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FOREWORD

Often, decision makers have to deal with uncertain factors when faced with a decision problem. It is
important that during the process of selecting the most suitable alternative, the decision maker is
provided with as much information about the nature and consequences of this uncertainty. The
analytic hierarchy process is a frequently used decision support tool for selecting the most preferred
solution from a discrete set of alternatives. The presence of uncertainty in a decision analysis based on
analytic hierarchies is that the pairwise preference ratios are interval judgnients, rather than single
values. One consequence of having stochastic judgment intervals is the phenomenon of rank reversal,
1.e., the possibility that the final ranking of the solutions in terms of their relative preference is
incorrect. This paper addresses the implications of having stochastic judgment intervals, and uses
multivariate statistical methods to derive point estimates and confidence intervals for the rank reversal
probabilities, providing relevant information to both the decision analyst and decison maker about the

robustness of the rankings of the alternatives.



STOCHASTIC JUDGMENTS IN THE AHP:
THE MEASUREMENT OF RANK REVERSAL PROBABILITIES

ABSTRACT

Recently, the issue of rank reversal of alternatives in the Analytic Hierarchy Process (AHP) has
captured the attention of a number of researchers. Most of the research on rank reversal has addressed
the case where the pairwise comparisons of the alternatives are represented by single values, focusing on
mathematical properties inherent to the AHP methodology that can lead to rank reversal if a new
alternative is added or an existing one is deleted. A second situation, completely unrelated to the
mat hematical foundations of the AHP, in which rank reversal can occur is the case where the pairwise
judgments are stochastic, rather than single values.

If the relative preference ratings are uncertain, one has judgment intervals, and as a
consequelice there is a possibility that the rankings resulting from an AHP analysis are reversed, i.e.,
incorrect. It is important for modeler and decision maker alike to be aware of the likelilhood that this
situation of rank reversal will occur. In this paper, we introduce methods for assessing the relative
preference of the alternatives in terms of their rankings, if the pairwise comparisons of the alternatives
are stochastic.

We develop multivariate statistical techniques to obtain point estimates and confidence
intervals of the rank reversal probabilities, and show how simulation experiments can be used as an
effective aind accurate tool for analyzing the stability of the preference rankings under uncertainty. This
information about the extent to which the ranking of the alternatives is sensitive to the stochastic
nature of the pairwise judgments should be valuable information into the decision making process,
much like variability and conflidence intervals are crucial tools for statistical inferenice. Although the
focus of our analysis is on stochastic preference judgments, our sampling method for estimating rank
reversal probabilities can be extended to the case of non-stochastic imprecise fuzzy judgments.

We provide simulation experiments and numerical examples comparing our method with that

proposed previously by Saaty and Vargas (1987) for imprecise interval judgments.

Keywords: Multicriteria Decision Making, Decision Analysis, Analytic Hierarchy Process, Uncertainty,

Judgments.



STOCHASTIC JUDGMENTS IN THE AHP:
THE MEASUREMENT OF RANK REVERSAL PROBABILITIES

1. INTRODUCTION

The Analytic Hierarchy Process (AHP), developed by Thomas Saaty (1977, 1980. 1982a). is a
widely used multicriteria decision making method which is based on the decomposition of a complex
decision problem into several smaller and easier to handle sub-problems. These sub-problems are
organized in different lévels of a hierarchy. The overall objective of the AHP is to find a relative
importance (or preference) scale for the set of discrete alternatives under consideration. Using the
“relative comparison™ method of the AHP, pairwise comparisons are used to derive the relative
attractiveness or preference of the criteria, and the degree of preference of each alternative with respect
to each criterion, resulting in a set of weights representing the relative importance of each alternative.

A number of methods can be used to derive a preference ratio scale based on pairwise
comparisons. for instance the geometric mean method (Barzilai, Cook and Golany 1987; Crawford and
Williams 1983) or ordinary and logarithmic least squares. However, Saaty and Vargas (1987, p. 108)
note that regression-based methods fail to allow for inconsistencies between the pairwise judgments
(Saaty 1980. 1986), and can lead to misleading results (Saaty and Vargas 1984a, 1984b). Ilarker
(1989) states that. even though logarithmic least squares methods have their advantages. “... the
eigenvector method has the interpretation of being a simple averaging process by which the final
weights w are taken to be the average of all possible ways of comparing alternatives. Thus. the
eigenvector is a “natural” method for computing the weights. Furthermore, some theoretical evidence
(Saaty 1987: Saaty and Vargas 1984) suggests that this method is the best at uncovering the true rank-
order of a set of alternatives.” Similarly, Saaty (1980. 1986) and Saaty and Vargas (1987) recommend
using the eigenvector procedure of the AHP. as this method expressly allows for the possibility of
inconsistencies between the elicited preference judgments. In the AHP, the normalized right principal
eigenvector w ol A is used as the vector of weights representing the importance of the alternatives (or
criteria). For a detailed justification of this procedure and the mathematical concepts used in the
AHP, we refer the reader to Saaty (1977, 1980, 1982a).

Although the AHP methodology has been applied successfully to many complex real-life
decision problems (Zahedi 1986: Golden, Wasil and Harker 1989), the theoretical soundness of this
method has recently been criticized on a number of grounds (Dyer 1990; Winkler 1990: Trout 1988;
Schoner. Wedley and Choo 1992, 1993), notably the use of a ratio scale in the AHP comparisons,
rather than the interval scale commonly used in Multiattribute Utility Theory (MAUT), and the rank
reversal problern, i.c., the phenomenon that the preference rankings produced by the AHP can change

significantly by introducing a new or deleting an existing alternative.
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The purpose of our research is not to study the appropriateness of the AHP versus competing
methodologies such as MAUT, nor is it to address the issue of rank reversal under deterministic
pairwise preference judgments, and we will not concern ourselves with this — admittedly interesting —
phenomenon. Rather. we will focus on a second. completely unrelated. source of rank reversal, namely
rank reversal in the presence of stochastic pairwise comparison judgments, and offers a rigorous
statistical approach to analyzing outranking and rank reversal properties of the AHP methodology
under these conditions. Having noted the potential drawbacks of the AHP methodology and the
central role played by the phenomenon of rank reversal in the ongoing discussion of the AHP, we will
take the overall AHP methodology as the basis for our analysis below. rather than focusing on the
differences in viewpoint between its proponents and critics. However. our method is equally applicable
if the priority weights are calculated using some variant of the original AHP. We next review the

concept of judgment intervals.

2. JUDGMENT INTERVALS

In the original AHP methodology, the decision maker is assumed to be able to provide single
values when making the pairwise preference judgments. The process of deriving the scale and
corresponding weights within a particular level of an AHP hierarchy with single-valued pairwise
judgments can be summarized as follows. Suppose there are L decision alternatives under
consideration. In the AHP, a nine point ratio scale, implying a possible range for the pairwise
judgment ratios from 1/9 to 9. is used to pairwise compare each alternative (or criterion) with the
other alternatives {or criteria), resulting in a matrix A = {aiJ—} of preference ratios. The entry a;; of A
represents the relative preference of alternative : over alternative j (:<j) with respect to the
subproblem in question. The matrix A is assummed to be reciprocal. so that a;; = I/aijv for i, j=1, ...,
k. Thus, a total of k(k—1)/2 pairwise judgments are needed to fully determine A. Extensions of the
AHP methodology exist for the case where not all of the pairwise judgments are available. In the case
of a decision problem with multiple criterion levels. a matrix of pairwise judgments is constructed for
each sub-problem, after which the overall weights are calculated by synthesizing the information of the
sub-problems. Without loss of generality we will restrict our analysis to a single matrix of pairwise
judgments A.

Noting that the assumption that the decision maker is capable of providing meaningful single-
valued judgments may be an over-simplification of reality, several researchers have recently extended
the AHP methodology to allow for itnprecise pairwise preference judgments. Some have represented
this uncertainty as stochastic, using subjective probabilities (Vargas 1982), others in terms of
sensitivity analysis, fuzzy sets, and interval judgments (Saaty and Vargas 1987: Arbel 1989: Boender,

De Graan and Lootsma 1989: Zahir 1991; Arbel and Vargas 1992. 1993: Hamaéldinen and Lauri 1993;



Salo 1993; Salo and Himaldinen 1992, 1994; Moreno-Jimenez and Vargas 1993).

In the remainder of our paper. we distinguish between imprecise and stochastic judgments.
Both cases imply judgment intervals, but whereas in the case of imprecise or fuzzy judgments the
intervals reflect an inability on the part of the decision maker to express his/her relative preferences as
a single value, stochastic judgments imply a probability distribution over the range of each judgment

interval.

2.1. Imprecise Pairwise Comparisons: Judgment Intervals

Most previous attempts to incorporate imprecise judgments in the AHP were based on pairwise
comparisons that are restricted to certain finite intervals, deriving intervals of variation for the
components of the principal eigenvector from these intervals (Saaty and Vargas 1987: Arbel 1989:
Arbel and Vargas 1991; Zahir 1991: Salo and Hadmaldinen 1992, 1994). Zahir (1991. p. 207) remarks
that “... in many cases absolute measurements have inherent uncertainties due to statistical errors
which in turn translate into relative measurements,™ and that, once uncertainties affect the matrix A of
preference ratios, there must be uncertainties in the resulting priorities of the decision elements as well.
Zahir (1991, pp. 210-212) derives analytically and shows by example how uncertainty about the
pairwise judgments can affect the relative rankings in the case of two and three alternatives, and
presents a numerical algorithm for computing approximate lower and upper bound for the priority
weights in the general case (k> 2). However, Zahir does not provide a statistical analysis of the rank
reversal problem.

Arbel (1989) and Arbel and Vargas (1992, 1994) propose an optimization approach to obtain
the intervals spanned by each element of the principal cigenvector, in order to determine dominance
structures in the preference rankings of the alternatives. While their approach reduces to a linear
program in the case of transitive and consistent judgment intervals, it requires solving a generally non-
convex nonlinear programming problem in the presence of inconsistency. In a simulation study that
draws on Arbel (1989) and Arhel and Vargas (1991), Moreno-Jimenez and Vargas (1993) note that if
some judgments are inconsistent ... the reciprocal constraints are not convex, and, hence, the optimum
obtained by traditional methods may not be the global optimum” (p. 80). and conclude that “... the
more general optimization problems posed for the inconsistent case are intractable because convexity is
violated.” As we will focus on the general case of potentially inconsistent preference matrices, the
above-mentioned linear programming representations are of limited use for our purposes.

Salo and Hamaéldinen (1992) and Haméldinen and Lauri (1993) use preference programming, a
user-interactive approach to modify and fine-tune the initially specified interval judgments to a final
combination of intervals for which transitivity and consistency are completely achieved. This approach

is consistent with the practice in traditional decision analysis of querying the decision maker so as to
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mintmize inconsistency and ambiguity of the preference judgments. However, while this approach may
work in many decision situations, it is conceivable that the decision maker will be unable to fine-tune
the judgment intervals to the point that full consistency or a fully specified dominance structure is
achieved. Moreover. one of the attractive aspects of the original AIIP methodology is that it allows for
sonie (reasonable level of} inconsistency. which appears to be compatible with the way in which
humans make decisions (Saaty 1980). Thus. within the AHP philosophy it is reasonable that some
inconsistency remains in the final decision matrix at the conclusion of an interactive session aimed at
reducing inconsistency between the judgment intervals.

While Salo and Hamaldinen (1992) seek to reduce the conflict between the judgment intervals,
Saaty and Vargas (1987) take the jugment intervals as given, and use a sampling experiment to study
the impact of imprecise pairwise judgments on rank reversal. As in most other previous research, the
nature of the interval judgments in their approach is non-stochastic, reflecting that the decision maker
is unable to select single-valued pairwise preference ratings. Arbel and Vargas (1993) study fuzzy
priority derivation by simulation and preference programming.

Although the non-stochastic approach to interval judgments is interesting and reasonable in
many decision problems, and provides a flexible analysis that offers valuable information to the
decision maker. it has some limitations. For instance, it is difficult to use a non-stochastic approach to
derive meaningful measures for interesting properties of the interval matrices, such as probabilities of
rank reversal. probabilities of particular rankings. and probabilities that a given alternative will be
ranked first, from the resulting sampled intervals of the principal eigenvector components. Even
though Saaty and Vargas (1987) attempt to numerically approximate some of tliese measures through
a sampling experiment, their interpretation is somewhat problematic. as they try to estimate

probabilistic quantities from non-probabilistic concepts.

2.2. Stochastic Judgment Intervals

We bhelieve that many decision situations exist where the nature of the judgment intervals can
be considered to Dbe stochastic, justifying a probabilistic approach that uses standard statistical
methodologies to study rank reversal likelihoods. The stochastic nature of pairwise judgments can
reflect either subjective probabilities that a particular alternative better achieves a given goal, or
objective probabilities that reflect uncertain consequences of selecting a particular alternative.

As an example of a decision situation where stochastic judgments may be reasonable, consider
the situation where the decision maker has to choose between two different investment opportunities, I
and [,, that require an identical one-time investment at the beginning of the planning period. Assume
that the goal of the decision problem is to maximize net present valuc over the planning period, and

that the interest rate over the planning period is constant but nuknown at the timne of the investment
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decision. Of course. most realistic investment decision problems are more complex than this simple
example, which merely serves as an illustration. Suppose that the break-even point of the net present
value of 7, and I, over the planning period occurs at an interest rate of r, and that /; will be preferred
if the interest rate exceeds r*, while I, will be more attractive if » < r*. Thus, the probability that [, is
preferred to I, equals the likelihood that the interest rate will exceed r™. As the true interest rate is
uncertain al the time of the investment decision. a stochastic interval for the relative attractiveness of
Ay and A, appears appropriate.

In our paper we choose to represent the uncertainties in the pairwise comparisons by subjective
probability distributions. A rigorous analysis of stochastic judgments requires more than a sensitivity
analysis, because the latter ignores important information (e.g., the “confidence™ attributed to each
scenario) that should be taken into consideration. Although we will treat the interval judgments as
stochastic, it may be possible to apply part of our methodology of determining rank reversal
probabilities to the case of imprecise judgments. provided of course that the underlying assumptions
and definitions of the decision process and the interpretation of the resulting preference ratings are
adjusted accordingly. For the sake of a clear focus. we refrain from including such an extension in our
paper, and relegate these issues to future research.

The remainder of our paper is organized as follows. In Section 3 we summarize a sampling and
estimation method developed by Saaty and Vargas (1987) for the case of imprecise judgments, and
discuss some properties of their estimator of rank reversal probability. In Section 4, we introduce two
measures of rank reversal probability that are well-suited for the case of stochastic judgments. Section
5 offers computational examples that illustrate our proposed method, and explores several desirable
properties associated with our measures of rank reversal probability. The paper concludes in Section 6

with final remarks and potential avenues of future research.

3. IMPRECISE JUDGMENTS IN THE AHP AND RANK REVERSAL
3.1. Saaty and Vargas’ Method

In their 1987 article, Saaty and Vargas propose the following approach for estimating rank
reversal probabilities of the alternatives in the case of imprecise preference judgments. Instead of a
single judgment value when comparing two alternatives (or criteria), the decision maker is asked to
specify a finite interval which covers the relevant range of values for the relative importance of the
alternatives. Such interval estimates, called “interval judgments™ by Saaty and Vargas (1987, p. 108),
are collected for each pairwise comparison.

We will write univariate random variables in upper case italics, and realizations of random
variables as well as non-stochastic variables in lower case italics. Maltrices will be denoted in upper

case and boldface, and vectors of random variates in upper case italics and boldface. Suppose the
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decision problem under consideration has a total of k alternatives. Denote the pairwise comparison of

alternatives z and j (. j= L. ..., k) by m;, and let M = {m,}. If the judgments are imprecise. we will

iLj, mg] of its domnain.

In order to calculate estimates for the rank reversal probabilities using the AHP methodology,
T

denote m;; in M by the finite range [m
we need information about the true principal right eigenvector w' = (w,, ..., w,) associated with the
interval judgments. Within the AHP framework, the component w; is interpreted as the relative
importance weight for alternative . In the presence of interval judgments, the exact nature of w is
generally intractable, but approximate information can be gathered through simulation experiments.

As in Zahedi (1984). Saaty and Vargas (1987) sample pairwise judgments from a uniform
distribution over the interval specified in M, reflecting the assumption that the decision maker is
unable to select a single value from the interval and considers each point within the interval equally.
The purpose of their sampling experiment is to derive approximate properties of the likelihood of rank
reversals and out-ranking. Saaty and Vargas (1987) show that the range of possible values for w;
(¢=1, ..., k) is bounded and closed in the set of positive real numbers, since the principal eigenvector is
a continuous function of the m;; and the judgment intervals are bounded and closed. Let the range of

)
1
1.

associated with M be deflined by [ulL w; Realizations a;; are generated

possible values of w;
(simulated) for each entry of M above the diagonal (i.e., ¢ < j), after which the remaining entries are
specified such that a;; = 1/a; for all i and j, completing the reciprocal matrix A = {qa;}. As in the
original AHP analysis, where M consists of singleton values only, inconsistencies between the pairwise
comparisons are allowed. Once A has heen computed, its principal right eigenvector w is calculated.
As the sampling experiment introduces stochasticity in the measurement of the principal eigenvector,

we deuote the random variate representing the M

component of the vector that is being measured by
IW.. Replicating the above simulation experiment n times. a sample w, ..., w" of principal eigenvectors
is obtained. Let us denote the coniponent of the mth eigenvector generated by ", and the standard
deviation of wll-, ..y wi by s, The properties of this sample of eigenvectors are used to estimate the
rank reversal probabilities.

It can be shown that if the pairv‘vise comparisons are sampled from a uniform distribution over
the judgment interval. the principal eigenvector components are beta distributed and can be
approximated by a truncated normal distribution if the number of alternatives is sufficiently large
(Saaty and Vargas 1987; Zahedi 1984). For purposes of statistical inference, Saaty and Vargas (1987)
use the Kolmogorov-Smirnov test and \* goodness-of-fit tests to verify whether we can assume that the
sample wf, ...y w! for each individual component i (i = I. .... k) of the principal eigenvector is drawn
from a norinal distribution. Since Saaty and Vargas analyze the W, (i = [, ..., k) separately, without
considering their interdependence, and then multiply pairwise rank reversal probabilities to calculate

the overall rank reversal probability, their method implicitly assumes that these components are
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statistically independent. If the individual normality hypotheses cannot be rejected. a (/—«) level
“interval of variation” (IOVY) is constructed for each component I, (i= I, ..., a) ol the principal
eigenvector. The interval shown in (1) is centered at the maximum likelihood estimate of W, the
sample mean PvVl- = ;W;r/n and has a length of 2 ta/z?,n-] S; where S, is the sample standard deviation
of W, and fu/:?,n-] is the a/‘2Lh percentile value [or the Student 7 distribution with n—1 degrees of
freedom. Note that the width of this interval is determined in part by the pre-defined probability level

«.
[OV? = (ﬁ/l :t fa/?,n»l St)' (l)

The interval IOV can be interpreted as a central probability statement about the weight W,
Define the intersection of JOVY and IOVY (1 # j) by 10 V7. Saaty and Vargas determine the estimate
RR{J- of the “probability of rank reversal” I1;; associated with each pair of alternatives (z and j), in the

case of imprecise judgments, by (2):

0, if 10V2 = 0,
; P(1V, ”’:}- € 10"%), if IOVg- # 0; I0VE, 101'3-) # 10 Vg‘.

P(IW, € I0V), if 10V® C [0V®,

P(VVZ-EIO‘?). if IOV?C[OV?.

The superscript “I” in RRZIj indicates that this rank reversal probability is based on the
assunmiption of imprecise (non-stochastic) pairwise judgments. Equation (2) implies that given intervals
of level (1—w), alternatives / and j will never reverse ranks if /O Vg- is empty, whereas in the case where
this interval is not empty, the rank reversal probability equals the likelihood that both W; and W, are
contained in 10 VI; Unless there exists a potential for confusion, we will not include the a—level in the
notation of RR{J-.

Saaty and Vargas (1987. p. 110) note that their measure of rank reversal “... is a measure of
the stability of the eigenvector components to changes in JOVY. 1t is not a measure of the true ranks
of the alternatives, because the true answer may not be known.” Several approximate measures of the
probability of rank reversal II,; can be derived. The approximation RR{J- in (2) selected by Saaty and
Vargas defines the phenomenon of rank reversal in terms of the stability of the principal eigenvector
components as measured by 1()1'3», the intersection of the “intervals of variation™ for principal
cigenvector components 1¥; and V. Vargas and Arbel (1992) show that the measure RRIIJ- has a

theoretical justification, as it converges to the average of the vertices of the linear program in Arbel
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(1989). if the judgment intervals are fully consistent. Of course, as mentioned above, in the presence of
inconsistency between the judgment intervals the problem becomes non-convex, with an untractable
solution.

In addition to pairwise rank reversal probabilities RR{J-, Saaty and Vargas (1987) also
determine expressions for the probability that at least one rank reversal occurs in the eigenvector (IT)
and the likelihood that a given alternative i will reverse rank with some other alternative (I1;).
Assuming independent events (as we will see below, this assumption is erroneous). Saaty and Vargas’

(1987) formulas for these probabilities are given in (3) and (4).

= RR = 1 _ —RRL
! Igg<j5n(1 RR}), (3)
Ao I _ U I
i, = RR] = 1= 1 (J-RR). (4)

As the probabilities 11 and II; are composite measures of the more detailed II., the rank

i
reversal probability of specific alternatives i and j, we will focus only on estimating II; in this paper.

3.2. Propertics of RR];

In this section we will show how Saaty and Vargas' (1987) method can be improved in the case
of non-stochastic imprecise judgemeuts. In Section 4 we outline how RRilj can be extended to the case
of stochastic judgments,

Que issue in Saaty and Vargas® (1987) method is the way in which the “intervals of variation™
(IOVE) in (1) are constructed. First, the width of 10 Vis and as a result the estimated value RRi[j,
depends on the particular value of @ selected. Thus, it is always possible to increase the estumated
rank reversal probabilities RRZI-]- by increasing the level of ¢, and to decrease them by reducing a, so
that it may be difficult to give a useful interpretation to these probabilities for a given level of o.

Second, in the construction and use of the IOV we can make a more complete use of all
sample information relevant to the calculation of rank reversal probabilities. For example, RR{J- in (2)
represents the likelihood that that I, and WJ- are both contained in the intersection of their “intervals
of variation™ JOVT, without faking into cousideration where (i.e., low deep) in /10 lf; the conmiponents
will be located. THowever, this information may be relevant for determining the stremgth of the
difference in preference between alternatives : and j, and thus of the rank reversal likelihood. It is
possible, for example. to build a (/—a) = 99 percent “interval of variation,” suggesting that we are 99
percent certain that I, is included in the interval, but at the same time have a relatively high
probability that a realization w,; of W, within the interval will be located close to the boundary of the

interval.
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In addition, for each principal eigenvector component W; the interval 10V is computed
independently of the other components, after which the rank reversal probabilities RR{J- are calculated
by multiplying the relevant probabilities related to IV, and W, (i # j). Thus, in the construction of the
IOV it is implicitly assumed that the different components of W are mutually independent, and the
information contained in the correlation hetween the components of W is ignored. Saaty and Vargas
(1987, p. 108) remark that “...the eigenvector is an n-dimensional variable, and statistical measures can
be developed for each of its components, but not for the entire vector. Thus, one must derive
statistical measures to study rank reversal for single components and then use them to derive one for
the entire vector.” However, a simultaneous analysis of the entire vector can (and should) be
conducted using multivariate statistical techniques. In Section 5 we will use simulation experiments to
show that the assumption of independently distributed eigenvector components (weights) is de facto
false, as all the weights are simultaneously derived from a single matrix A of simulated pairwise
judgments. In fact, from the sampling experiments in Section 5 we will see that some of the

components of W are strongly correlated.

4. STOCHASTIC JUDGMENTS IN THE AHP AND RANK REVERSAL

In this section, we will draw upon the conceptually appealing and interesting method developed
by Saaty and Vargas (1987) (taking into account and correcting its problems as described above),
extending their measures to the case of stochastic judgments. Specifically, we will introduce estimators

of II., derive their statistical properties and build confidence intervals for Hz‘j to measure the stability

A
of the preference under uncertainty.

In onr stochastic approach to characterizing the nature of the judgment intervals. we ask the
decision maker for information that can be used to construct a probability distribution over the range
of each judgment interval. While Saaty and Vargas (1987) nse uniformly distributed random variates
to sample values from their non-stochastic judgment intervals, we sample from the assumed probability
distributions over the interval of judgments, resulting in a stochastic estimate of the principal
eigenvector, which is in turn used to estimate the true probabilities of rank reversal. Therefore, the
statistical properties of our estitnators of rank reversal probability are based on probabilistic concepts
inherent to the nature of the judgment intervals, whereas the statistical analysis in the method of
Saaty and Vargas (1987) derives only from the sampling experiment itself. The stochastic nature of
the judgments themselves enables us to conduct a more rigorous statistical analysis of the rank reversal
likelihoods.  Moreover, since the derivation of Saaty and Vargas' “intervals of variation” and
hypothesis tests are based directly on their sampling [romn uniformly distributed random variates, a
direct application of RR;“; in its original form to stochastic judgments may not he appropriate for

general types of distributions over the judgment intervals. For general distributions the null hypothesis
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of approximately normally distributed eigenvector components may be untenable, in which case the
Student T distribution cannot be used to determine “intervals of variation.”

The probability distributions over the judgment intervals can be assessed in numerous different
ways, and any probability distribution can be used to characterize the stochastic nature of the
preference judgments. Here, we describe two such ways. If a discrete distribution is appropriate, one
may ask the decision maker to select a degree of confidence for several different discrete pairwise
comparison ratio levels. These confidence levels can then be used to derive a probability distribution
over the range of each judgment interval, for instance by normalizing the sum of the confidence levels
to unity. Alternatively, if a continuous distribution is appropriate. one may elicit the most optimistic,
most pessimistic and most likely values for the preference ratios from the decision maker, after which a
(continuous) beta distribution is constructed for the ratio values, assuming that the logarithms of the
preference ratings follow a beta distribution (in order to maintain a valid ratio scale). The preference
elicitation procedures are not limited to uniformly distributed judgment intervals, whereas the amount
of information required from the decision maker to build the probability distributions outlined above is
quite modest and should not be difficult to obtain — the preference elicitation is certainly not much
more involved than the effort of specifying non-stochastic interval judgments. Our replicated sampling
procedure explained below uses the probability distributions over the judgment intervals to obtain a
representative sample of principal eigenvectors w'. ... w' from their respective sampled pairwise
comparison matrices, in a way similar to Saaty and Vargas (1987).

Before deriving our measures of rank reversal probabilities. we need to extend the notation to
the stochastic case. Denote the random variate representing the pairwise comparison of alternatives :
and j (i j= [, ... k) by My, and let M= {M;}. Again, M;; in M is denoted by the finite range [miLj,
mg] of its domain. Since the }/;; are now stochastic, the principal eigenvector W is random as well,
and our sampling experiments are designed to derive probability statements about W. In contrast, in
the experiments by Saaty and Vargas (1987) the only stochastic aspects derive from the sampling
experiment itself.

We adopt the following definition of rank reversal. We will assume that rank reversal between
two alternatives i and j occurs, if alternative i would be preferred over j under perfect information (z.e.,
i > )), but is calculated to be less preferred based on the sample information on the interval judgments
(i.e., w; < wj). Let us assume the true probability that the decision maker prefers alternative i over
alternative j is given by 7,; = P(: > 7). In addition, let wfj =P(W,;> W]-), where as before W; and W;
are the stochastic weights determined using the eigenvector approach of the AHP. Then, the
probability of rank reversal II; according to our definition is given by (5):

1) + (1—7!‘,;1-) rl. )

II = ‘/TI](I—‘IT i

)
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We next use (5) to develop two point estimates, RR% and NRRS, for II. and use these

7 i

estimates to construct confidence intervals for Hij'

4.1 Probability of Rank Reversal Based on Sample Frequencies of Preferences: Rh’.g-

The first estimate of 11 RR%, is based on simple sample frequencies. The superscript “$”

!

i

g
indicates that this estimate is based on stochastic judgment intervals. Neither x; nor 7 in (5) is
known, but if we can assume that in a given simulation trial the probability that W,> W, is

approximately equal to the probability that alternative ¢ is preferred to alternative j under complete
S S
IJ!RR — zRR" _ P

i =

1 .
] i

information, then 7rij$ Tin and both can be estimated by # the relative sample

frequency of the event that ¥, exceeds W, Hence. assuming wfj: T (5) implies that II;; can be

estimated by RR;"} in (6):
HARRS S ap

From (6) we see that RR;—"; ranges from 0, when one alternative is always preferred to the other,
to 0.5, when each alternative is equally likely to be preferred. Besides its simplicity and intuitive
appeal, RR;;S]- has the advantage that it is neither based on an a priort definition of the distribution of

the principal eigenvector components. nor on an assumption that these components are independent.

1"] (see Cooper and Pearson 1934),

An exact confidence interval for 7r1J is defined by [PiLj’ P;

i

where pé and pil]’-r are defined by (7) and (8):

L Piy
oL = _ . (7)
Y pij+(I=p;+n Iy

[n 9 X4 -I 2
af2, ~n(1-pi]»+n Ix npy;

1-p;

~ . , )
I=p;+(p;+n hyF

al

U _
pij =
af2, L’n(p,-j+n'1); 2"(1'pij)

n is the sample size, and F_,, , ~ ‘is the & th percentile value of the F-distribution with (n;, n,)
degrees of freedom. The interval defined by (7) and (8) provides valuable information about the likely

3 ~ H L U .
range of P(W, > W]) The end-points b and p;; can be used to construct the (/—«) confidence interval

for IT;; shown in (9):
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(20} (1=p}), 205 (1=pL)),  ifpY < 0.5 ‘

[2 p{;. (J—p,{;) , 0.5, if pfy pj; < 0.5and Py, > 0.5,

[2 pg(l—-pg) , 0.3, if ., p; > 0.5and p§ < 0.5 )
[2 0] (1=pf)) . 2 0k (1=pF), ifply > 0.5,

Since RR;SJ- = QPZ-j(I—PiJ-) is bounded by ¢ and 0.5, and the relative magnitude of pi[}(I_Pi[}) and
pg(lwpg) depends on which of P,‘[} and pg is closer to 0.5, we need to distinguish several different cases
in (9). First, when piLj < pgs 0.3, pg is closer to 0.5 than piLjv so that L’p{;(!—pllfj) < ,“?pg(]—pg) < 0.5,
whereas the case 0.55piLj§p5 implies ng(l—pg) <2p{3(1—p3) < 0.5. Note that the confidence
interval for I is not necessarily symmetric about the point estimate RRfj. In two out of the four cases
in (9), the interval is enlarged to ensure that the confidence interval indeed includes 4.5, the upper
limit of nij (which occurs when ij = 0.5).

An attractive aspect of using RR;;- to approximate IIi]- is that it does not require an a prior:
assumption regarding the distribution of W. Moreover, RRiSj implicitly takes the correlation between
the components into consideration, since each 1V, is compared with the W; measured in the same
replication. [ts drawback, however. is that RR;? only provides an indication of how frequently in the
sample alternative 7 is preferred to alternative j, and ignores the inlensily of the preference as reflected
by the relative values of W, and WJ-.

Next, we develop alternative rank reversal measures which take advantage of the information

contained the variance-covariance structure of W, ..., W,

4.2. Probability of Rank Reversal Based on Magnitude of Preference Differences: NI‘ER;-SJZ

NRRI»SJ», our second approximation for I, explicitly takes into account the magnitude of

iy
Dij = W- Wj, the difference between the relative preference weights for alternatives i and j. Rather
than estimating Ty and wfj from their respective sample proportions, we now derive their expressions
from the distribution of Dy Provided that the principal eigenvector W is approximately multivariate

normally distributed, D..

i 18 also approximately normally distributed, with mean yp =v,—¢; and
i

varjance 0’%” = Uf+ o’f—i)aij, where ; and ¥; are the (true) mean eigenvector components associated
with at.t.ribult{es 7 and j, afi" and af are the (true) variances of the weights I, and IV}, respectively, and
o is the (true) covariance of I¥;and IV, Note that while this approach does require that the principal
cigenvector is approximately multivariate normally distributed (so that it is less general than RRZ-Sj in
this respect), its components are not assumed to be independent. In Section 5. our simulation

experiments will show that some of the components W, are in fact strongly correlated, so that the
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independence assumption implicitly made in the calculation of RRZIJ- and RRS— may lead to inferior
estimation results. This remark holds true for a sampling-based analysis of imprecise judgments as

well as stochastic judgments. NRR;S} is now given by (10):
~ S
MYRR™ = NRR = 2P(D; < 0) P(D; > 0). (10)

The probabilities P(D;; < 0) and P(D;>0) in (10) are estimated using the maximum
likelihood estimators ﬁij = (P—Vl-—V—VJ-) and Sp of up and op , respectively. For example,
3 1 B

~ 5 . o
Q; = n}}:NRR = P(D;>0) = P(Z>—pDiJ/chiJ_) = P(Z>—(Wz.—W].)/SDiJ_), (11)

where Z is standard normally distributed. Thus, while Pij is the relative sample frequency of the event

that W, exceeds Wj for the RRS method, Qi] is its counterpart for the NRR;? method. We determine a
(I—a) level confidence interval for 7rfj by constructing a simultaneous confidence interval for up and
i

op.. Using the Bonferroni method (Neter, Wasserman and Kutner 1985, p. 582), we can derive a
D;;

conservative simultaneous interval for rrfj from the individual (1—«/2) level confidence intervals for

pp..and op . These individual intervals are given in (12) and (13), respectively.
1 1

~ ~ S oy . N n .
[#%)ij E #Di]] - [DiJ T tla/ bDij/ﬁ ' Di] + “l-af4 SDij/ﬁ]’ (12)
7h, 75,) = [ (DD /G aypsn ) o (DD /Xy 1)) (13)

Denoting P(Z < z*) by Z(z*), respectively. and using (11), a (/—a) confidence interval for n{j is
then defined by [qz[; . qg], where qg is the lowest possible value of Z(fi;, /&, ) for any combination of
g
~L AT ~1 ~U . LU, . . ~ ~ f
i and o, ¢ [ , &% ], and similarly ¢ is the highest value of Z(fi, /7, ) for any
DS [/'Du‘ /Di]] D, [ b, DiJ] ;5 p./D,

1
by

values of p, and o satisfying (12) and (13). Hence. a conservative (I—a) confidence interval for 7 ;
g ij

is as shown in (14):

Zph /65 ), 2nh /65 ). if pby >0,
| (#DiJ/ Dij) (#Dij/ Dij)] Dij
L h _ ~L =L Z’\U ~L . if ~L <0<"U 14
[‘Iij » ‘I,'j] = [Z(#Dij/aDij) ) (#Dij/anij)] 1 ’Jnij “Di], (14)
2pk /5% ), ARE 175 ). if pY < 0.
[ (i Dij/ Dij) (uDij/ 17’.1.] DIJ

~ b pS i i
Similar to the case of Hf}R = RR;S;-, assuming that TI'I{]- = m,; We can use (10) to calculate the

point estimate NRE;, of I1,; in (15):
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YR = NRRS = 2Q,(1-Q;). (15)

tj

A (/—a) confidence interval for IT;; is found in a way similar to (9), but now using qg, Q{j and
qg instead of piLj, sz and pi[j/'

The derivation of NRR;?— assumes a multivariate normal distribution for the principal
eigenvectors, and takes the difference between the values of their components — and thus in a sense the
strength of the relative preferences — into account. Hence, the tradeoff between RR% and NRR;?- is that
the former is of a simpler nature and can be used regardless of which distribution the eigenvector
components follow. whereas the latter utilizes more sample information and may therefore yield more
accurate estimates provided that the eigenvector components are approximately normally distributed.
However, NRR;; may not be appropriate for distributions of eigenvector components which differ
substantially from the normal.

In this section, we have developed two estimates for the most detailed measure of rank

reversal, II.. The corresponding measures for Il and II; can easily be derived, analogous to Saaty and

]
Vargas (1987). Estimates of Il and II, based on the same principles as RRJ-S can easily be derived, using
the frequencies of each ranking of the components of W instead of the frequency of the event that
W;> W, Estimates of IT and II; based on the same principles as NRRJS can be derived using integrals
of the multivariate normal distribution. However, their computation is not trivial.

It should be emphasized that the issue of why rank reversal in the AHP weights occurs in the
case of single-valued pairwise comparisons is substantially different from that of assessing the rank
reversal probabilities when the pairwise judgments are etther imprecise or stochastic, and introducing
uncertainty into the analysis does not alleviate the fundamental problems associated with the
phenomenon of rank reversal in the AHP itself. 1n practice. it may be difficult to discern whether in a
given situation rank reversal occurs due to the stochastic nature of the pairwise comparisons or as a
result of the nunderiying mathematics of the AHP procedure itself. By combining sampling procedures
for deriving point estimates of the stochastic relative umportance weights with the traditional AHP

methodology, our method of deriving measures for the “probability of rank reversal” may establish an

interesting rationale for the occurrence of certain types of rank reversal in practice.

5. NUMERICAL EXAMPLES
Iu this section. we will use two simulation experiments to exemplify our proposed method and
compare the computational results for RRS and NRR;? with RR{J—. As the interval judgments in Saaty
and Vargas (1987) are non-stochastic, but their sampling experiment yields a statistical analysis of

rank reversal probabilities similar to ours, our comparison with their method is limited to the
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computational aspects only. The interpretation of hoth methods cannot be compared directly.
Suppose that a decision maker decides to use the AHP methodology to compare four

alternatives, and arrives at the following matrix of pairwise interval judgments:

Al A2 A3 A4 )
T [2,4] [3,5] [3,5]
v o 1 [1/2,1] [2,5] | "
1 [1/3,1]
Lo

The matrix M in (16) is identical to that used in the experimental study reported by Saaty and

Vargas (1987) for their analysis of imprecise judgments.

5.1 Experimental Design
5.1.1. Saaty and Vargas’ (1987) Experiment Evaluating RR.[J-

First, we describe the simulation experiment conducted by Saaty and Vargas (1987) in order to
illustrate the use of RRZIJ. Saaty and Vargas simulated a total of » = /00 matrices A from uniformly
distributed variates over the judgment intervals of M specified in (16). The respective principal right
eigenvector for each A was computed using the procedure outlined in Saaty (1980, 1982b), yielding the
estimated principal cigenvector win Equation (17):

w= lim (Afe/ eTA%), (17)

k=0

where e is an appropriately dimensioned unit column vector, and el is the transpose of e. In their
study, Saaty and Vargas verified approximate univariate normality of each component of W using the
Kolmogorov-Smirnov test and the % gooduness-of-fit test, finding that the normality assumption could
not be rejected for any IV, at the e = J percent significance level. Summary statistics of the sample

results obtained by Saaty and Vargas (1987) are presented in Table 1.

Table 1 About Here

5.1.2. Two Experiments to Evaluate RR}; and NRR]
We perform two separate experiments to evaluate RR;SJ- and NRR;?, and computationally
compare the results with RR{J-. In Experiment A, we generate 100 samples from a matrix M with

uniform stochastic judgment intervals of the same form as (16). Thus. Experiment A facilitates a
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direct computational comparison between RR{]- and our proposed measures for the case of stochastic
judgments. In Experiment B, we again generate /00 samples from judgment intervals, but this time
the variates are generated from skewed discrete distributions over three specific pairwise judgment
values, with probabilities proportional to the confidence levels. In practice. this information would be
provided by the decision maker. The extension to more than three levels of ratio judgments is
straightforward. Matrix C in (18) gives the pairwise comparison ratios used in Experiment B, followed
within parentheses by their associated normalized confidence levels. Note that the normalized
confidence levels in C cover the same range of values as the matrix M used in both Saaty and Vargas’

original study and Experiment A.

Al A2 A3 A4

[ 1(1.00) 2(0.15) 3(0.20) 3(0.20) |
Al 3(0.60) 4(0.50) 4(0.50)
4(0.25) 5(0.30) 5(0.30)
1(1.00) 1/2(0.15) 2(0.30)
3/4(0.60) 3(0.40)

C = A2 1(0.25) 5(0.30) . (18)

1(1.00) 1/3(0.20)
A3 3/5(0.50)
1(0.30)

A1) 1(1.00) |

While the range of each judgment interval in C corresponds with that of M in (16). we
constructed the problein such that those discrete values which are closer to the median of the interval
are more likely than the extreme points. 1t appears that. in practice. distributions over the interval
judgments with a mode near the mean or median value may often be more relevant than uniforin
distributions. Additionally, in contrast with the uniforin distribution. which requires a reciprocal or a
logarithmic transformation (Moreno-Jimenez and Vargas 1993), it is easy to select discrete probabitity
values that are consistent with the use of a ratio scale. Whether it is better to represent the values
within each judgment interval by a discrete or a continuous distribution will depend on the perceptions
of the decision maker. We selected a discrete distribution for Experiment B because it offers an
interesting comparison with the uniform intervals in Experiment A.

Using the expression in (17). we approximate W in our experiments by A“e/eTA”c. Raising
A to the power 64 proved more than sufficient for convergence. In most cases, a power of k= J was
enough for convergence. For both Experiment A and Experiment B we will compute the point

estimates R.Rg» and NRRS, and construct 99 percent confidence intervals for the probabilities of rank
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reversal Hij' To distinguish between tlie two experiments, we will denote the point estimates for
Experiment A by RR;‘J‘-'S and NRR;}'S, and those for Experiment B by RRg‘S and NRRg’S. We also
calculated RR{J» for Experiments A and B. and denote the resulting rank reversal probability measures
by RR;“J‘-'[ and RRg'I. For notational convenience. the superscript indicating to which experiment (A or
B) the estimate pertains is replaced by a dot (i.c.. RRi}’S, NRRIT;- ’5, RRi}'[) if the discussion applies to
both experiments. Whenever possible, we will compare the results from our experiments with the

estimates RR{J- obtained in Saaty and Vargas® original study (1987).

5.2 Results of Experiments A and B

We first determine whether it is reasonable to assume that the estimates of W, o W4
generated in our experiments are approximately multivariate normally distributed. It is well-known
that if W is normally distributed with mean vector 3 and variance-covariance matrix X, then
V= (W—I/))T ! (W=v) follows a x? distribution with four degrees of freedom. Following Malkovich
and Affifi (1973), we perform the Kolmogorov-Smirnov test for goodness-of-fit between V and the xf
distribution, yielding a Kolgomorov-Smirnov statistic (A'S) equal to 0.085 for Experiment A, with a
p—value of 0.471, and KS = 0.142, with a p—value of 0.035 for Experiment 3. Hence. for Experiment
A the null hypothesis that W is multivariate normally distributed cannot be rejected at any reasonable
a—level. so that the rank reversal measures RR;j»'[ and NRR;J‘-'S (which both assume normality of W)
are indeed applicable. Ilowever, the validity of the normality hypotlesis for Experiment B is doubtful.
Recall that the estimation of RRZ;» -5 does not require any distributional assumption of V..

Table 1 gives the mean weight values w = (%, ..., 1714), the standard deviations of the
estimated weights s“.i, and the minimum and maximum weight realizations, w,. and w_ for the
samples of [00 principal eigenvectors generated in each of the three experiments (Experiments A and
B, and the original one by Saaty and Vargas (1987). From this table we see that the summary
statistics are quite similar across experiments, with slightly larger standard deviations for the weights
in Experiment B than those in Experiment A, which in turn tend to be somewhat larger than the
standard deviatious reported in the original Saaty and Vargas (1987) experiment. Overall, the
eigenvector components associated with the three sampling experiments are of statistically comparable
nature, on an average basis as well as in terms of the range of the sample values. It is of interest to
study how sensifive the three measures of rank reversal probability (RRi}‘S, .\’RRi;-'S. RRL-;-'[) are to
the differences in distributions between the experiments over the judgment intervals. Presumably, an
estimator gives more stable and reliable results if the point estimates and confidence intervals are
similar across distributions and estimation method. The number of times w; exceeds w; (1<) is given

in Table 2. These figures are only available for Experiments A and B, as Saaty and Vargas (1987) do

not report this information for their experiment.
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Tables 2 and 3 About Here

Table 2 shows that for the vast majority of samiples in Experiments A and B. the weight for
alternative 7 exceeds that for alternative j (i <j). For instance, w, exceeds w, for all 700 samples in
both experiments, and wy is larger than wy in 94 out of /00 samples taken in Experiment A and in 69
of the 700 samples in Experiment B. The corresponding computational results of the original Saaty
and Vargas (1987) experiment should closely correspond to those of Experiment A, because the
sampling distributions were identical for these two experiments.

As mentioned above, Saaty and Vargas (1987) use univariate techniques to analyze the sample
eigenvector components. implicitly assuming that the weight values are independently distributed. The
sample correlation matrices of the weights given in Table 3 indicate that this assumption is erroneous,
and several of the principal eigenvector components are indeed strongly correlated. For instance. in
Experiment A weights W, and W, have a correlation of —(.786. Even though the correlation matrix
for their original experiment is not given in Saaty and Vargas (1987), it is clear that the weights in
their study must have been correlated as well, because the sampling distributions and experimental
designs of their experiment and Experiment A are identical. Note that the correlation between the
eigenvector components is due only to the sampling procedure used. and in no way depends on whether

the original judgment intervals were stochastic or not.

Tables 4 and 5 About Here

We use the information in Tables 1—3 and 5 to calculate the point estimates and confidence
intervals for 7r'IJ for Experiments A (p,;) and B (q,-j) in Table 4. For instance, Table J shows that wy
exceeds w, in 94 out of the 100 samples in Experiiment A. so that the corresponding value of py, in
Table 4 equals 0.94. Table 5 presents the sample means ﬁij and standard deviations sp of the

Y
pairwise differences between the weights. and confidence intervals for the mean differences pp; and the
]

standard deviation of the differences o, . For instance, from this table we see that 224 = 0.0747 and

Sd24 = 0.04! in Experiment B, yieldingu oy = Z(”D:’/UD:M) =2(0.0728/0.041) = Z(1.78) = 0.96 (see
Table 4). The results in Table 4 show that the point estimates P and q;; are generally quite close to
one, which is consistent with the figures in Table 2 which exhibit a near-dominance of attribute i over j
for most 1< ;. An exception is pair (3. 4) in Experiment B, in which case p;; = 0.69 and ;= 0.64.

Similarly, the 99 percent confidence intervals for rrfj in Table 4 are close to one for both alternative

measures. Note that these intervals are not necessarily symmetric about the point estimates.
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measures. Note that these intervals are not necessarily symmetric about the point estimates.

[n addition to providing information needed for for the calculation of NRR;-? and the confidence
intervals [qzl-j-, qg] for rrfj, Table 5 also contains interesting statistics on the magnitude of the differences
in the relative preferences. For example, this table shows that on average attribute 7 clearly out-ranks
the other attributes, with 99.5 percent confidence intervals for 'uDzj ranging from 0.3060 to 0.4063 in
Experiment A and from 0.2911 to 0.4051 in Experiment B. The mean sample difference Ei]- between
the weights is much smaller for attributes i, j€ {2, 3, {}. The corresponding standard deviations for
these pairs of attributes, however, are somewhat smaller as well, and none of the 99.5 percent intervals
in Table 5 includes #Dij: 0. Therefore, for each attribute pair the null hypothesis of no difference
between the mean weights is rejected, so that it is highly unlikely that the mean difference is negative

for any pair.

Table 6 About Here

Table 6 reports 99 percent “intervals of variation™ [OVY for the attribute weights IV,
calculated for Experiments A and B using the Saaty and Vargas (1987) method outlined in Equation
(1) of Section 2. The intervals reported by Saaty and Vargas (1987, p. 113, Table 5) for their original
experiment are included in Table 6 as well. From Table 6 it is seen that, as was to be expected since
the interval distributions and the experimental design of Experiment A and the original experiment
conducted by Saaty and Vargas (1987) are identical, the ranges of the /OV¥ are quite similar for these
two experiments. Moreover. the “intervals of variation™ obtained in Experiment B are remarkably
similar to Experiment A and the S&V Experiment, probably due to the {act that the finite ranges of
the discrete pairwise judgment distributions of Experiment B are identical to those in the other two
experiments. However, as we will see below, the estimated rank reversal probabilities for Experiment B
are substantially different.

Of course, the primary purpose for the calculations underlying Tables 4 and 5 is to derive the
intermediate statistics necessary for determining the point estimates RRi;- S = 2P (1-P;) and
NRRi;-'Sz QQU(I—Q,-J-) of the unknown rank reversal probabilities Il,; and to construct (I—a) =99
percent confidence intervals for the rank reversal probabilities for Experiments A and B. These values
are summarized in Tables 7 and 8. A direct comparison of the confidence intervals for Il ; in Table 8
with the Saaty and Vargas (1987) method is not possible, because they do not discuss or calculate these

entities in their paper.
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Tables 7 and 8 About Here

Table 7 summarizes the estimated rank reversal probabilities (point estimates) as calculated as
our proposed measures (RRt-;-'S and NRRI.}’S) and the Saaty and Vargas (1987) measure (RRI-;-'I) for
Experiments A and B. In this table, we also report the estimated probabilities obhtained by Saaty and
Vargas (1987) in their original study (RRz]_;) Table 7 shows that in both Experiments A and B, each of
the three measures (RR’ S NRR™*S and RR’ ’]) yields a zero probability of rank reversal between
attribute / and any of the other attributes. The same is true for the original experiment hy Saaty and
Vargas (1987). This finding is consistent with Table 3, where attribute !/ was seen to dominates the
other attributes in all /00 samples taken in Experiments A’ and B, with Table 5, which — as mentioned
above — indicates that the confidence interval for the mean pairwise difference between attribute ! and
the other attributes is strictly positive, and with Table 6 which shows no overlap of JOVY with any of
the other “intervals of variation.” As noted in Table 3, Saaty and Vargas do not report the
corresponding information for their experiment, but based on the values of RRL- (. 7=2, 3, ) we
suspect that the statistics for their study are similar. For the attribute pairs not involving attribute 1,
the RRZ-}'S and NRRZ-;-’S estimates are similar, but differ considerably from RR,-;-'[. Typically, the
NNRi}’S estimates are between the corresponding RRi}'S and RRI-;-‘] values, albeit much closer to
RRI;;-'S than to RRZ.;-’[. In several cases, RRi;»'] differs significantly from the other two estimates. For
instance, Table 7 indicates that for alternatives (3, {), 151294;5 = 0.1138. NRR;}f = 0.1486, while RRj)!
is much higher at 0.5434. Interestingly, the estimates (RR{J-) reported in the original study by Saaty
and Vargas (1987) differ considerably from those obtained in Experiment A (RR;;']). even though the
underlying data conditions were identical for these experiments.

Overall, the results in Table 7 indicate that, not surprisingly, the R ! estimates are less stable
than RRi;'S and NRRi}‘S, since the Ri:;"[ figures varied considerably when the data conditions were
only slightly changed, while tlie RRZ-;-'S and NRRI;;-'S measures appear less sensitive to the particular
sample. Again, we stress that the comparison of our stochastic measures with Saaty and Vargas’
measure is limited to computational properties only, as the latter was designed for the case of imprecise
{(non-stochastic) pairwise judgments.

As mentioned above, an advantage of RR;?;— and NRRS- is that both easily facilitate the
construction of tight (precise) confidence intervals for the rank reversal probability. Inspecting Table
8, we observe that al the cost of the normality assumption, the confidence intervals derived for the
second measure of rank reversal (NRR,-;-'S) are tighter than thosc of the first measure (RRi;’S).

Therefore, ;’RR?} is preferred to I?R;s;. unless the distribution of the attribute weights is clearly non-

normal.
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Summarizing, it appears that the measures developed in this paper (RR;S; and NRR;S;-) yield
attractive and robust estimates of the true rank reversal probabilities Hijv in the case of stochastic

Jjudgment intervals.

6. CONCLUDING REMARKS

In this paper, we propose two measures of rank reversal probabilities in the Analytic Iierarchy
Process resulting from pairwise judgments which are stochastic in nature. These measures are based, in
part, on a previously proposed measure of rank reversal probability by Saaty and Vargas (1987) in the
case of imprecise judgments. We introduce straightforward yet statistically rigorous procedures for
deriving both theoretically sound point estimates and tight confidence intervals for the rank reversal
probabilities. One of the measures (RRS;-) is based on relative sample frequencies and does not require
any assumption on the distribution of the attribute weights, while the other (NRR‘:’;) is based on the
assumption of multivariate normality of tle attribute weights.

Using two simulation experiments. we have shown that our proposed measures provide robust
estimates of rank reversal probability. Specifically, as long as the normality assumption for W is
reasonable, we recommend using the second measure (NRRZ»), which is based on a multivariate
analysis, and takes advantage of the variance-covariance structure of the attribute weights and of the
strength of the information of the difference in preference between the alternatives to achieve more
accurate estimation results. If the normality assumption for the weights is rejected, RR;S;- is the method
of choice. We have also shown that our approach is flexible in that it is possible to elicit the preference
information in the form of discrete confidence levels associated with several values of the pairwise
judgments (ratios).

Arbel and Vargas (1993) remark that exploring the sensitivity of rank order to the range of
preferences and providing flexible ways for dealing with articulation of non-transitive preference
structures are areas of potential avenues of future research. Their remark was made in the context of
imprecise judgments. An extension of our current methodology to non-stochastic judgment intervals
may prove promising, for instance modifying our rank reversal measures in order to analyze rank
reversal probabilities for fuzzy (non-stochastic) judgment intervals where not all points in the interval

are cousidered equally by the decision maker.



TABLE 1: Descriptive Statistics for the Simulated Principal Eigenvector Components (Weights),

Experiments A and B, and the Original Saaty and Vargas (1987) (S&V) Experiment

Experiment A Experiment B S&V Experiment®

—

Wgt| Mean STD Min Max | Mean STD Min Max | Mean STD Min Max

|

w; w; Swi Smin  Smaz 17: Swi Smin Smaz 171 Swi Smin  Smazx

w, 5211 0305 .4386 .5750 | .5215 .0378 .4077 .5895 | .5093 .0273 4374 .5696

Wy .2005 .0211 .1567 .2482 | .2041 0303 .1568 .2815 | .2131 .0219 .1654 .2708

Wy .1526 .0138 .1228 .1848 | .1431 .0160 .1107 .1901 | .1496 .0175 .1111 .1971

w, .1258 0129 .1007 .1586 | .1313 .0237 .0890 .1919 | .1280 0151 .1011 .1633
a:  These values were reported in Table 2 of Saaty and Vargas (1987, p. 113).

TABLE 2: Number of Times w; Exceeded w; Among the 100 Eigenvectors Simulated,
Experiments A and B, and the Original Saaty and Vargas (1987) (S&V) Experiment

Experiment A

Experiment B

S&V Experiment

— 160 100 100
- 99 100
- 94

s G0 o =

1
2
3
4

— 100 100 100
- 98 98
- 69

|

Not Reported

TABLE 3: Sample Correlation Matrix for the Principal Eigenvector Components (Weights),
Experiments A and B, and the Original Saaty and Vargas (1987) (S&V) Experiment
I [

Experiment A

Experiment B

S&V Experiment

[

w, w, W, W, w, W, W, W,
W, 1 -.78 —.565 —.472 W, 1 -752 -.336 -—.400
W, 1 149 059 W, 1 088 —.140
W, 1 023 W, 1 -.268
W, 1 W, 1

Not Reported

22




TABLE 4: Point Estimates and 99 Percent Confidence Intervals for r:j =7
Experiments A and B

First Proposed Measure (RRl-;-'S)

Experiment A Experiment B

N

o 0 v
Pair (i) (p;  [pE.pl] pi;  lphpl]

(1,2 1.00  [0.948,1.0] 1.00 [0.948,1.0]
(1,3) 1.00  [0.948,1.0] 1.00 [0.948,1.0]
(1,4 1.00  [0.948,1.0] 1.00 [0.948,1.0]
(2,9 0.99 [0.928,1.0] 0.98 [0.911,0.999]
(2.4) 1.00  [0.948,1.0] 0.98 [0.911,0.999]
(3,4)4 0.94 [0.851,0.984] | 0.69 [0.559,0.803]
Second Proposed Measure (NRR,-;’S)
Experiment A Experiment B

. - L U L Uj

Pair (1,5) 4;; [‘I,‘]‘»‘I,']'] 7 [‘I,']'»qi]']
(1,2) 1.00  [1.0,1.0] 1.00 [1.0,1.0]
(1,3) 1.00  [1.0,1.0] 1.00 [1.0,1.0]
(1.4) 1.00  [1.0,1.0] 1.00 [1.0,1.0]
(2.3) 0.97 [0.921,0.977] 0.97  [0.894.0.995]
(2,4) 1.00 [0.988,1.0] 0.96 [0.903.0.996]
(3.4) 0.94 [0.821,0.981] 0.64 [0.524,0.782]




24
TABLE 5: Sample Means (d ;;» Standard Deviations (s, ) and 99.5 Percent Confidence Intervals (CI)
ij

for the Weight Differences and their Standard Deviations,
Second Proposed Measure (i.e., using NRR‘E—), Experiments A and B

Experiment A
Pair (1,5) _ij sDij CI for /lDij CI for aDij
(1,2) 0.3206 0.0489 [0.3060,0.3346] [0.0407,0.0608]
(1,%) 0.3685 0.0400 [0.3570,0.3800] [0.0333,0.0493]
(1,4) 0.3953 0.0383 [0.3843,0.4063] [0.0319,0.0476]
(2,3) 0.0479 0.0235 [0.0412,0.0546] [0.0195,0.0292]
(2,4) 0.0747 0.0241 [0.0678,0.0816] [0.0200,0.0300]
‘ (3,4) 0.0268 0.0186 [0.0214,0.0322] [0.0156,0.0232]
Experiment B
Pair (4,)) i sDij ClI for ;LDU ClI for UDij
(1,2) 0.3174 0.0638 [0.2911,0.3357] [0.0531,0.0793]
(1,9) 0.3784 0.0460 [0.3652,0.3916] [0.0383,0.0572]
(1,4) 0.3902 0.0520 [0.3753.0.4051] [0.0433,0.0646]
(2,9 0.0610 0.0331 [0.0515,0.0705] [0.0275,0.0412]
(2,4) 0.0728 0.0410 [0.0664,0.0900] [0.0341,0.0510]
(3.4) 0.0118 0.0322 [0.0026.0.0210] [0.0268,0.0400]
TABLE 6

Applying the Saaty and Vargas (1987) Measures to Experiments A and B, and

to the Original Saaty and Vargas (1987) (S&V) Experiment:
99 Percent “Intervals of Variation” for W;

S&V Experiment

Experimert A

Experiment B

W, [0V for W, [0V for W, [OV® for W,
W, [0.4401,0.6021]  [0.4212.0.6218]  [0.4388,0.5798]
W, [0.1443,0.2567]  [0.1238,0.2845]  [0.1567,0.2695]
W, [0.1160,0.1892]  [0.0996.0.1865]  [0.1043,0.1949]
W, [0.0917,0.1599]  [0.0683.0.1943]  [0.0890,0.1669] J




Experiments A and B, and the Original Saaty and Vargas (1987) (S&V) Experiment

TABLE 7: Summary of Estimated Rank Reversal Probabilities,
for the Saaty and Vargas (1987) Probability Measure and our Proposed Measures,

Pair (4,5) Experiment A Experiment B S&V Experiment*®
.
RRSSNRRYS RRYT | RRDSNRRES RRD'|  REL
(1,9) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(1,3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(,4) |00 00 00 0.0 0.0 0.0 0.0
(2,3 0.0198 0.0722 0.2156 0.0396 0.0446 0.2469 0.0065
(2,4) 0.0 0.0032 0.0021 0.0396 0.0406 0.2325 0.0003
(3,4) | 0.1128 0.1486 0.5434 | 0.4278 0.4240 0.9087 | 0.779] J
a:  These values are reported by Saaty and Vargas (1987), p. 114.
TABLE 8
99 Percent Confidence Intervals for Probabilities of Rank Reversal,®
Experiments A and B
( Experiment A Experiment B
Pair (ij)  RRS NRRS RRDS NRRZ® RR!
(1,2 [0,0.0986] [0,0] [0,0.0986] [0,0] -
(1.9) [0,0.0986] [0,0] [0,0.0986] [0,0] -
(1.4) [0,0.0986] [0,0] [0,0.0986] [0,0] -
(2,3) [0,0.1336] [0.0060.0.1455] | [0.0020,0.1622] [0.0100,0.1895] -
(2,4) [0,0.0986] [0,0.0237] | [0.0020,0.1622]  [0.0080,0.1751] -
(3,4) | [0.0315,0.2536] [0.0373,0.2939] | [0.3164,0.4930]  [0.3410,0.4988] -
—

@

The corresponding figures have not been reported in the Saaty and Vargas (1987) study.
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