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Abstract 

The proposed strategies for deleting scenarios are based on postoptimality analysis of 
the optimal value function with respect to probabilities of the included scenarios. These 
strategies can be used to reduce the size of the large scenario based problems or of the 
problems constructed in the course of specific numerical procedures, such as stochastic 
decomposition or scenario aggregation. 

A convex nonsmooth optimization problem is replaced by a sequence of line search 
problems along recursively updated rays. Convergence of the method is proved and ap- 
plications indicated. 

Key words: Two-stage stochastic programs with random recourse, postoptimality, sen- 
sitivity, deleting scenarios. 



In this paper, we shall deal with stochastic linear programs with relatively complete 
random recourse in their generic form 

(1) minimize Ep { c ( w ) ~ x  + Q(x, w)} 

on the set X = {x E R;'IAx = b} 

with the recourse costs Q(x, w)  defined for a given x and w as the optimal value of the 
auxiliary second stage program 

(2) minimize q ( ~ ) ~ ~  

subject to y E R T  that satisfy W(w)y + T(w)x = h(w) 

We assume that the set X is nonempty, the probability distribution P of random coeffi- 
cients in ( I ) ,  (2) is carried by a known nonempty closed set Cl, that the matrices W ( w )  are 
almost surely of a fixed row rank and that the expectation of the recourse function Q(x, w) 
is finite for all x E X. Without any loss of generality, we can use nonrandom coefficients 
c in (1). 

The numerical techniques designed for solving (I) ,  (2) (see e. g. [7] and [ll]) are mostly 
based on a discrete approximation of the distribution P carried by a finite number of 
scenarios. Such distribution can be obtained as an approximation of the true probability 
distribution, can be generated in the course of the numerical procedure or by a limited 
sample information, can be based on a preliminary analysis of the problem or may reflect an 
ad hoc belief or a subjective opinion of an expert. In this context, two types of procedures 
can be distinguished: deterministic algorithms that are based on a large and in principle 
fixed set of scenarios, such as large scale linear programming techniques (cf. [15] and 
references ibid) or the progressive hedging algorithm [13], [16] and stochastic algorithms 
where a proper sampling procedure and generation of new scenarios becomes a part of 
the algorithm, e.g., stochastic quasigradient methods [6] or the stochastic decomposition 
algorithm [l 11 . 

Consider now the scenario based form of ( I ) ,  (2) that coresponds to a given discrete 
probability distribution P concentrated in a finite number of fixed atoms, called scenarios 

S wl , . . . , w s  with prescribed positive probabilities pl , . . . , ps,  Cs=l p, = 1. The coefficients 
of (2) generated by scenario ws are denoted q, , W, , T,, h, . Accordingly, the program (I) ,  
(2) takes on the form of the following large linear program 

minimize 



subject to 

(4) 

where w, = [q,, T,, W,, h,], s = 1 , .  . . , S are scenarios or atoms at which the probability 
distribution P is concentrated and p, > 0, s = 1 , .  . . , S are their probabilities, C,  p, = 1. 

The optimal value cp and the set X* of optimal solutions of (3), (4) are optimal with  
respect t o  the  choice of scenarios and of their  probabilities. For stability and postoptimality 
of the optimal value cp and of the set of optimal solutions X* of the large scale linear 
program (3),(4) with respect to changes in probabilities p, one can rely on the well known 
results for linear programs with linearly perturbed objective function, see e.g. [14]: inter 
alia, the optimal value function p is concave, piecewise linear on its domain with the 
mapping X* upper semicontinuous. Continuity of the optimal solution with respect to 
probabilities of the considered scenarios was discussed also in [12] as an application of more 
general stability results, a postoptimality procedure is suggested in [16] in the context of the 
progressive hedging algorithm, resistance of the output with respect to additional scenarios 
is treated in [4]. The obtained results suggest that even for deterministic algorithms for 
( I ) ,  (2), specific techniques related to the special structure of stochastic programs with 
recourse can help to get postoptimality results valid under more general circumstances 
than those based solely on linear programming techniques. 

In this paper we shall concentrate on designing strategies for deleting scenarios. The 
starting point will be the postoptimality analysis with respect to probabilities of the in- 
cluded scenarios. This fact seem to suggest that rules for deleting scenarios ex post, when 
the problem has been already solved, are not of a great interest. To see a reason for de- 
signing these rules consider a large multiperiod two-stage stochastic program for financial 
planning described in [lo], [17] in which, due to its size, just a few short term interest rate 
scenarios can be used. Additional simulation studies [lo] and bounds based on the con- 
tamination technique (cf. [3], [4]) can be used to provide information about the behavior 
of the obtained solution for other out-of-sample scenarios. In case of a bad performance 
one should include additional scenarios into the model and repeat the computations. Be- 
fore doing it, one is definitely interested in deleting "noninfluential" scenarios to decrease 
the computational effort. Another reason appears in connection with algorithms based on 
solution of sequences of growing scenario based optimization problems, e.g., stochastic de- 
composition [9]: exploitation of properly designed rules for deleting scenarios in individual 
iterations of the algorithm will save the computing time and may contribute essentially to 
numerical tractability of the underlying problem; see Section 5 for the first ideas. 

In this Section, we shall explain the essence of the suggested scheme for deleting scenarios 
for the case of a deterministic algorithm based on solution of the large scale linear program 



(3), (4) for a priori chosen scenarios. Notice, that in this case, randomness of all coefficients 
of the second-stage problem (2) is allowed. Assume thus that the program (3), (4) has ben 
solved for the given set of scenarios w l ,  . . . , us  E R with probabilities pf > OVi, xi pf = 1. 

Influence of delet ing scenar io  us can be evidently formulated as a special problem of 
stability or postoptimality w.r. t. the probabilities pf under condition that p,* is changed 
to 0. The already mentioned continuity properties [12], [14] suggest to choose the new 
probabilities fii ,  i = 1,. . . , S as the projection of p f ,  i = 1 , .  . . , S on the facet of the simplex 

Ps = { p  E R ~ I  ~ s = ~  pi = 1) that corresponds to the requirement p, = 0. Accordingly, 
we get t h e  first red i s t r ibu t ion  ru le  

1 
(5) 

* - 
f i i = ~ i  + S - l  pz for i # s and fi, = 0 

and the minimal distance (given the choice of us) equals p:fi&). 
Hence, the first heuristic rule for deleting scenarios: Dele te  t h e  scenar io  whose  probabili ty 

i s  m i n i m a l .  However, this simple rule does not help in the case of eqiprobable scenarios 
and even for unequal probabilities, it should be supported by an additional analysis. 

Assume that the set X * (p*) of optimal solutions of (3), (4) for p = p* is nonempty and 
bounded; then the directional derivative of the optimal value function cp at p*  exists in an 
arbitrary direction [8] and equals 

S 
min {zLl fii [CTX + Q(x, ~ i ) ]  - z . P: [cTx + Q(x7 will  

x € X * ( p * )  a= 1 

If, in addition, the optimal solution x* = x(p*) is unique, we have 

Inspection of formula (7) leads to the following straightforward conclusions: 

(i) Deleting scenario w, can cause both local increase and local decrease of the optimal 
value and the criterion based on the sign of the marginal value cpl(p*; p - p*) 
depends on the initial probabilities p* only via the corresponding optimal solution 
x* = x(p*). 

(ii) Concavity of cp implies that deleting scenario w, for which cpl(p*; p-p*) 5 0 causes 
decrease of the optimal value whereas deleting scenario w, for which cpl(p*; p - 
p*)  > 0 can lead both to t h e  increase a n d  t o  t h e  decrease of the optimal value; the 
reason is that deleting scenario w, corresponds to the step of the length 1 in the 
direction of p - p* with p given by (5). 

(iii) The locally "least influential scenario" w, is characterized not only by a small 
probability p, but also by the the minimal possible absolute value of the difference 



between the average recourse costs Q(x*,wi) for i # s and the recourse costs 

Q(x*, us). 
(iv) To identify the locally least influential scenario means to select such scenario w, 

for which 

Deleting scenario w, according to (8) implies that the value f (x(p*),  p )  is not very 
sensitive to small changes in p described by p = p* + X(p - p*) with p defined according 
to (5), i. e., that f (x(p*),  p* + X(p - p*)) = ~ ( p * )  for X small enough. In the terms of the 
optimal value function, (7) means that the function v attains its maximum on the straight 
line p* + X(p - p*) at the point p*, so that its function values for X > 0 including that 
for p (i. e., for deleted scenario w, according to (7) and its probability mass redistributed 
according to (5)) are not greater than ~ ( p * ) .  

T h e  heuristic procedure for deleting one scenario based on the above observations 
consists of selection scenario w, according to (8) and of redistribution of its probability p, 
according to (5) . If there is no scenario for which (8) holds true with a sufficient precision 
one considers scenarios for which 

and selects the one for which t h e  product  

is minimal. For this choice of scenario to be deleted and for its probability mass redis- 
tributed according to (5), the optimal value function decreases at p* in the direction p - p* 
so that deleting this scenario means ~ ( p )  < ~ ( p * ) .  

The last conclusion can be easily modified for the case of m u l t i p l e  o p t i m a l  s o l u t i o n s  of 
the initial program: Whenewer inequality 

holds true for an optimal solution x E X* (p*) and for a scenario w,, then deleting w, and 
redistribution of its probability p, according to (5) leads to decrease of the optimal value. 

The above ideas can be extended to the case of de le t ing  m o r e  t h a n  o n e  scenar io :  Assume, 
for instance, that a subset of I{ scenarios, say, w,,, k = 1,. . . , K should be kept and the 
remaining D = S - I{ scenarios should be deleted. Let the total probability mass of the 

S deleted scenarios be p: = Ck=K+l psk. According to the minimum L2 distance criterion, 
we get probabilities 

1 
6 ,  , + p  = , , I  and p ,=O otherwise 



Under assumption of unique optimal solution x* of the initial program for p = p*, the 
directional derivative 

Again, it is possible to write decision rules similar to (9), (10). In general, however, it is 
not that easy to identify in advance the scenarios whose deleting leads to zero value of (7'). 

R e m a r k s  a n d  general izat ions .  

(1) First of all notice that exploitation of direct pos top t imal i t y  t echn iques  for  l inear  
program (3), ( 4 )  with respect to coefficients p, in the objective function means 
to check if the optimality conditions hold true for p with the same optimal ba- 
sis, or equivalently, to check the dual feasibility of the dual variables obtained 
for the original program under changed p. Robust behavior with optimal value 
differentiable with respect to p occurs when there is a unique optimal solution 
x*, y: , s = 1, . . . , S for the initial vector of probabilities p*. In this case, our 
formula (7) holds true again. Notice, however, that an additional assumption of 
u n i q u e  optimal second stage decisions for all scenarios is needed to get it and that 
such approach would be hardly applicable for stochastic algorithms. 

(2) C o n c e r n i n g  t h e  suggested m e t h o d  for  dele t ing scenar ios ,  instead of L2, another 
norm can be used to redistribute the probability mass of the deleted scenarios. 
For instance, L1 norm criterion for one deleted scenario leads to multiple solutions 
p and (5) describes one of them. 

(3) For equal probabilities p, = 1/S Vs, the rule ( 5 )  gives equal probabilities for 
scenarios of the reduced problem and (8) means to delete the scenario for which 
cTx* + Q(x* , W ,  ) equals approximately the optimal value p(p* ); for details see 
Section 2. 

(4) Another rule can be used for redistribution, for instance, to keep proportionality 
of the remaining probabilities or to get the directional derivative equal to 0; see 
Section 3. 

(5) The required precision in (8) will depend on the type of the numerical technique 
used to solve the two-stage stochastic program. I guess that setting a nonzero 
level of discrepancy in (8) as well as the intuitive use of local arguments for global 
conclusions will be acceptable, namely, in connection with numerical techniques 
that in principle allow for return of deleted scenarios; an example is the stochastic 
decomposition algorithm [9], see Section 5. 

(6) In a straightforward way, a similar approach can be designed for general scenario 
based expected u t i l i t y  problems that leave the second stage hidden, cf, [lo], [17] or 

PI - 
(7) The redistribution rule (5) can be extended to m u l t i s t a g e  s tochas t i c  programs;  

however, it is not yet clear how to design a rule for deleting scenarios in this case. 
A technique for elimination of inessential scenarios for multistage stochastic pro- 
grams was suggested in [I] and applied in [2]. It is based on optimal Lagrange 
multipliers, interpreted as marginal EVPI, that are associated with the nonantic- 
ipativity constraints and the rule is to delete scenarios for which the value of the 



multiplier is low. An extension of the approach developed in this paper to the 
multistage problems and its comparison with EVPI based reduction of [I.], [2] will 
be a subject of subsequent studies. 

In the sequel we shall detail some of these problems and extensions. 

Assume now that the probabilities of scenarios are equal to 1/S for all scenarios. Then 
the redistribution formulas (5), (5') give probabilities 1/(S - 1) and 1/K to all kept sce- 
narios in the case of one deleted scenario and D = S - K deleted scenarios, respectively. 

The corresponding minimal distances are JT and a. 
If there is a unique optimal solution x* of the initial problem for probabilities p; = 

1/S, s = 1, . . . , S the directional derivative of the optimal value function for deleting 
D = S - K scenarios wSi ,  i = Ii: + 1 , .  . . , S equals 

hence, the rule for deleting scenarios 

In this special case, it is possible to design a simple procedure for detecting scenarios 
whose elimination is locally inessential: 

If 

S delete scenario w,. Indeed, (13) is equivalent to Q(x*,w,) = $ xi=, Q(x*,w;), i.e., to (12) 
for D = 1. 

If the reduction according the previous rule is not possible, use pairwise comparisons: 
For all pairs of scenarios w;, w j ,  i, j = 1,. . . , S compute averages 

Qi j  = 112 [Q(x* , w i )  + Q(x* wj)] 

If 

(14) 

delete scenarios w; and wj. 



Again, (14) can be written as 

i.e., (12) for deleting two scenarios, w;, w j .  
Theoretically, one can compute in this way average recourse costs for sets of more 

than two scenarios, compare them with the average recourse costs for the complete set 
of S scenarios and to decide on deleting these scenarios if the difference is negligible. 
For reasons of numerical efficiency, however, this possibility is evidently limited to sets of 
deleted scenarios of a small cardinality. 

If there are multiple optimal solutions of the initial problem the requirement of ~ ' ( p * ;  p- 
p*) = 0 suggests to delete the scenario us for which 

max [cTx + Q(x, us)] p(p*) 
x€X*(p*)  

Accordingly, one eliminates such scenario whose worst performance over the set of orig- 
inal optimal solutions equals approximately the original optimal value cp(p*). Of course, 
it is a question how to detect such scenario. Once more, deleting scenario w, for which 

holds true for an optimal solution x E X*(p*) means decreasing the optimal value; compare 
with (9'). 

The previous rules for deleting scenarios have initiated from stability results according 
to which one should try to fix new probabilities p as close as possible to the original ones. 
Imagine now another situation: As a result of a sampling strategy or of another rule, a set 
of D scenarios to be deleted has been already fixed. The problem is how to redistribute 
their original probability mass p: to the kept IC = S - D scenarios taking into account the 
goal: to keep the value of the objective function at the original optimal solution unchanged 
as much as possible. 

Inspired by the previous results we assume that the probability mass p: of the deleted 
scenarios wsi ,  i = K + 1,. . . , S is added to the probabilities p,*;, i = 1 , .  . . , I< of the remain- 
ing scenarios so that the new probabilities of the kept scenarios become 

fisi = p:, + X i ,  i = 1 , .  . . , IC with 0 < hi 5 1 - p:, Vi, C ,  hi = p: 

and fisi = 0 for deleted scenarios. Our goal is to fix A; to get 



It is an easy task with multiple solutions unless the average recourse costs of the deleted 
scenarios are extremal in the sense that 

1 
- xS pfQ(x*, wsi )  @ conv {Q(x*, wSi) ,  i = 1 , .  . . , I<} p,* i=lr"+l 

in which case, there is no redistribution of the required properties. Otherwise, it is sufficient 
to find two scenarios, say, wl, wu among the kept scenarios such that 

and to put 

X i = O  for i # l , u  

The best choice of wl, wu (in the sense of the minimal distance between p* and p) is to 
reach symmetry, i.e., X I  X u .  

4. DELETING SCENARIOS IN THE PROGRESSIVE HEDGING ALGORITHM 

We shall apply now the explained ideas for designing a criterion for deleting scenarios for 
the progressive hedging algorithm. The postoptimality procedure suggested in [16] allows 
for changing the probabilities p: but it keeps all of them positive. 

In the progressive hedging algorithm one uses individual scenario solutions to get an av- 
eraged solution that hedges against all possible scenarios. The original objective functions 
f (x, w,) for individual scenarios are augmented by additional terms that are updated in 
the course of computations: 

f "(x, us) := f (x, us) + W ~ - ~ ( W , ) ~ X  + p/211x - i u - l  l 2  

The algorithm for the simplest variant of the method as described in [16] consists of the 
following steps: 

Step 0. Initialization: wO(ws) = 0, x0 = 0, f '(x, w,) = OVs, p > 0, v = 1. 
Step 1. For s = 1 , .  . . , S get xU(w,) E argmin{fV(x,ws)lx E Xs}. 
Step 2. Calculate the averaged solution x u  = Cs p;xu(ws), update 

wu(ws) = w"-'(w,) + p[xu(ws) - i"] 

so that in all iterations 

and return to the Step 1 with v = v + 1. 



The optimality criteria for the problem solved by this algorithm for probabilities p* 
with optimal solution x*(ws) = x* Vs and with final weights w*(ws) imply (cf. [16]): 

(iii) C p:w*(wS) = 0 
s 

Deleting scenario w, means again postoptimality with respect to a change in the vector 
of probabilities p* that results in 6, = 0. Redistribution according to (5) together with 
requirement that condition (iii) remains valid results into the following rule: 

Delete the scenario ws for which 

If this is possible, the optimality conditions (i)-(iii) hold true and optimality of the 
obtained solution x* is retained. Notice that for equal probabilities the rule (16) reduces 
to 

(16') w*(ws) = 0 
A natural question is: Could we benefit from a similar rule for deleting scenarios also in 

the course of the algorithmic solution, i.e., not only at its termination? Indeed, this seems 
to be possible at least in the considered class of scenario based stochastic linear programs 
with recourse for which 

f (x, w,) = cTx + Q(x, us) 

with Q(x, w )  defined according to (2) and with Xs = X Vs. This conclusion is supported 
by the convergence results (cf. [13], [16]) and by the obvious fact that any scenario solution, 
say, xV(ws) is admissible for other scenario subproblems and that it is also implementable 
from the point of view of the original problem based on all scenarios w;, i = 1, . . . , S .  

We suggest to delete scenario w, according to the rule 

S in the instant when 0' := CiZl pz IlxU(wi) - jLV 1 1 2  is small enough, i.e., in vicinity of the 
sought optimal implementable solution. The next step is to redistribute the probability ps 
according to (5) and to restart the algorithm with 

keeping the multipliers wV(wi) for i # s unchanged. 
The averages x U S k  obtained in the continuation of the algorithm will converge to the 

optimal solution of the problem based on the scenarios wi, i = 1, . . . , S, i # s ,  this solution 
will be admissible for the sth scenario problem and thanks to the mentioned convergence 
properties, it will make a good suboptimal solution of the original problem based on all 
scenarios w;, i = 1 , .  . . , S .  

There are many open questions, namely the level of 0" that will be sufficient for the 
convergence based conclusions. 



5. DELETING SCENARIOS IN THE STOCHASTIC DECOMPOSITION ALGORITHM 

This Section summarizes the first observations concerning applicability of the main 
ideas for deleting scenarios for the stochastic decomposition algorithm that are based on 
discussions with J. Higle and S. Sen. 

For the stochastic decomposition algorithm, it is necessary to assume fixed recourse and 
fixed recourse costs. We shall limit our discussion here to random right-hand sides, but this 
limitation can be apparently removed. The additional assumptions introduced in [9] are 
compactness of the set of the first-stage solutions X, of the support 52 of the distribution 
P of random right-hand sides w and of the set II of feasible solutions of the dual to the 
second-stage program. It means that there is a finite set V of vertices of II such that 

All of these sets are assumed to be nonempty and the recourse costs Q(x, w ) > 0 Vx, w. 
The simplified version of the algorithm (without incubement and stoping rules) consists 

of repeated solution of the second stage subproblems for the already obtained iterate x k  
of the optimal solution and for a new sample point wk to get the recourse costs 

and of the master problems 

c T x +  max [a: + x  
xEX t = l ,  ..., k 

It can be summarized as follows: 
Step 0. Initialization. Get x1 E arg minxex {cTx + Q(x, EU)) 
Step 1. Randomly generate wr; according to probability distribution P and indepen- 

dently on the previously generated scenarios. 
Step 2. Evaluate Q(xk,wk), add the corresponding optimal vertex ?rk of IT to the set 

v k - - 1  of the vertices recorded in the previous iterations; put Vk = vk-' U 

Step 3. Construct coefficients of the new cut: Get 
I r k } .  

?r: E arg max ?rT(wt - T x k )  
a € V k  

and put 

Update the cuts constructed in the preceding iteration: 

Step 4. Solve the kth master problem to obtain xkS1. Repeat from Step 1 with k t k+1. 



In the course of this algorithm, the last updates of the coefficients a: and P: V t ,  the 
set of vertices V k  and all sample values wt have to be stored. Following the previous 
arguments we suggest to delete in the  k t h  i terat ion the  scenario w, for which 

The coefficients P: obtained in Step 3 do not depend on the sample values wi so that the 
new cut will not be changed when deleting w, according to (18). The set of vertices V k  and 
the former cuts are kept and updated according t<o Step 3 and in the extended version of 
the algorithm, the cut connected with the current incubement will be updated regardless 
the deleted sample point w,. The rule can be extended to deleting more than one scenario 
in the given iteration similar to (14): Delete the pair of scenarios w;, w j  for which 

and so on. 
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