2[0;T] space
for analysis, which results in the following expression for the

scalarizing function (8a):

T
(22) s@a) = -[ (@) -3 N2+ g2 -T2 Dat
0
T
rolt@ ) -ad e + @ - e Hat
0
where (-)+ = max(0,+) and the change to (&1(t)--q1(t))+ instead

of (q1(t)--§1(t))+ results from the fact that we maximize GNP
and penalize the GNP-trajectory if it stays below the desirable
level. We can also use more general spaces and other norms --
for example, the Chebychev norm -- if we take into account the

results presented in Wierzbicki 1977, {23].

But most practical dynamic models are time-discrete and an
economist might be interested only in q1(t) and qz(t) for t =
0,17,...,T. Then the problem is in fact finite-dimensional and
we do not need the Hilbert space formulation; all forms of
penalty scalarizing functions described in previous paragraphs
are applicable in such a case. On the other hand, the number
of objectives q'(0),q (1) s.urq (T), G2(0),q%(1),...,q°(T) might
be quite large and it is convenient to think then in terms of

discrete-time trajectories, not in terms of separate objectives.

The idea of reference trajectories has been applied and
found useful in a study on the Finnish forestry industrial
sector (Kallio and Lewandowski, 1979, [14]).

Compromises in Cooperative Games

There are many approaches to finding Pareto-equilibria or
compromises in cooperative games. Motivated by the observation
that, in reality, a group of decision makers prefers, first, to
discuss, bargain and agree about goals, an agreement-aiding
procedure based on reference points in the space of objectives

has been devised.
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This procedure is explained in Figure 8 in the case of two
decision makers and two objective functions. RKach deeiminn makey

has its "own" objective function, the levels of which however do
2

not only depend on his decisions: q1 = q1(x1,x2) and q° = q2(x1,x2
It is also assumed that this is a case of full information and
each decision maker fully understands the objective and possible
actions of the other one. Moreover, the choice of model decisions
x1,x2 is delegated to an optimization procedure based on the math-
ematical model; the decision makers only state and try to agree
on reference objective levels. Each of them is asked thus to
specify his reference point aiO = (alo,aio), i = 1,2, which ex-
.presses his judgment about his own aspiration level and that of
his partner; later, these reference points are modified in an
iterative procedure to aij until either %ig a1j = %}g EZj or the

negotiations break down displaying an adversary situation.

Vi redes ’
q1

FIGURE 8. AN AGREEMENT-AIDING PROCEDURE BASED ON REFERENCE OBJECTIVES
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Suppose, the first decision maker with a dominant objec-
tive to minimize q1, has specified 510 = (610,530) naturally
allotting a relatively lower level for dq¢97 his "own" objective
than for afo, the one of his partner. Correspondingly, the

point 620 = (E;O,ago) specified by the second decision maker

-1 —1 - -
has dy9 > 999 and qgo < q?o, because he is interested in

minimizing his "own" objective q

Since we can assume, at the beginning, nothing else than
the equity of each decision maker's requirements, the agreement-
aiding procedure simply determines EO as the middle-point of
the segment [q10;q20] (or of a corresponding simplex in case
of more decision makers) and responds through a minimization
of one of the penalty scalarizing functions from previous para-
graphs by a Pareto point qo corresponding to EO as well as by
Pareto points §10,§20 corresponding to dq9+950" This way both
decision makers have a proposition of compromise and information
about attainable levels of objectives. The distances d10 =

HQO..§1OH and d,, = qu-azoﬂ are also determined.

Now both decision makers have to make concessions in terms
of two scalars a1,a2€E[3;1], where B € (0;1] is a prespecified
minimal concession level. The modified reference points 511,

521 are determined by

(23) Q1’j+1 = q1,j + “1(qj"q1,j)‘ q2,j+1 = q2,j + 0‘Z(Qj 'qzlj)-

Thus, both decision makers have to move in the direction of aj’
at least B times the distance dij' In Figure 8, it was assumed
that the first decision maker made only the minimal concession

a1 = B, while the second decided to make a bigger one, GZ > B.
are determined, the procedure is repeated.

When 51 and 62
14 1

Jj+1 J+1

The mechanism of this procedure very strongly ufges both
decision makers to reach an agreement. Therefore, At some stage
of the procedure, one or both of the decision makers can decide
if he should break the negotiations, that is, not making any

further concessions. Two further possibilities can be envisaged:
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-- either both decision makers agree on entering negoti-
ations with modified reference points qj,:

-- or an additional influence-revealing procedure 1is
called for. This procedure can consist for example
of a one-sided game of the dissident decision maker
"against the computer", where the dissident decision
maker defines his decisions, say X4, ON his own while
the optimization procedure tries to represent the
other (or others) decision maker and choose X, to
obtain the best bargain. Various rules concerning
the sequence of decision making and the use of out-
comes in restarting negotiations can be introduced

here.

Much has to be done yet in investigating various aspects
of the agreement-aiding procedure. An application to the study
of the Finnish forestry industrial sector has given interesting

results -- see Kallio aﬁd Lewandowski, 1979. [14].

Othen Applications and Possible Extensions

There are several pragmatical problems in applications of
optimizing techniques that call for the use of reference points.
Many single-objective optimization models represent problems in
which other objectives occur but are deemed not very important-
until the single-objective solution is presented to the decision
maker and found unacceptable for various reasons. A classical
example of such a situation is the application of dynamic linear
programming problems for economic planning. Since the solutions
of linear programming problems correspond to vertices of a simplex,
some crucial decision variables often tend to take on-off char-
acter; exaggerating, the "optimal"” solution can be often inter-
preted as "first invest all GNP for two years and do not consume,
then do not invest for three years and consume all GNP." Clearly,
such an "optimal" solution would be never accepted by a decision-
maker; the tendency of linear programming models to produce such
solutions is one of the reasons of a wide-spread critique of using
optmization models at all. But there is also the explanation

that linear models, however convenient in handling, describe
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real problems inaccurately. The remedy is not necessarily to
introduce nonlinearities into the model; sometimes even a linear
model can be adequate if constructed accurately to express actual

goals and constraints.

An introduction of other optimization criteria being ac-
counted for by weighting coefficients does not solve the problem;
the weighted objective function remains linear and tends again
to produce on-off solutions. Therefore, a widely used approach
is to introduce additional constraints, limiting the set of
admissible solutions. This is in fact equivalent to goal pro-
gramming: aspiration levels for other criteria are determined
and used as constraints, for example, by demanding that invest-
ments and consumption each year should not be less than given
levels. But this approach has all drawbacks of goal programming:
the aspiration levels must be attainable in order not to make
the set of feasible solutions empty, and it is difficult there-
fore to devise interactive procedures for decision makers setting

aspiration levels.

The natural remedy is then to use penalty-scalarizing
approach. If any reference trajectory is determined -- for
example, concluded from consumption and investments from the
past -~- then the problem might be formulated as optimizing the
original objective criterion plus a penalty term for not attain-
ing the reference trajectory. This is equivalent to the use of
a scalarizing function of the type (16), (i6a), (17) or (18);
as mentioned before, problems with objective functions of the
type (17), (18) can be reformulated back to linear programming

problems.

Another possible extension of the use of the reference
objective approach is the problem of risk evaluation. The typ-
ical utility function approach to risk evaluation often fails
in applications; see, for example, the paper of Tversky in Bell,
Keeney and Raiffa 1977, [2]. One of the reasons is that de-
cision makers seem to intuitively evaluate entire probability
distributions instead of just expected utility. But then entire
probability distributions can be used as goals either in Hilbert

. . . n . . .
space, if continuous, or in R, if discretized.
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Consider a problem of standard determination where a given
set of standards -- for example, on air pollution -- determines
conditional probabilities of hazards -- for example, of mortality
and morbidity. Each standard level corresponds also to some
costs, and a procedure of standard determination is supposed to
compare costs to hazards. Many economic, social and moral
issues are involved in the comparison, making it extremely dif-
ficult. But the point is that there are alternatives to the
classical utility approach of the problem. One of the alterna-
tives is a direct evaluation of probability distributions and
costs by determining a desirable shape of the distribution, an
acceptable level of the cost, using them as reference objectives
in a penalty scalarization, and changing the reference objectives

to an interactive procedure.

4. CONCLUSIONS

The motivation of this paper is that of a toolmaker.
Systems analysis and decision science can be compared to tools
that are applicable to complex problems of modern society.
Tools must be checked against real problems. If there are
complaints about the efficiency of tools, then the toolmaker
should reexamine and redesign them. When he is doing so and
finds a new principle of tool construction he should be satis-
fied -- but not to the extent of forgetting that he is construc-
ting tools which must again be checked in practice and further

developed.

While the basic principles of the use of reference objec-
tives and penalty scalarization are rather well developed, as
represented in the first chapter of the paper, there are still
many tasks to which they can be applied.
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APPENDIX: PROOF OF LEMMA 7

The nature of the lemma calls for a geometrical proof.
Consider the intersection of the positive orthant Ei, where the
origin of the space is shifted to q; with the ball of radius di'
The ball is then tangent to the convex set QO and to the Pareto
set 60 -- cf. Figure 5.

Choose such j that the angle between the vectors ql j —ql

and qi--qi is maximal and consider the two-dimensional linear

manifold spanned by these vectors (Figure 9).

FIGURE 9. A GEOMETRICAL CONSTRUCTION FOR THE PROOF

In this plane, construct a line P separating the cut of the
ball with the origin at q and radius d; from the cut of the
convex set Q0 Project the p01nt q i,5 on this line to obtain

d., .. Construct points q and a.. on the vectors .. -g. and
1.3 ij 1] ij 1
qij--qi in such a way that their distance from q- is also d..
Now, since Q0 is convex, the angle between the vectors
qu-q and q q is greater than the angle between q J-—q and

q; ~ 9y whlch in turn was assumed to be the greatest for all j.
Moreover, qij - qij is parallel to qi - ai’ qij - qi is orthogonal



to them, and aij - q; and q. -
Therefore, the length of

are both of the length di'
is smaller than di and the

angle between qi - q; an

j

3 kS
ﬁi - q; smaller than T/4 radians.
Thus, the distance between §

and &i can be estimated by

(a1) 19,5 - a0 2 v2-V/Z g

which is the length of a secant for a circle, corresponding to

the angle %,

Now, consider the point EijB distant Bdi from Ei on the

vector qij - Ei. Again, through purely geometrical considera-

tion the distance from aije to &i can be estimated by:
~ A R V2 - 1

(a2) llqijB q;ll < Y1 +8 - V28 d; < (1 -——2———3) a, .

However, if the decision maker chooses his next Ei+1 ac-

cording to the rules (20), (21), then the distance di+1

"qi+1 - qi+1" clearly satisfies the relations (see Figure 9):

(A3) di+1 < Hqi-qi+1ﬂﬁi max(llqij -qi"’“qijs'_qi")
< max (1§, . -q.1,09.., -g;1) < 4, max (/2—/5 (1 =721 B))
- qij a3t ijg i — i ! 2 )

Now, for each Be (0;1] we can choose a scalar

/T
YE[1" 22 18;%_g]c(0;1) such that

(AlU4) d < yd

i+1 — i

Therefore, %}g d; = 0. It was assumed in the proof that aiélQO.
However, the proof for the case qi€EQ0 can be easily supplemented
and is, moreover, unnecessary since the decision maker has ex-
ploratory moves and will always find EO§ZQO resulting i}n Ei QQO
for all i until the iterations stop.




