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Abstract 

A general class of iterative methods for saddle point seeking is developed. The direc- 
t ions used are subgradients evaluated at perturbed points. Convergence of t he met hods 
is proved and alternative strategies for implementation are discussed. The procedure 
suggests scalable algorithms for solving large-scale linear programs via saddle points. For 
illustration, some encouraging tests with the standard Lagrangian of linear programs from 
the Netl ib  library are reported. 
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Perturbation Met hods for Saddle 
Point Computation 

Markku Kallio and Andrxej Ruszcxyriski 

1. Introduction 
Let L : Rn x Rm -+ R be a finite convex-concave function and let X c Rn and Y c Rm 
be closed convex sets. The objective of this paper is to develop a class of methods for 
finding a saddle point of L over X x Y, i.e., a point ( i ,  ij) E X x Y such that 

L(2, y) I L(i , i j )  I L(x, ij), Vx E X, Vy E Y. (1.1) 

This is one of fundamental problems of convex programming and game theory (for a 
thorough treatment of the theory of saddle functions see Rockafellar [13]). There were 
many attempts to develop saddle point seeking procedures; the simplest algorithm (see, 
e.g., Arrow, Hurwicz and Uzawa [I]) has the form 

where Lx(xk,  yk)  and L, (xk,  yk) are some subgradients of L at  (xk, yk)  with respect to x 
and y, and [.Ix and [.Iy denote orthogonal projections on X and Y, respectively. Such 
methods are convergent only under special conditions (like strict convexity-concavity) and 
with special stepsizes for primal and dual updates: -rk -+ 0, CEO -rk = oc (cf. Nemirovski 
and Yudin [ll]). 

One possibility to overcome these difficulties is the use of the proximal point method 
introduced by Martinet [lo] and further developed by Rockafellar [14]. Its idea is to replace 
(1.1) by a sequence of regularized saddle-point problems. A variation of this approach 
is the alternating direction method of Gabay (51 (see the recent analysis of Eckstein and 
Bertsekas [3]). 

The main purpose of this paper is to develop a class of iterative methods for (1.1) which 
do not have saddle-point subproblems. The key idea, which unifies earlier works of ours 
[6, 7, 151, is to calculate the directions to be used at  (xk, y k )  a t  perturbed points (xk,  Tk)  
and (tk, yk) ,  with appropriately generated tk and We shall develop this concept in 
Section 2. In Section 3 strong convergence of the resulting methods to a saddle point of L 
is proved. In Section 4 some examples of applications are discussed. Finally, a numerical 
illustration is given to solve linear programs via saddle points of the standard Lagrangian. 

The scalar product and the corresponding norm are denoted (., .) and I (  1 1 .  We use 
dxL(x, y) and d, L(x, y) to  denote the subdifferentials of L(x, y) with respect to x and y. 
Elements of these subdifferentials (subgradients) will be denoted by L,(x, y) and L,(x, y). 
The set of all subsets of X is denoted 2X. 



2. The method 

The methods that will be developed here are characterized by perturbation mappings 
( : X x Y -t 2X and 7 : X x Y -+ 2'. We shall impose on them the following conditions. 

( A l )  The sets ((x, y) and ~ ( x ,  y) are bounded on bounded subsets of X x Y. 

(A2) For every (x, y) E X x Y, if there is a sequence {(xk, yk)} C X x Y such that 

(xk, yk) + (x, y )  and L(xk, 77k) - L(Jk, yk) -t 0 for some rlk E 7(xk, yk) and Jk E 
J(xk, yk) ,  then (x, y) is a saddle point of L on X x Y . 

In particular, these conditions are satisfied when the mappings ( and 7 are bounded, have 
closed graphs and L(x, q(x, y)) - L(((x, y), y ) = 0 only at saddle points (x, y). In section 
4 we discuss examples of mappings ( and 7 that satisfy this condition. 

Let us now describe in detail a method for finding a saddle point of L. 

Initialization. Choose xO E X, yo E Y and y E (0,2). Set k = 0. 

k k  Perturbation. Find perturbed points rlk E 7(xk, yk) and tk E ((5 , y ). 

Stopping test. Define the gap Ek = L(xk, rlk) - L(Jk, yk). If Ek = 0, then stop. 

Direction finding. Find subgradients Lx(xk, ?7k) and LY(tk ,  yk) and define 

where C$ and C$ are closed convex cones containing the cones of feasible directions 
k k  for x and y, respectively, at (x , y ). 

Update. Define 

where the stepsize 

Increase k by one and go to Perturbation. 

As in [7 ] ,  for practical definitions of the directions, the cones Cx and Cy may be 
employed to take efficiently into account simple bounds (and polyhedral constraints) on 
vectors x and y, but we can always set Cx = Rn and Cy = Rm. 



3. Convergence 

Theorem 1. Assume that a saddle point of L on X x Y exists. If the perturbation 
k k W  mappings satisfy conditions (All-(A2) then the method generates a sequence {(x , y ) jkzO 

convergent to a saddle point of L on X x Y. 

Proof. Let (x*, y*) be a saddle point of L on X x Y. We define 

Our proof, basically, uses the general line of argument developed for iterative methods 
based on abstract FejCr mappings (see Eremin and Astafiev [4]). We shall prove that our 
algorithmic mapping decreases the distance Wk whenever (xk,  yk) is not a solution. 

First of all, let us note that (A2) implies that the method can stop only at  a saddle 
point. Therefore one can assume from now on that the sequence (xk, yk) is infinite. 

Since the projection on X is non-expansive, 

11xkt1 - x*1I2 < llxk + rkd: - x*1I2 
= ) (xk  - x*/I2 + 2rk(d:,xk - x*) + ~ ; ) ) d 3 ( 1 ~ .  (3-2) 

Since x* - xk E C$ 
k k  (Lx(x , r )  ) + d:, x* - xk) ) 0. 

By convexity, 
k k  (Lx(xk, vk), xk - x*) 2 L(x , r )  - ~ ( x * ,  vk). 

Employing the above inequalities in (3.2) yields 

Likewise, by obvious symmetry, one obtains 

IIYkf1  - Y*1I2 5 l lYk - Y*1I2 + 2% [ L ( P , Y ~ )  - L ( E ~ ,  y*)] + ~; l ld : \ \~ .  

Adding the last two inequalities one concludes that 

The saddle point conditions imply that L(x*, r)k) ) L ( [ ~ ,  y *). Therefore (3.3) implies: 

Substituting (2.1) one gets 

Thus the sequence {Wk} is non-increasing and 

E,2 lim - - - 0. 
k-rm JJdkl12 

Since Wk is bounded, the sequence {(xk, yk)} has an accumulation point (2, ij). By (Al) ,  
{dk} is bounded and, by (3.6), limk,, Ek = 0. Therefore, by (A2), (2,ij) is a saddle 
point of L and one can use it instead of (x*, y*) in (3.1). Then, from (3.5) one concludes 
that the distance to (i, ij) is non-increasing. Consequently, (2, ij) is the only accumulation 

k k  point of the sequence {(x , y )}. 



4. Examples of perturbation 

There are many ways of specifying perturbations which satisfy ( A l )  and (A2). 

Example 1: Gradient steps 

If L has Lipschitz continuous gradients, we can define the perturbations via gradient steps 

((x, y)  = [x - aVzL(x, Y)lx (4.1) 

77(x, Y )  = [Y + aV,L(x, Y ) l y ,  (4.2) 

with a E (0, l / X ) ,  where X is the Lipschitz constant of the gradients of L. Such a rule is 
also employed in [6, 91. 

Example 2: Gap maximization 

If the feasible sets X and Y are compact, we can define 

This method can be then interpreted as a subgradient method [4] for minimizing the 
function 

Example 3: Proximal mappings 

An alternative way, which does not require compactness, is to define the perturbations 
employing regularization: 

where p > 0. This case is analysed in detail in [15], together with potential applications 
to decomposition methods in convex programming. Obviously, alternative regularizations 
may be employed. 

Verification of ( A l )  and (A2) in each of these examples is easy and will therefore be 
omitted. 



5.  An application to linear programming 

For a computational illustration, consider the standard linear programming problem 121 : 

min {cTx I AxAb) 
1<x<u 

where A E RmXn,  b E Rm,  x, c, I, u E Rn,  and A refers to equations or inequalities. Define 
the Lagrangian function 

L(x, y) = cTx + yT(b - Ax) (5.2) 

where y E R" is the vector of dual multipliers. Let X = {x E Rn I l 5 x < u )  and let 
Y c R" account for the sign constraints for the dual vector y. It  is well known, that 
saddle points of L correspond to  the optimal solutions of (5.1). 

For implementing the method of Section 2, we employ (4.1) and (4.2) with o = 1. For 
the update step, we define cones C i  and C; by simple bounds (I  and u for the primal 
variables and sign constraints for the dual variables), which are active at (xk, yk) .  

An experimental computer code Saddle was developed by means of revising an earlier 
code reported in 181. To begin the first iteration, we set primal and dual variables to zero 
and project onto the sets X and Y. The iterations end when the gap Ek relative to  the 
absolute value of the objective function value is smaller than an optimality tolerance 4 
(we use 4 = 

It is important to note, that both primal and dual variables can be processed in 
parallel. Simulations of parallel runs were performed in a HP9000/720 serial computer. 
Denoting by t, the serial run time obtained with Saddle and assuming one processor for 
each column and row, a measure of the parallel run time is given by t, = t,/(n + m). As 
communication time and the impact of an uneven distribution of tasks among processors 
is omitted, such parallel times should be regarded as (rather optimistic) potential run 
times in a massively parallel computer. 

Problem 
Serial Parallel Relative 

Rows Columns Iterations Time Time Error 

stocfor3 
80bau3b 
stocfor2 
degen3 
sctap3 
pilot 

Table 1: Number or rows and columns for Netlib test problems, number of iterations, 
serial and parallel run time (sec), and relative error in the objective function. 

The six problems from the Netlib library 1121 reported in [7] are also chosen for il- 
lustration here. Dimensions of these problems are given in Table l. Iteration counts, 



serial and parallel run times, and relative errors in the optimal objective function value 
are given in Table 1 as well. 
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