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Adaptive Designs in Discrete Stochastic Optimization 

G. Gh. Pflug 
IIASA and University of Vienna 

Abstract 

We present adaptive assignment rules for the design of the necessary simulations when solving 
discrete stochastic optimization problems. The rules are constructed in such a way, that the 
expected size of confidence sets for the optimizer is as small as possible. . 

1 Introduction 

Suppose we have to find the best of m possible alternatives for a decision problem under un- 
certainity. Let <, be a random variable (or a random vector or a random process) modelling the 
uncertainity. The probability law of <, may depend on the decision x. If H(x ,  J,) measures the cost 
associated with decision x and the random outcome <,, the problem is to minimize the expected 
costs IE(H(x, <,)) over a finite set of alternatives: 

Minimize F ( x )  = IE(H(x, <,)) 
x E (21,.  . . , xm). 

If F ( . )  can be evaluated easily, problem (P) is a discrete optimization problem and techniques like 
Branch-and-Bound, Simulated Annealing etc. can be applied. 

If the evaluation of F is impossible, one has to use replicated of the random variable 
(or random vector or random process) J, and approximate the problem ( P )  by the simulated 
problem (P,): 

(pn) 11 Minimize Fn(x) = H ( x ,  J,,k) 
x E { X I , .  . . ,x,). 

For simplicity, we assume that the copies t z , k  are i.i.d. A very similar approach as presented 
here applies to the case where (H(x,[, ,k))k2~ consitutes - for each x - an ergodic sequence which 
satisfies a Central Limit Theorem. 

Set 

Then 
E(Xi ,k)  = F(xi)  Var ( ~ i , k )  = n: (say) 
E ( x ~ , ~ )  = ~ ( x * )  Var = $, 

(All variances are assumed to be finite.) 

By the Law of Large Numbers xi,, -t F(x i )  a.s. This and the finiteness of S imply that 

argmin, Fn(x) 5 argmin, F(x)  a s .  



This illustrates that we may solve ( P )  by simulation of the empirical problem (P,) for sufficiently 
large n. 

However, the fact that we have consistency (i.e. a.s. convergence in (1)) does not tell anything 
about the efficiency of the method for small sample sizes and a restricted time budget. 

In this paper, we discuss experimental design plans for the simulation experiment. It is clear, that 
it does not make sense to invest much time and effort in the simulation a t  a parameter point xi ,  
which is far from being optimal. On the other hand, we cannot exclude finally some parameter 
points in an early stage, since it may happen that due to random fluctuations our observations 
were much larger than their mean. 

An experimental plan is called non-adaptive, if the same number n of replications are used for 
every alternative. In contrast, an adaptive plan determines the parameter points xi,  a t  which the 
next simulations are to be made, on the basis of the information gathered so far. 

In the case of a continuous decision space, Stochastic Approximation methods and Response Surface 
Methods are well known adaptive design techniques. 

We present here some adaptive assignment rules for a finite decision space, which exhibit the 
following properties: 

(i) At each stage of the procedure, there is a confidence set available, which contains the argmin 
of F with a prespecified probability 1 - a. 

(ii) No parameter is excluded from further investigation in a final manner. All of them are get an 
infinite number of observations, if the total number of observations tends to infinity. However 
the relative frequency of investigation of a particular parameter point can be very rather, if 
it shows itself not a good candidate for the minimizer. 

(iii) If it is known that the minimizer is unique, there can be a nice stopping time based on the 
rules: The search may stop, if the confidence set contains only one point. 

Recall that the theory of optimal experimental design used in statistical estimation is based on 
some measure of the information which is contained in a statistical sample. If we have already 
collected some data,  we may calculate the amount of information we can expect, if we make an 
additional observation a t  x. This expected measure of information is often but not necessarily 
obtained by a Bayesian argument. The next observation is made at  the point x ,  which maximizes 
the expected information. 

We adopt here a similar approach. As a (negative) measure of information about the unknown 
minimizer, we consider the expected size of a confidence set for this minimizer. This is indeed 
a good indicator, since to obtain a small confidence set is all that we can expect from random 
optimization problems. It  also makes sure that we never exclude parameters in a final manner, 
since the sizes of the confidence sets depend on the means and variances and therefore the size of 
the confidence set can only be small, if all variances are small. 

In the next section, we describe methods for the construction of confidence sets. The pertaining 
assignment rules are presented in section 3.  Section 4 contains an Example and the last section is 
devoted to the comparison with other methods. 

2 Confidence sets 

The construction of confidence sets in discrete stochastic optimization is called selection. 

For simplicity, we treat only the case of normally distributed observations. In principle, every 
location-scale family may be treated in a similar manner, if the normal distribution function is 
replaced by a general distribution function G. 



Suppose that  for each population, i.e. each i E (1 , .  . . m )  we may observe Zi - N ( p i ,  u:), where 
the mean values p i  are unknown, but the variances a: are known. We have to  select candidates 
for the minimal pi by defining a confidence set C = C ( Z I , .  . . , Z,) C { I , .  . . , m). 

Definition 1. C = C(Z1, . . . , Z,) is called level a confidence sei, if for all minimizers p i ,  i.e. 
those who fulfill p i  = minj p j :  

I p { i ~ C ) > l - a .  

Those indices i ,  which are in C are called selecied. Seleciion Rule is just a synonymous word for 
confidence set. 

I t  is clear tha t  among all level-a confidence sets, we prefer those with small size. The  simplest 
selection rule uses the Bonferroni inequality. Recall that  this inequality states tha t  for arbitrary 
sets Ai 

1 s e l e c t  population i i f  Zi < min{Z, + d J m  : j # i )  
where 
d = cp-'(1- a- 

m- 1 ) 

Lemma 1. The  Bonferroni-Rule defines a level a confidence set in the sense of Definition 1. 

Proof. Suppose that  pi = minj p j .  Let Zj  = Y j  + p j  with Y j  - N(0,  a;). We have t o  show that  
the probability tha t  i is not selected is at  most a .  

P ( Z i  > min{Zj + d d w ) )  = P ( U { Z ~  > Z, + d J w )  
j#i  

< x P ( Z i  > Zj  + dJ-) (by Bonferroni inequality) 
j #i 

a 
C @ ( - d )  = C - = a (since pi 5 p j )  
j #; j#i m - 1 

The  rule is based on the Bonferroni-inequality (2) which is only a rough estimate. I t  is also possible 

t o  use the enact value of P(U,,,{Zi > Z, + d , / m ) .  This leads t o  the Gup ta  Rule: 



select population i if Zi 5 min{Zj + d i d -  : j # i )  
where 

-- - 

Notice that the di  defined in the Gupta-rule is the 1 - cr quantile of 

where Yj -- N ( 0 ,  a;) .  These quantiles can be evaluated numerically. If a; IT,  then 

where ql-,,, are the Gupta quantiles, i.e. the solutions of 

A table of these quantiles can be found in Gibbons et al. (1977) .  

I t  is clear that  the Gupta  quantiles ql-,,, are not larger than the Bonferroni quantiles 
@ - ' ( I  - 5). Here is again the argument: Let % -- N ( 0 , l ) .  

cr = IF' max (yl>') - 2 q 1 - a t m )  = P (G {y 2 r l - a , m j )  

which implies that 
cr 

Q(q1-a,m) 5 1 - - m - 1  
and therefore cr 

91-a,m 5 @ - ' ( I  - -1. 
m - 1  

In Figure 1 we have depicted a comparison of the Bonferroni-Quantiles @-' ( I  - 3) and the 
Gupta-Quantiles ql-,,, for m = 2 , .  . . , 50  and cr = 0.1. The Gupta quantiles are always smaller 
and one may show that they are asymptotically ( as m + m) smaller by an order of magnitude. 

Lemma 2. The Gupta-rule defines a level-cr confidence set in the sense of Definition 1. 

Proof. Let % = Zj - pj N ( 0 ,  a;) Suppose that pi = minj p j .  I t  is easy to  see that  

P ( Z i  5 min{Z, + di a: + a: : j # i ) )  > IP(% 5 min{); + d i d c :  + a; : j # i ) )  \i 
= I E [ P ( y  < min{); + di+: + c:))IY. = y)]  



Figure 1: Bonferroni and Gup ta  quantiles for a = 0.1 

In the  case of unequal variances, the calculation of the rn different quantiles di needs rn different 
numerical integrations. One may confine oneself t o  one numerical integration by noticing that  the 
selection rule keeps its level, if di is replaced by maxj dj .  Gup ta  and Huang (1976) have shown 
that  the maximal di is obtained for tha t  i which has minimal variance a?.  We call the pertaining 
selection method the Gupta-Huang Rule. 

I s e l e c t  populat ion i i f  2, < min{Z, + d J m  : j # i) 
1 where 
d i s  t h e  so lu t i on  of 

i n j , i . @ i ~ )  da(;*-=~-a 

The  Bonferroni-Rule, the Gupta-Rule and the Gupta-Huang-Rule differ only in the specification 
of the quantiles di, the general structure is the same. Therefore, we may calculate by the same 
formula the expected size S of the confidence set. 

Lemma. Let C = {i : Zi 5 min{Zj +di a! + a; : j # i ) )  be a confidence set. If Z j  N ( P ~ ,  a;), 
then the expected size S of C is 

J 



An upper bound for this size is given by 

where j* is such that pj*  = mini Pi. 

Proof. Notice that the expected size is C6, P ( Z i  5 min{Zj + d i d o ?  + 0; : j  # i)). Formula 

(3) is the evaluation of this expression in terms of an integral. 

The upper bound (4) is obtained by 

The bound is valid for any choice of j * ,  however, the best bound is obtained if j* is such that 
pj. = mini pi.  

3 Adaptive design of simulation experiments 

We now turn back to the original problem of setting up an experimental plan: Based on a selection 
rule, we design an algorithm which decides in which parameter one should invest the next portion 
of simulations. 

After an initial warmup phase, the assignment rule is repeated for each new portion of (say) ! 
simulations. After the new observations are obtained, the information is updated and the new 
assignment is based on the this new information. 

The general structure of an adaptive rule is as follows: 

Suppose that at  each parameter point xi we have already observed ni i.i.d. random variables 

N ( F ( x ~ ) , o ~ ) ;  k = i , . . . ,  ni. 

- 

Adjust Pi  and ki 

Make to observations 
at  each point x j  

4 

Select the next point 
xi for investment - Make t additional 

observations a t  xi 



We may estimate the unknown pi's and ui's by 

Suppose we are allowed to make e new observations. In which parameter should we invest and 
make the observations there? As was explained in the Introduction, we compare the expected sizes 
of confidence sets. Suppose jij and uj  are the true parameters: If we invest e new observations in 
parameter xi,  then we could base the next confidence set on observations with distributions 

The assignment rule selects xi ,  if the expected size of the confidence set calculated with parameters 
( 5 )  is smallest. 

GENERAL ASSIGNMENT RULE 

Let fi i ,  u i ,  ni be given. 
Calculate for every i the expected size of the confidence set according to 
formula (3) : 

- 3 6 = s,=s(jil, , . . ,  Pi,...,pm,nl,...'ni+[,...,n, * 2 C )  
IMake the next e observations for that i which gives the smallest value Si. I 
This application of this rule relatively complicated, since many numerical integrations have to be 
carried out. 

A simplified rule works with the upper bound of the expected size S instead of S itself and avoids 
numeric integration. By using the upper bound we are always on the safe side: If s is small than 
necessarily S is small too. 

- 2 6? 
L Instead of minimizing S , . . . , , . . . , , , . . . , + . .  . '2) one might as well minimize the 

- 3 - 2 - 2 ji1, . . . , jii, . . . , p,, n l  , . . . , n,+e,  . . . , ~ ) - " ( i l , . - - , b m , ~ , . . . ,  c) n m  . This leads to  

the following rule: 

Let jii, u i ,  ni be given. 
. A 

Set jij. = min, p, . Calculate for every i # j* 

1 and 

(Assign the next e observations to the population with minimal Di. 



Instead of calculating the difference of two expected sample sizes, one could as well work with 
derivatives w.r.t. e and therefore avoid the use of the normal d.f. O, which is not available on 
every computer. Notice however that by basing the decision only on derivatives, we find out the 
parameter xi in which we should invest in tendency and therefore the approximation is good only 
for small values of[. 

Let, for i # j* 

and 

where qh is the normal density d (u)  = -& exp(-$u2). 

SIMPLIFIED ASSIGNMENT RULE 2 

Let fi,, u;, ni be g iven .  
Se t  ,hj. = minj ,hj . Calcu la te  f o r  every i # j* 

Assign t h e  next  e observa t ions  t o  t h e  populat ion with minimal D:. 

4 An Example 

Consider 10 populations with means pi and standard deviations ui given by Figure (2). 

The double triangles indicate the mean pi as the center and pi + uj resp. pi - ui as upper resp. 
lower peak of the triangles. We see that population 1 has the lowest mean, but largest variance. 

Initially, we have made to = 20 observations for each parameter value. Then portions of! = 10 
observations are assigned according to  the following rules: Non-adaptive Rule (equal portion of 
e l m  observations for each population - here e l m  = I ) ,  Simplified Assignment Rule 1 and Simplified 
Assignment Rule 2. Then we have compared the expected sizes of the confidence sets for cr = 0.1. 
Here are the results: 



Figure 2: A p-a-diagram 

Table 1. 

One sees that both adaptive assignment rules are about of the same quality and are considerably 
better than the non-adaptive design. 

Assignment Rule 2 

6.77 
5.00 
4.34 
3.92 
3.60 

mean size of the 0.1-level 
confidence set 

after 200 obs. 
after 400 obs. 
after 600 obs. 
after 800 obs. 
after 1000 obs. 

The number of observations taken a t  each parameter point by the adaptive assignment rules are 
very different. The following table shows the mean number of observations for the simplified rule 
2: 

Non-adaptive design 

6.77 
5.77 
5.15 
4.78 
4.56 

Table 2. 

Assignment Rule 1 

6.77 
5.02 
4.28 
3.85 
3.49 

Notice that more and more observations are taken from the "better" points. As a by-product, one 
gets therefore a 10 times more accurate estimate for the minimal value min, F ( x )  as compared to  
the non-adaptive design with the same total number of observations. 

mean number of 
observ. in group i 

We remark here that it might be advisable to use different a 's  for the assigment rule and for the 
final estimate of the confidence interval. The a for the assignment rule may be chosen quite large 
(as 0.3), the a for the confidence level should not be larger than 0.1. 

2 1 3 4 8 5 9 10 6 7 



5 Discussion 

Let us compare our approach to some seemingly related approaches, the multi-armed bandit problem 
and Ho's ordinal optimization. 

The name multi-armed bandit comes from the problem of finding the best slot machine out of a 
finite number of such machines. The player does not know which machine provides the highest 
payoff. Therefore, he has to try all machines to find out the one with the highest winning chance. 
However, it is advisable not to play all machines with the same frequency: The machine with the 
presumably highest payoff should be played as often as possible. 

Multi-armed bandit processes are also successfully applied in biostatistics. Here the problem is to 
find the best out of a finite number of drugs. The drugs are applied to patients and the experimental 
plan should be designed such that the best drug is found w.pr.1 and the number of patients who 
do not get the best drug should be minimized. 

The theory of multi-armed bandit processes shows that there is a method of designing the experi- 
ment in such a manner that for N + m 

The best machine is found almost surely. 

The relative number of experiments conducted with the best machine converges to 1. 

In particular, Lai and Robbins (1985) show the following: Let m populations be given, each with 
probability density f (x,  Bi); i = 1, .  . . m. Let pi be the mean of density f (x ,  Bi) and let pi= be the 
best mean pi* = maxj p j .  Suppose the sum of outcomes according to some sampling plan after n 
observations is S, = C : = G i .  Call R, = npi* - IE(S,) the regret. 

If R, = o(na) for every a > 0, then necessarily the regret obeys the following lower bound 

Pi* - Pj lim inf - 
n-m lo:n ' C I ( B ~ , B ~ - ) '  

P j < P i *  

where I(Bj, Bi.) is the Kullback-Leibler entropy. 

Lai and Robbins construct an allocation rule that achieves the lower bound and call this rule 
efficient. 

Notice that efficiency is only an asymptotic property. By changing the rule for finitely many 
observations, the efficiency is not changed. 

If the criterion to be minimized is not the regret, but the discounted sum CPxi, the the best 
allocation rule must be based on dynamic allocation indices (Gittins indices) - see Gittins (1979). 

It is important to see that our discrete optimization problem is different in nature from the multi- 
armed bandit problem. In our problem every observation costs the same and the objective is only 
to find the minimizer with as few observations as possible. We can make many observations a t  
non-optimal points if we consider them as necessary with no extra costs. 

In contrast, the costs of the multi-armed bandit are proportional to the payoff and therefore it is 
important to play the presumably best machine as often as possible. It is not advisable to use 
rules from bandit-processes for the optimal design of simulation experiments. 

Ho's ordinal optimization method (Ho, Sreenivas and Vakili (1992)) is more in the spirit of our 
approach. They however consider only confidence sets which are made up from the best estimates, 
1.e. 

C = { Z i  : Zi is among the k smallest of the Zis)  (6) 

The method consists in monitoring those populations which enter or leave the sets (? as the 
simulation goes on. 



Notice tha t  the correct confidence sets as described in section 2 depend both on the means and 
the variances of the populations. If all variances are equal, then all confidence sets are of the form 
(6). If however not all variances are equal, then the correct confidence sets are typically not of this 
form, since it is likely tha t  a population with some mean and small variance is excluded, whereas 
another population with larger mean but large variance is not. Thus  order intervals of the form 
(6) are not confidence sets in the sense of Definition 1 unless k is very large. 
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