
LP-DIT Data Interchange Tool for
Linear Programming Problems
(version 1.20)

Makowski, M.

IIASA Working Paper

WP-94-036

June 1994

Makowski M (1994). LP­DIT Data Interchange Tool for Linear Programming Problems (version 1.20). IIASA Working
Paper. IIASA, Laxenburg, Austria: WP­94­036 Copyright © 1994 by the author(s). http://pure.iiasa.ac.at/id/eprint/4173/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other
organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on
servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

Working Paper
LP-DIT

Data Interchange Tool
for Linear Programming Problems

(version 1.20)

Marek Makowski

WP-94-36
June 1994

rslllASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

.Dm. Telephone: +43 2236 71521 o Telex: 079 137 iiasa a Telefax: +43 2236 71313

LP-DIT
Data Interchange Tool

for Linear Programming Problems
(version 1.20)

Marek Makowski

WP-94-36
June 1994

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member
Organizations.

I p p B I I ASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria
3 L A.
.Dm I. Telephone: +43 2236 71521 Telex: 079 137 iiasa a Telefax: +43 2236 71313

Foreword

Many model-based Decision Support Systems (DSS) require formulation, solution, analy-
sis and modification of mathematical programming problems. Each of these activities use
corresponding pieces of software and each of these software pieces uses internal (private)
data structures that are different. Data structures are quite often different also for solvers
that use a same method for solving a given type of a mathematical programming problem.
Therefore, in order to couple those software, an efficient way of data interchange is needed
that allows for efficient access to data without restricting actual implementation of the
internal data structure. Hence, to find a commonly accepted way of data interchange is
an important issue for practical applications of Operations Research tools developed by
teams specialized in different fields.

In order to spread the scope of potential applications and to increase the ability to
meet specific needs of users, in particular in various IIASA projects, there is a need to
modularize the architecture of Decision Support Systems. A modular DSS consists of
a collection of tools rather than one closed system, thus allowing the user to carry out
various and problem-specific analyses. Modularity also eases software reusability, which
is one of the key factors in any major software development project.

This Working Paper documents the LP-DIT, which is a prototype implementation
of a tool for LP data interchange between modules (such as a problem generator, solver,
software supporting interactive multicriteria analysis) that form a DSS. LP-DIT has
already been applied to several applications at IIASA. LP-DIT is implemented in three
LP solvers and one MIP solver which are available free of charge for non-commercial
applications.

Abstract

The MPS format (and its various extensions) is the de facto standard for handling data of
an LP problem. The MPS format is widely used despite of its well known disadvantages,
simply because there is no other widely agreed way of handling LP problem data and
solution. However, for any real-life application when a sequence of modified LP problems
is solved, preparing data (and their modifications) using the MPS format is both inefficient
and cumbersome. Therefore the need for an efficient alternative is widely recognized. It
is hardly possible to propose an alternative that could be comnlonly accepted unless the
alternative is efficient and easy to incorporate into existing software. Therefore instead
of considering another format of data, one should rather agree on a set of data structures
and functions that can be used in a way similar to usage of standard libraries. Restricting
a specification to the data structures and functions makes it possible to hide internal data
structures and implementations of functions.

L P - D I T is an attempt to contribute to the creation of such an alternative. L P - D I T
serves two purposes: First, to propose a data structure and declarations of functions
that can easily provide efficient data processing commonly needed for interchange of LP
problem data between different software modules. Second, to provide a public domain
tool (fairly easy to implement and efficient to use) which allows for LP problem data
interchange. In other words, LP-DIT provides an alternative for using the MPS format
to access and modification of LP problem data. Additionally, LP-DIT provides efficient
and flexible functions for a full definition (which includes information contained both in
the NIPS format and in a specification files) of an LP problem, its modifications and
solutions.

The current version of L P - D I T is the result of several applications made for different
problems (i.e. using different problem generators and LP solvers). However, it is still a
prototype and therefore, criticism and suggestions will be appreciated.

Contents

1 Introduction 1

2 Assumptions 3
. 2.1 Functional assumption 3

. 2.2 Implementation assumption 4

3 User's guide 5
. 3.1 General information 5

. 3.2 Commonly used parameters and data structures 5
. 3.3 Problem definition 6

. 3.3.1 Library functions 6
. 3.3.2 Data structures 7

. 3.3.3 User input functions 9
. 3.3.4 User output functions 10

. 3.3.5 Handling other data 10
. 3.4 Solution 11

. 3.4.1 Library function 11

. 3.4.2 Data structures 11
. 3.4.3 User input function 12

. 3.4.4 User output functions 12
. 3.5 Problem modification 12

. 3.5.1 Library functions 12
. 3.5.2 Data structures 13

. 3.5.3 User supplied functions 13
. 3.6 User customizable functions 13

4 Utilities 14

5 Availability of software 14

6 Conclusion 14

Acknowledgments 15

References 15

vii

LP-DIT
Data Interchange Tool

for Linear Programming Problems
(version 1.20)

Marek Makowski

1 Introduction
Many model-based research and applications require formulation, solution, analysis and
modification of mathematical programming problems. This is especially important for
model-based Decision Support Systems (DSS), where a sequence of related problems is
generated, solved and analyzed. One can distinguish the following groups of related
modeling activities, underlying methodologies and software:

Problem generation: Generation of an initial (core) formulation of a mathematical
programming problem. Usually generation of a real-life problem requires processing
of large amounts of data and logical relations, and it results in a core formulation of
an MP (Mathematical Programming) problem that serves as a base for the model
analysis.

Problem solving: Solution of the resulting MP problem requires a robust and efficient
solver. It is quite often desirable, especially for large scale problems, to have a
possibility of trying different solvers. Also for testing solvers, different problems (or
even instances of modified problems) are usually helpful.

Problem analysis and modification: Analysis of a solution and generation of an-
other, usually closely related MP problem. Usually a series of modifications of
the core model (e.g. by changing a goal function and/or selected constraints) serves
for the model analysis. This software module is usually either well integrated with
the problem generator, or it is a stand-alone tool for problem modification, or it is
used for generation and interactive modification of a series of multi-criteria problems
(cf e.g. [Mak94]).

In order to spread the scope of potential applications and to increase the ability to meet
specific needs of users, there is a need to modularize the architecture of Decision Support
Systems. A modular DSS consists of a collection of tools rather than one closed system,
thus allowing both efficient problem-specific analyses and efficient development and main-
tenance of the needed software. Therefore, we can consider the modules of software that
correspond to the above listed groups of research and modeling activities.

These modules are complex pieces of software (which also typically have modular
structure) that are usually developed by different research teams. Each module processes
large amounts of "private" data, but the amounts of data that have to be exchanged be-
tween modules are quite often also large. Internal (private) data structures are different,

M. Makowski - 2 - LP-DIT ver. 1.20

quite often also for solvers that use a same method for solving a given type of a math-
ematical programming problem. In order to couple those modules, an efficient way of
data interchange is needed for providing efficient access to data without restricting actual
implementation of the internal data structure. Finding a commonly accepted way of data
interchange is an important issue for practical applications of Operations Research tools
developed by teams specialized in different fields.

In many situations, a reasonable approach to provide decision support is to use an in-
tegrated modeling environment (e.g. AMPL [FGK93], GAMS [BKM88]). Each integrated
modeling environment uses a (usually proprietary or not documented) binary format for
efficient handling of data. Therefore, the data interchange is not a problem for such en-
vironments as long as the tools provided by an environment are adequate for generation,
solution, analysis and modification of the MP problem. However, requirements for data
handling and user interface quite often make usage of existing general purpose modeling
tools not practicable, especially for many complex, real-life applications when specific re-
quirements (like access and processing of data, user interface) are difficult to be fulfilled
by an integrated modeling environment.

For applications that do need a problem specific elements of software, the needed
software modules are either customized or developed in order to support the above sum-
marized functions. Many parts of these software modules could be developed and used
more efficiently, if an efficient and commonly agreed way for data interchange would exist.
Moreover, also a part of the functionality of integrated modeling environments could be
used (e.g. for generating an initial formulation of the problem or for solving an MP prob-
lem), if these environments would provide a commonly accepted way of data interchange.

One of the attempts to stimulate activities in the direction of establishing a widely
accepted way of data interchange was the proposal for a Data Interchange Tool for Math-
ematical Programming (cf [MaS93a]). Since applications of LP (Linear Programming)
and MIP (Mixed Integer Linear Programming) problems constitute a substantial part of
optimization problems, a pilot implementation of a data interchange tool LP-DIT has
been made for LP problems.1

The MPS format (cf e.g. [Mur81]) is the de facto standard for handling data of an
LP problem. The MPS format has been designed several decades ago to be used with
batch oriented software for solving small2 LP problems. The MPS format has later been
modified by different producers of commercial software and extended for handling also
MIP problems. The MPS format is still widely used despite of its well known disadvan-
tages, simply because there is no other widely agreed way of handling LP problem data
and solution. Nowadays, handling of data for LP problems in the MPS format may be
considered rational for development and testing of LP solvers. However, for any real-life
application when a sequence of modified LP problems is solved, preparing data (and their
modifications) using the MPS format is both inefficient and cumbersome. Therefore the
need for an efficient alternative is widely recognized.

It is hardly possible to propose an alternative that could be commonly accepted un-
less the alternative is efficient and easy to incorporate into existing software. Therefore,
instead of considering another format of data, one should rather agree on a set of data
structures and functions that can be used in a way similar to usage of standard libraries.
Restricting a specification to the data structures and functions makes it possible to hide
internal data structures and implementations of functions. Hence, once the data struc-

' For the sake of brevity, we will further on assume that the abbreviation LP also covers MIP problems.
2The size of the LP problems that were on the limits of computers available in 1950's is nowadays

considered to be small.

M. Makowski - 3 - LP-DIT ver. 1.20

tures and declarations of functions that handle the data are agreed upon, then different
implementations of the LP-DIT can be made independently from applications that use a
preferable implementation. Typically, a change in, or replacement of LP-DIT should not
result in a need of modifications of the modules that uses LP-DIT; only recompilation
should be required.

This Working Paper, and the corresponding software, serves two mutually related
purposes:

To propose data structures and declarations of functions that can easily provide efficient
data processing commonly needed for interchange of LP problem data between different
modules.
To provide a pilot implementation of those data and function specifications in a form
of a public domain tool (fairly easy to implement and efficient to use) which allows for
LP problem data interchange between different software modules.

In other words, LP-DIT provides an alternative for using the MPS format to access to,
and modification of an LP problem data. Additionally, LP-DIT provides efficient and
flexible functions for a full definition (which includes information contained both in the
MPS format [including commonly used extensions] and in a specification file) of an LP
problem, its modifications and solutions.

The current version of LP-DIT is the result of several applications made for different
problems (i.e. using different problem generators and LP solvers). However, it is still a
prototype and therefore criticism and suggestions will be appreciated.

2 Assumptions

The assumptions adopted for LP-DIT result in covering functionality of the MPS de facto
standard for input data and its commonly accepted extensions (like BV, INT, LI, UI, INI-
TIAL). LP-DIT also provides handling of other data necessary for problem specification
(usually placed in a specification file), problem modification and solution handling.

2.1 Functional assumption

LP-DIT has been designed and implemented for efficient interchange of data between:
A problem generator that generates an LP problem using any way of problem specifi-
cation and a data base.
A preprocessor that uses a definition of an LP problem in order to generate a multicri-
teria problem.
A preprocessor that allows for analysis of previously obtained solutions and generates
yet another LP problem.
A solver.
Report writers and possibly other application programs that need access to a solution
of the LP problem.

LP-DIT provides the following functionality:
1. Handling of input data needed for definition of an LP problem, including information

specific to MIP problems, like binary and integer variables, different types of SOS
(Special Ordered Sets). Existence of lower and upper bounds for both variables and
constraints is provided explicitly.

2. Handling of data needed for specification of a task for a solver (usually in specs file).
Handling of most commonly used data (like declaring minimimization or maximization,

M. Makowski - 4 - LP- DIT ver. 1.20

size and status of the problem) is provided explicitly. 0 ther specifications and options
are handled as character strings.

3. Selective storing of and access to elements of a solution.
4. An easy way of a problem modification.

Two utility programs are also provided: dit2mps and mps2dit for conversion between
the NIPS format and the L P - D I T hidden data format (cf Section 4).

2.2 Implement at ion assumption

1. L P - D I T internal data structure and handling are hidden from the user. Instead,
a specification of a set of functions and their parameters is provided. Parameters
include data structures that are declared in a way suitable for handling formulation,
modifications and solutions of an LP problem. Such approach allows for different
implementations of L P - D I T without a necessity of modifications in applications that
are using LP-DIT.

2. Supply of and access to data handled by LP-DIT is similar to that commonly used
for handling the MPS input format, thus modifications of data handling in existing
generators and solvers are easy. Only few simple functions shall be supplied by the
user in order to convert data from structures used by an application into (or from)
L P - D I T data structures. Those functions depend on a type of module (problem
generator, solver, pre- or post-processor) but in a typical application, all functions for
a module can be coded in about 100 lines.

3. L P - D I T is used by calling one or two (depending on a type of application) LP-DIT
library functions.

4. LP-DIT can be used for different precisions applied to the data. Namely, indices of
variables can be 2 or 4 bytes integers and floating point numbers can be 4, 8 or 10 bytes
long. The default are 2 byte integers for indices and 4 byte float,ing point numbers. The
default is a reasonable choice for a majority of practical problems, where the number
of variables is not very large and the precision of data does not exceed 7 digits.

5 . L P - D I T is currently coded in ANSI C, implementedunder Unix and DOS (cf. Section 6
for details). Therefore it can be used with ANSI C, C++ or fortran code. Since enough
positive experience has been gathered for linking C++ and fortran code, hence future
versions of L P - D I T will be implemented in C++.

6. Memory management and user interface (messages) are implemented in such a way that
it is easy to replace their functionality by customized functions used by an application
which uses also LP-DIT.
Efficiency of LP-DIT can be illustrated by a comparison of the time needed for read-

ing a problem formulation and of sizes of input data files, for MPS and L P - D I T for-
mat, respectively. The results of processing two problems from the Netlib test library
(cf [Gay85]), namely, woodlp and f i t 2 d are presented in Table 1, which contains reading
(processing) times (in seconds) and sizes3 of the respective input files (in bytes). Times
of reading input data has been tested on a Sparc-2 Workstation using the Cplex code
(cf [CPL93]) and the Simplex solver (cf [Swi94]). The two solvers were selected in order
to compare the efficiency of LP-DIT also with a commercial implementation. The func-
tions implemented for processing of MPS format input files by Simplex are not efficient,
because this version of the code was aimed at testing the solution technique. Nevertheless,
the results summarized in Table 1 clearly show, that even an ad-hoc implementation of

3Note that the sizes of LP-DIT files may differ depending on a structure alignment option selected
for the used compiler.

M . Makowski - 5 - LP-DJT ver. 1.20

time of reading mps file by Cplex
time of reading mps file by Simplex
time of reading LP-DIT file

LP-DIT can be, especially for large scale problems, far more efficient than a very good
implementation of processing the MPS format file.

One should also note that the time of processing MPS input files is often comparable
with the time required for solution of a problem. For example, solution times by the
Cplex code for the above two examples were 8.7 and 70.9, respectively.

woodlp fit2d
7.2 14.2

51.2 695.0
0.8 1.9

size of mps file
size of LP-DIT file

3 User's guide

2182090 4698538
656329 1462293

3.1 General informat ion

Table 1: Reading times and sizes of MPS format and L P - D I T binary files.

Out of several possible applications of LP-DIT (for problem generation, modification,
solution or analysis), each have two groups of functions:

L P - D I T functions that are just called by the user.
Functions that should be provided by the user and linked with an application. These
functions are called by LP-DIT. For these functions, dummy functions are provided in
the L P - D I T library. However, a call to a dummy function will result in a fatal error
(and information about which function should have been supplied by the user).

These two groups of functions will be discussed separately for each type of application.

3.2 Commonly used parameters and data structures

The following parameters are used by the LP-DIT library functions which are called by
the user:

i n t i i n p u t - should be equal to 1, if data are supplied to LP-DIT (e.g. generating LP
problem, providing a solution), and should be set to 0, if data are to be provided
by L P - D I T (e.g. getting LP formulation for a solver).

i n t by-cols - currently must be set to 1 (in future releases of LP-DIT also row-wise
access to data will be provided).

i n t d e b l e v - debug level, 0 for quiet operation, 1 provides very limited information
about processing, 2 and 3 may result in vast amount of output for a large problem,
but might be useful for debugging.

i n t ind-off - offset of indices, should be set to 0 for C and C++ codes and 1 for fortran
code.

c h a r *fname - name of a file used for storing data in LP-DIT format.

M . Makowski - 6 - LP-DIT ver. 1.20

void *use r - a data pointer which is used in all user supplied functions. Any data
needed by user supplied functions (which are called by LP-DIT) should be placed
in a single structure, and a pointer to the structure should be passed as vo id *user .

The following data types and lengths of string are typedef 'd in l p h e a d . h:
LP-IND - an integer used for row and column indices. It is typically defined as unsigned

s h o r t , but for large problems it should be redefined to unsigned i n t or unsigned
long This redefinition is hardware and compiler dependant. Some solvers and prepro-
cessors use negative index value as a mark. Also, Fortran compilers do not provide
unsigned integer types. For such applications, LP-IND should be redefined accordingly.
The current implementation of LP-DIT uses s h o r t i n t as LP-IND, because it is also
being used with a solver coded in Fortran.

LPJLOAT - a floating point type used for storing all floating point data that define an
LP problem. Usually 4 bytes f l o a t corresponds well to the precision of data available
for most applications and therefore it is used as default by LP-DIT. For applications
that need higher floating point data precision, LPJLOAT can be redefined as double
or long double.

LPIAMELEN - length of names used for columns and rows. Currently defined to be 8.
LP-STRLEN - maximum length of a string used for specification lines, a problem name

and comments attached to a solution. Currently defined to be 80.
The following structures (all are typedef 'd in the file l p h e a d . h) are used by the

user-provided functions. Consult the respective sections for more information:
s t r u c t LPHEAD - Sec. 3.3.2
s t r u c t LP-VAR - Sec. 3.3.2
s t r u c t LPMAT - Sec. 3.3.2
s t r u c t LPSOLUTION - Sec. 3.4.2
s t r u c t LPMOD-VAR - Sec. 3.5.2
s t r u c t LPMODXLEM - Sec. 3.5.2

3.3 Problem definition
This group of functions provides input of a problem (generated by a problem generator)
to LP-DIT and output of the problem definition for a solver. A definition of the LP
problem contains information provided by the MPS format file (with extensions for NIIP
problems) and in a specification file.

All user supplied functions (or one of their # inc lude7d files) should have a statement:
i n c l u d e " l p - d i t . h"

3.3.1 Library functions

The following two functions are to be called by an application (cf Sec. 3.2 for information
about parameters).
vo id l p - i n i t (i n t i i n p u t , i n t by-cols, i n t d e b l e v , i n t ind-of f , c h a r *fname,

vo id *use r) - initializes LP-DIT and calls a user supplied function either l p i - p a r ()
for i i n p u t = 1 or l p o - p a r 0 for i i n p u t = 0 (cf below for descriptions). Therefore,
after return from l p - i n i t 0 an application has enough information for dynamic allo-
cation of memory for the problem being processed.

vo id lp-def (i n t i i n p u t , i n t d e b l e v , void *user) - allocates memory for a work-
ing area and actually handles LP problem definition. lp-def 0 calls other (than
l p i - p a r () and lpo-par ()) functions either specified in Sec. 3.3.3 for i i n p u t = 1 or

M. Makowski - 7 - LP-DIT ver. 1.20

described in Sec. 3.3.4 for i i n p u t = 0. Before returning lp-def () frees all memory al-
located for working area. lp-def () does not return (calls f a t e r r () function instead),
if errors are detected during processing of the problem.

3.3.2 Data structures

The implemented data structures correspond to one of common ways of processing LP
data available from an MPS format data file. Therefore there are three groups of data
that define an LP problem:

Problem specification that is usually given in a specification file. Solvers often allow
dozens of optional parameters. Therefore L P - D I T handles only the most commonly
used specifications in the LPHEAD structure. Additionally, LP-DIT provides two func-
tions, lp i - specs () and lpo-specs() , for handling any specifications which are stored
in form of vector of strings (cf Sections 3.3.3 and 3.3.4, respectively, for details).
Data for each row and column (except of matrix elements). LP-DIT treats rows and
columns in a similar way. For each row and column name, number of non-zero elements,
lower and upper bounds are provided. Additionally, information about a type of a row
or a column is also provided. It includes not only traditional types provided by the MPS
format, but also types used for MIP problems and additional solver specific attributes
(that can be used for specific types of LP problems, like dynamic, stochastic, stair-case).
Non-zero elements of the matrix are stored in a sequences of columns, each column
containing number of non-zero elements and a vector of pairs composed of a row index
and a corresponding value. Therefore the time consuming processing of column and
row names4 is avoided.

The following data structures are used for handling the above listed data:

LPHEAD - contains basic information about the LP problem and has the following mem-
bers that have to be set (in l p i - p a r ()) by a user or that can be used by an appli-
cation that gets problem definition from LP-DIT (by lpo-par 0):
char name [LPSTRLEN + 1] - problem name
s h o r t minmax - should be set to one of the following #def ine 'd in l p h e a d . h

values: MINIMIZE, MAXIMIZE.
LP-IND m - number of rows,
LP-IND ob j - index of a goal function row,
LP-IND n - number of columns,
LP-IND n i n t - number of integer variables,
long nz - number of non-zero elements,
s h o r t specs - number of specifications lines.

Additionally, the following members can be used by an application:
s h o r t s t a t u s - status of the problem (cf the predefined values below),
double f e a s - feasibility tolerance,
double opt i m - optimality tolerance,
double i n f t y - a large number (used for "infinite" bounds), set by L P - D I T to

INFTY (which is #def ine'd in l p h e a d . h).

LP-VAR - contains data for an LP variable (a column or a row) and has the following
members:

4Names of rows and columns are in fact not needed for a solver. However, the names are available for
solvers tha t use them (e.g. for diagnostic purposes).

hl. Makowski - 8 - LP-DIT ver. 1.20

c h a r name [LPNAMELEN + 1] - a row/column name,
LP-IND elems - number of elements in a row/column,
LPJLOAT low-bnd - lower bound value (-INFTY, if none),
LPJLOAT upp-bnd - upper bound value (INFTY, if none),
unsigned i n t is-eq: 1 - is EQ row or FX col,
unsigned i n t i s - l e : 1 - is LE row or MI col,
unsigned i n t i s -ge : 1 - is GE row or PL ~ 0 1 , ~
unsigned i n t i s n e : 1 - is N row or FR col,
unsigned i n t i s low-bnd: 1 - has row/column a finite lower bound,
unsigned i n t is-upp-bnd: 1 - has row/column a finite upper bound,
unsigned i n t mip-type : 2 - info for MIP problems,
c h a r a t t r - place holder for a solver specific attributes.

Members which names start with is- are of boolean type and therefore should have
values 0 or 1. The a t t r member is a place-holder and can be used for any solver
specific information about rows and columns (e.g. for MIP, dynamic, stochastic
and stair-case types of problems). Most typical information for MIP solvers are
stored in the mip-type member contains information specific for MIP problems.
The following values are defined in 1 p h e a d . h and are used for MIP problems by
the MOMIP solver (cf [OgZ94]) and by the mps2dit utility (cf Sec. 4) as the mip-type
member:

/* Values used i n MOMIP as mip-type (must be [0,31)*/
d e f i n e MIP-CV ((c h a r) 0) /* continuous v a r i a b l e / non-SOS row * /
d e f i n e MIP-SOS1 ((c h a r) 1) /* SOSl row */
d e f i n e MIP-SOS2 ((c h a r) 2) /* SOS2 row */
d e f i n e MIP-INT ((c h a r) 1) /* i n t e g e r v a r i a b l e */
d e f i n e MIP-BV ((c h a r) 2) / * b ina ry v a r i a b l e */

LPMAT - contains information about one vector of the LP matrix and has the following
members:
LP-IND index - index of a column/row (for column/row wise handling of the ma-

trix, respectively),
LP-IND elems - number of elements,
LP-VECT * e l - vector of elements.

LP-VECT - is a vector composed of two element structures that have the following mem-
bers:
LP-IND index - index of a column/row (for row/column wise handling of the ma-

trix, respectively),
LPJLOAT v a l u e - value of an element.

LP-IND and LPJLOAT (defined in l p h e a d . h) correspond to a precision of variable indices
and floating point numbers. In the current implementations of LP-DIT, these types are
s h o r t i n t and f l o a t , respectively.

The following status codes used by LP-DIT are defined in l p h e a d . h:

/* Codes of t h e problem s t a t u s */
d e f i n e LP-UNDEF ((s h o r t) 0) /* Problem undef ined */

5Following the commonly accepted practice, the PL identifier is used also for columns that have both
lower and upper bounds.

M. Makowski - 9 - LP-DIT ver. 1.20

#def ine LP-ERROR ((s h o r t) I)
#de f ine LP-IN1 ((s h o r t) 2)
#de f ine LP-MOD ((s h o r t) 3)
#de f ine T-IN1 ((s h o r t) 4)
#de f ine T-MOD ((s h o r t) 5)
d e f i n e S-UNB ((s h o r t) 6)
#de f ine S-LP-INF ((s h o r t) 7)
d e f i n e S-IP-INF ((s h o r t) 8)
d e f i n e S-IP-QINF ((s h o r t) 9)
#def ine S-OPT ((s h o r t) 10)
#de f ine S-SOPT ((s h o r t) 11)
d e f i n e S-QOPT ((s h o r t) 12)
#de f ine S-UOPT ((s h o r t) 13)
#de f ine S-UNF ((s h o r t) 14)

/* E r r o r (s) i n problem d e f i n i t i o n * /
/* I n i t i a l fo rmula t ion of LP */
/* Modif ica t ion of LP * /
/* r e se rved f o r t a s k */
/* r e se rved f o r t a s k * /
/* s o l u t i o n : problem unbounded * /
/* s o l u t i o n : LP i n f e a s i b l e */
/* s o l v e r : IP-INFEASIBLE */
/* s o l v e r : IP-?-INFEASIBLE */
/* s o l v e r : opt imal s o l u t i o n */
/* s o l v e r : sub-optimal s o l u t i o n */
/* s o l v e r : ?IP-OPTIMAL */
/* s o l v e r : ?IP-UNPROVEN * /
/* s o l v e r : problem n o t so lved */

The L P - D I T function c h a r *s t a tmsg(in t s t a t u s) returns a string which corre-
sponds to one of the above defined statuses.

3.3.3 User input functions

The following user supplied functions are to be provided (i.e. linked) for an application
that generates an LP problem (these functions are called by LP-DIT if l p - i n i t () is
called with i i n p u t = 1):

void l p i - p a r (LPHEAD *h, void *user) - should supply LPHEAD structure members
listed in Sec. 3.3.2,

void lp i - specs (LPHEAD h , c h a r **s, void *user) - is called only, if specs mem-
ber of LPHEAD has a positive value. The function should copy into s strings corre-
sponding to specification lines that are to be passed to a solver. The function should
make sure that strings are not longer than a defined value LP-STRLEN (80 characters
in the current implement at ion).

void l p i s o w s (LPHEAD h , LP-VAR *r , void *user) - is called once for getting data
for definition of all rows. The function should load all members of the LP-VAR
structure for each row.

void l p i - c o l s (LPHEAD h , LP-VAR *c, void *user) - is called once for getting data
for definition of all columns. The function should load all members of the LP-VAR
structure for each column.

void l p i - v e c t (LPHEAD h , LP-COL *v, void *user) - is called for each column (for
column-wise matrix handling) or for each row (for row-wise matrix handling).6 It
stores non-zero coefficients of a column or of a row.

The following defaults values are set for members of LP-VAR before calling l p i s o w s ()
and l p i - c o l s ():
name L O] - is set to ' \ O '
i s -eq - is set to 0
i s - l e - is set to 0

'Row-wise matrix handling is not implemented yet

M. Makowski LP-DIT ver. 1.20

is-ge - is set to 0
i s n e - is set to 0
i s low-bnd - is set to 0 for rows and to 1 for columns
is-upp-bnd - is set to 0
mip-type - is set to MIP-CV
a t t r - is set to 0
low-bnd - is set to -1NFTY for rows and to 0. for columns
upp-bnd - is set to INFTY
An application that generates an LP problem has to set appropriate types of rows and
columns (by setting 1 to an appropriate is- member of LP-VAR) and the corresponding
values of lower and upper bounds. Inconsistency of such settings results in a fatal error
generated by LP-DIT. Such an approach prevents sending a not fully defined LP problem
to a solver.

3.3.4 User output functions

The following user supplied functions are to be provided (i.e. linked) for a solver (these
functions are called by LP-DIT if l p - i n i t () is called with i i n p u t = 0):

void lpo-par(LPHEAD h , void *user) - provides values of the LPHEAD structure
members (cf Sec. 3.3.2),

vo id lpo-specs (LPHEAD h , c h a r **s, void *user) - is called only, if s p e c s mem-
ber of LPHEAD has a positive value. The function provides in s strings corresponding
to specificat ion lines.

vo id lpo-cols(LPHEAD h , LP-VAR *c , void *user) - is called once for providing
data for all rows (contained in the LP-VAR structure for each row).

void lporows(LPHEAD h , LP-VAR * r , void *user) - is called once for providing
data for all columns (contained in the LP-VAR structure for each column).

void lpo-vect (LPHEAD h , LP-COL *v, void *user) - is called for each column (for
column-wise matrix handling) or for each row (for row-wise matrix handling). It
provides non-zero coefficients of a column or of a row.

3.3.5 Handling other data

Quite often a problem specific data that are not handled by the MPS standard can be
used by an LP solver, pre- or postprocessor. Examples of such data include:

Starting point.
Initial or optimal basis.
Data defining piece-wise linear function.
A reference point used by the regularization technique.
Data defining linear-quadratic problems.

Data structures for such data are usually specific for an implementation and a list of
different types of data might be quite long. Therefore LP-DIT contains just one lp -us r ()
function, which is general enough for handling such data.

The function has the following declaration:
i n t l p -us r (cons t c h a r *fname, i n t i i n p u t , cons t c h a r * i d , void * d a t a ,
long s i z e) and the meaning of the parameters is as follows:

M . Makowski - 1 1 - LP-DIT ver. 1.20

fname - name of a file used for storing data. One can use the same file as used for
LP-DIT other data, if l p - u s r 0 is called for storing the data after lp-def 0.

i i n p u t - should be set to 1, if data is to be stored, and to 0 for data retrieval.

i d - a string (max of 10 char length) identifying the data. The id should be unique
(for all data items stored in one file). In order to avoid conflicts with id's used by
LP-DIT, the id used by an application should not start with lp-, if same file used
for other L P - D I T functions.

d a t a - pointer to the data. For the data retrieval an appropriate amount of memory
must be allocated by the calling application. Note, that LP-DIT has no way to
check, if enough space is allocated for the da ta . Allocating not enough memory will
result in a bug, usually a difficult one to be traced.

s i z e - length of data (in bytes).

A non-zero return value indicates successful reading or writing of data.

3.4 Solution

This group of functions provides selective storing of, and access to a solution.
All user supplied functions should have a statement:

inc lude " l p - d i t . h U

3.4.1 Libraryfunction

Only one function is to be called by an application (cf Sec. 3.2 for information about
parameters):
void l p r e s (i i n p u t , d e b l e v , fname, u s e r) - which initializes LP-DIT and calls a

user supplied function: either I p i r e s O for i i n p u t = 1 or l p o r e s () for i i n p u t =

0 (cf below for descriptions).

3.4.2 Data structures

LP-SOLUTION - contains a solution and has the following members:
s h o r t st a t u s - status of the problem (cf Sec. 3.3.2 for details about the predefined

values of the s t a t u s member),
c h a r comment [LPSTRLEN + 1] - any comment supplied by a solver (initialized

by LP-DIT to (none) before calling l p i r e s 0,
c h a r da te[30] - date (initialized by LP-DIT to a current date before calling

I p i r e s O) ,
LP-IND m - number of rows,
LP-IND n - number of columns,
double ob jv - objective value,
LPJLOAT t ime1 - execution timel,
LPJLOAT t ime2 - execution time2,
LP-SOL c o l s - values of variables (columns),
LP-SOL cols-d - values of dual variables for bounds,
LP-SOL rows - values of rows,
LP-SOL rows-d - values of dual variables (shadow prices) for rows.

M. Maliowski - 1 2 - LP-DIT ver. 1.20

LP-SOL - contains a part of a solution and has the following members:
LP-IND elems - number of elements (columns or rows) for which the part a solution

has been supplied by a solver,
LP-VECT * e l - elements.

Consult Sec. 3.3.2 for declarations of LP-IND, LPJLOAT, LP-VECT.
Splitting solution into parts is done due to the two observations. First, typically only

a small fraction of solution information is used for analysis. Second, some solvers do not
provide reliable values for all components of every part of a solution.

3.4.3 User input function

The following user supplied function has to be provided (i.e. linked) for a solver. This
function is called by LP-DIT if l p r e s () is called with i i n p u t = I:

void l p i r e s (LPSOLUTION *h, void *user) - should set all (possibly with exception
of comment and d a t e) members of the structure LPSOLUTION.

3.4.4 User output functions

The following user supplied function has to be provided (i.e. linked) for an application
that needs access to a solution. This function is called by LP-DIT if l p r e s () is called
with i i n p u t = 0:

void lpores(LPS0LUTION *h, void *user) - should load to an application data
structures the solution provided in the structure LP-SOLUTION.

3.5 Problem modification
This type of application is aimed at modification of a problem previously stored in
LP-DIT format. The following modifications functionality is provided:

Adding and removing rows and columns.
Changing a status of a row or a column. This means modifications of lower/upper
bounds and/or of a type (integer, binary, continuous, SOS type) of a row or a column.
Adding, removing, modifying matrix elements.

After the modification is completed the LP-DIT packs the problem, i.e. it removes empty
rows and columns.

All user supplied functions should have a statement:
inc lude "lp-mod . h"
(which contains # include " lp -d i t .h").

3.5.1 Library functions

Consult the Section 3.2 for information about parameters and Sec. 3.5.2 about data struc-
tures used by these functions.

The following functions are to be called by an application:
void lpm-load(int i i n p u t , i n t by-cols, i n t d e b l e v , i n t ind-off , char *fname)

- initializes LP-DIT and allocates memory necessary for a problem modification. This
function must be called as a first LP-DIT function for a problem modification.

void lpm-var (i n t num, LPMOD-VAR *v) - handles modifications of variables (rows and
colums); num is a number of items to be modified, v contains modification data
(cf Sec. 3.5.2 for the description of LPJOD-VAR).

M . Makowski - 1 3 - LP-DIT ver. 1.20

void lpmmat (i n t num, LPJODXLEM *e) - handles modifications of matrix elements;
num is a number of items to be modified, v contains modification data (cf Sec. 3.5.2
for the description of LP-CDL).

void lpm-save(int deb-lev, char *fname) - packs and stores the problem and frees
all working memory. This functions should be called as the last one during modifica-
tion.
The following functions are useful for getting information about elements of the mod-

ified problem:
LP-IND lpm-indx(int v a r , char *name) - return an index of a variable with a given

name. The v a r parameter should have one of the values: LPROW, LP-COL.
LP-VAR * l p m g v (i n t v a r , LP-IND index) - return current data of a variable (row or

column) with a given index. The v a r parameter should have one of the values: LPROW,
LP-COL. The returned pointer points to a static LP-VAR structure whose content will
be overwritten by a subsequent call to lpmgv() .

void lpm-bnd (LP-VAR *var , LPILOAT low, LPILOAT upp) - sets the members of the
LP-VAR structure related to bounds (low-bnd, upp-bnd, is-eq, i s l e , i s g e , i s n e ,
is-low-bnd, is-upp-bnd). The def ine'd value INFTY should be used, if a corresponding
bound(s) does/do not exist (-INFTY and INFTY for low and upp, respectively).

3.5.2 Data structures

LPMOD-VAR - contains information about a variable (row or column) that is modified,
added or removed. The structure has the following members:
i n t va r - variable type, should be either LPROW or LP-COL, which corresponds to

a modification of a row or a column variable, respectively.
i n t mod - modification type, should be either LPADD, LPMOD or L P N ,
LP-VAR v - updated data for a row or a column (cf Sec. 3.3.2 for declaration of the

LP-VAR structure).

LPMODXLEM - contains information about modified matrix elements and has the follow-
ing members:
LP-IND irow - index of a row,
LP-IND i c o l - index of a column,
LPILOAT va lue - value of a matrix coefficient.

The same data structure is being used for adding, modifying and removing a matrix
elements (for the latter case the va lue should be set to 0.).

Consult Sec. 3.5.1 for description of functions that are handy for programming a problem
modifications.

3.5.3 User supplied functions

None.

3.6 User customizable functions

The following L P - D I T functions can be replaced by an application specific functions in
order to make two groups functions (handling messages and memory management) used
by L P - D I T consistent with the respective functions used by an application:

M. Makowski - 14 - LP-DIT ver. 1.20

void *xa l loc (vo id *addry s i z e - t s i z e , cons t c h a r * id) - allocates (if addr ==
0) or reallocates memory pointed to by addr. The amount of the newly allocated
memory is s i z e bytes. The function must not return, if enough memory can not be
provided. In such a case, a fatal error should be generated (i d is a identificator that
gives information about the memory request that can not be fulfilled). The function
returns the address of the allocated memory.

void *xf r e e (void *addry cons t cha r * f i l e , i n t l i n e) - frees the memory pointed
to by addr that was allocated by x a l l o c . The function should check if the address is
non-zero. f i l e and l i n e arguments should be used in a fatal error message should the
addr be equal to 0. The function should return 0 (which is assigned to a respective
address thus preventing double-freeing of memory).

vo id outmsg(in t code, c o n s t cha r * t x t) - output message pointed to by t x t . The
code parameter is used for different types of messages and can be disregarded by a
customized function.

4 Utilities

Two programs are distributed together with the LP-DIT library:
d i t 2mps - - for conversion of LP-DIT data into MPS format
mps2dit - - for conversion of data in MPS format into LP-DIT format.
Each program called with -h argument provides a short description of its usage.

5 Availability of software

A beta version of the L P - D I T is available upon request by anonymous ftp. Currently
SunOS and Solaris versions (compiled with Gnu C ver. 2.5.8 and linkable with both Gnu
C++ and Sunpro++ ver. 4.0 compilers) are available. A version for MS-DOS is available
for Borland C++ ver. 4.0 compiler.

The distributed versions of the software will include also a Postscript file with the
updated version of this Working Paper, which will continue to serve as a documentation
of the software. Users are kindly requested to print this file and to make sure, that the
version of the documentation corresponds to the version of the software.

LP-DIT is available free of charge for non-commercial research and educational pur-
poses. Please contact the author (by e-mail: marekai iasa . ac . a t) for more information.

Conclusion

So far LP-DIT has been implemented within the following applications:
Hybrid solver (cf [MaS93b]) applied to the RAINS model (cf [ASHSO]). This application
is a result of cooperation of TAP and MDA Projects.
Problem generator and HOPDM LP solver applied for the problem of the land resources
assessment (cf [GoM94]). This application is a result of cooperation of FAP and MDA
Projects.
Problem generator (cf [BMW93]) and MOMIP solver (cf [OgZ94]) applied for the prob-
lem of the regional water quality management problem. This application is a result of
cooperation of WAT and MDA Projects.

M . Makowski - 15 - LP- DIT ver. 1.20

Other applications are planned in the near future. This also includes implementation of
the L P - D I T to a presolver which performs analysis and reduction of an LP problem.

Acknowledgments

The author would like to thank Martin W.P. Savelsbergh for his collaboration in the initial
stage of the reported activity which has resulted in the proposal for a Data Interchange
Tool for Mathematical Programming formulated in [MaS93a]. Thanks are also extended
to Wlodek Ogryczak for many fruitful discussions on the design and implementation of
LP-DIT .

However, the author assumes full responsibility for any errors and faulty assumptions
that might remain in the design and implementation of LP-DIT .

References

[ASHSO] J . Alcamo, R. Shaw and L. Hordijk, eds., The RAINS Model of Acidification,
Kluver Academic Publishers, Dordrecht, Boston, London, 1990.

[BKM88] A. Brooke, D. Kendrick and A. Meeraus, GAMS, A User's Guide, The Scientific
Press, Redwood City, 1988.

[BMW93] R. Berkemer, M. Makowski and D. Watkins, A prototype of a decision support
system for river basin water quality management in Central and Eastern Europe,
Working Paper WP-93-49, International Institute for Applied Systems Analysis,
Laxenburg, Austria, 1993.

[CPL93] CPLEX Optimization, Incline Village, Using the CPLEX Callable Library and
CPLEX Mixed Integer Library, 1993.

[FGK93] R. Fourer, D. Gay and B. Kernighan, AMPL, A Modeling Language for Math-
ematical Programming, The Scientific Press, San Francisco, 1993.

[Gay851 D. Gay, Electronic mail distribution of linear programming test problems, Math-
ematical Programming Society COAL Newsletter (1985).

[GoM94] J . Gondzio and M. Makowski, Solving a class of L P problems with primal-dual
logarithmic barrier method, European Journal of Operational Research (1994).
(accepted for publication in 1993).

[Mak94] M. Makowski, LP-MULTI, Modular tool for multiple criteria problems, Working
Paper WP-94-xx, International Institute for Applied Systems Analysis, Laxen-
burg, Austria, 1994. (To be published).

[MaS93a] M. Makowski and M. Savelsbergh, MP-DIT Mathematical Programming Data
Interchange Tool, Mathematical Programming Society COAL Bulletin no. 22
(1993) 7-18.

[MaS93b] M. Makowski and J . Sosnowski, HYBRID: Multicriteria linear programming
system for computers under DOS and Unix, in User-Oriented Methodology and
Techniques of Decision Analysis and Support, J . Wessels and A. Wierzbicki,
eds., Lecture Notes in Economics and Mathematical Systems, vol. 397, Springer
Verlag, Berlin, New York, 1993, pp. 223-233.

M. Maliowski - 16 - LP-DIT ver. 1.20

[Mu811 B. Murtagh, Advanced Linear Programming: Computation and Practice,
McGraw-Hill, New York, 1981.

[OgZ94] W. Ogryczak and K. Zorychta, Modular optimizer for mixed integer program-
ming, MOMIP version 2.1, Working Paper WP-94-35, International Institute for
Applied Systems Analysis, Laxenburg, Austria, 1994.

[Swig41 A. Swietanowski, SIMPLEX ver. 2.17: an implementation of the simplex algo-
rithm for large scale linear problems - user's guide, Working Paper WP-94-37,
International Institute for Applied Systems Analysis, Laxenburg, Austria, 1994.

