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Foreword 

This Working Paper describes the implementation of an LP solver at IIASA. The pri- 
mary motivation for this research was to provide an efficient and distributable solver 
for optimization problems frequently generated in collaborative studies of the Food and 
Agriculture Project with other organizations. 

Such optimization problems are often large LP problems and therefore the solver 
should be both efficient, robust and royalty free for distribution. After the analysis of the 
characteristics of the LP problems and of the above stated requirements, the HOPDM 
code, developed at the Systems Research Institute of the Polish Academy of Sciences, has 
been selected for application. 

In order to make the computations easier, a general purpose library for data inter- 
change between the problem generator, the report writer (both developed by the FAP 
Project) and the solver has been implemented. By using this library one can avoid the 
MPS format files, which, especially for large problems, require substantial amount of 
computer resources for generation and reading of respective input and output files. 

Both the solver and the library is available in two environments, namely on Sun (under 
Sun OS 4.1.) and on personal computers running under MS-DOS. The software can be 
easily used for other applications that require solving medium or large size LP problems. 
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Solving a Class of LP Problems 
with a Primal-Dual Logarithmic 

Barrier Method 

Jacek Gondzio: Marek Makowski** 

Abstract 

Applying a higher order primal-dual logarithmic barrier method for solving large 
real-life linear programming problems is addressed in this paper. The efficiency of 
interior point algorithm on these problems is compared with the one of the state- 
of-the-art simplex code MINOS version 5.3. Based on such experience, a wide 
class of LP problems is identified for which logarithmic barrier approach seems 
advantageous over the simplex one. Additionally, some practical rules for model 
builders are derived that should allow them to create problems that can easily be 
solved with logarithmic barrier algorithms. 

Keywords: Linear Programming, Primal-Dual Method, Agriculture, Applications. 

1 Introduction 
The objectives of the research reported in this paper are two-fold. First, to apply the 
HOPDM (higher order primal-dual method cf [I, 2]), which is an efficient implementation 
of the primal-dual interior point method, for solving large real-life linear programming 
(LP) problems. Second, to provide the Food and Agriculture Project (FAP) at IIASA with 
a robust and efficient solver that could be used and distributed for solving optimization 
problems frequently generated in collaborative studies with other organizations, related 
to land use and development planning. 

FAP was established in 1976 as an international research program which resulted in 
the development of a linked system of national models to analyze the implications of 
agricultural policies on world food supply, demand and trade (cf Fischer et al. [5]). FAP 
also embarked in research on land resources assessment and development planning. Some 
of these research activities require solving large LP models. Models that resulted from 
one of these assessments (cf Section 2) have been selected for a pilot study aimed at 
application of the HOPDM, a primal-dual code due to Altman and Gondzio (cf [I,  21). 

The primal-dual method applies logarithmic barrier functions for handling inequality 
type constraints. Although the use of such functions was studied in detail by Fiacco and 
McCormick [4] in 1968, this approach was never made operational and competitive in the 
context of large scale LP until the mid-eighties. Soon after Karmarkar's [ll] publication of 
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the new polynomial-time linear programming algorithm, Gill et al. [lo] established (under 
some restrictive assumptions) the equivalence of this new interior point method and the 
logarithmic barrier approach. 

Megiddo [15] proposed applying logarithmic barriers to both primal and dual problems 
at  a time, which led several authors to practical (implementable) methods. This primal- 
dual algorithm proved to be the most efficient variant of the interior point methods. 
There exist several efficient implementations of it, e.g. OSL of Forrest and Tomlin [9], 
OBI of Lustig et al. [13], the code of Mehrotra [16], and the earlier mentioned HOPDM 
of Altman and Gondzio [I, 21. Independently, great progress has been made in the simplex 
implementations (see e.g. CPLEX of Bixby [3], OSL of Forrest and Tomlin [8], and MINOS 
of Murtagh and Saunders [17]). 

The two approaches for solving LP problems compete with each other and there is no 
other way to state definite superiority of any of them than making a fair comparison on 
a wide class of tests. Although absolute superiority of one approach will probably never 
be established, it is possible to identify applications (or classes of LP problems) for which 
one of the methods is better suited than the other. For example, the need of having vertex 
solution and/or performing post-optimal analysis favorizes simplex method. On the other 
hand, the requirement of having a strictly interior solution (some LP constraints might 
be formulated as strong inequalities) clearly favorizes the logarithmic barrier method. In 
the majority of applications, however, the most important criterion is the performance of 
the method (assuming reliability of solution, of course). 

In the authors opinion, a very large size of the problem being solved should favorize 
using an interior point based solver unless the linear program has some special structure 
(e.g. network) for which dedicated simplex implementations exist. 

In this paper, we are concerned with an application of a primal-dual logarithmic barrier 
method for solving large real-life FAP problems. We thus first describe briefly in Section 2 
the class of problems we are dealing with. 

In Section 3, we recall the basic ideas of logarithmic barrier method and its modi- 
fication applying higher order trajectory approximation due to Mehrotra [16]. Next, in 
Section 4, we compare the performance of two LP codes: MINOS 5.3 (which is reported to 
be a great improvement over the earlier version 5.1) simplex implementation of Murtagh 
and Saunders [17] and HOPDM implementation of the predictor-corrector primal-dual 
method by Altman and Gondzio [l, 21). In particular, we demonstrate high efficiency of 
the technique of dropping inactive constraints which lies behind the success of HOPDM 
code and is mutual for logarithmic barrier algorithm, especially its primal-dual variant. 

In conclusion, we will identify a wide class of LP problems that are "easy" for the 
primal-dual logarithmic barrier method. We end the paper addressing those who use 
LP solvers in their Operations Research (OR) applications and give a few practical rules 
concerning the building of an LP model and a choice of a most suitable solver. 

2 The AEZ Land Resources Assessment for Devel- 
opment Planning 

Many of the research activities of the FAP Project, which are performed in cooperation 
with the FA0 (Food and Agriculture Organization) and with research and governmental 
agencies in the countries involved, require solving different medium- or large-size LP prob- 
lems. Therefore the FAP Project can easily provide good testing examples for LP solvers 
and solving such examples also have practical meaning. One of the current activities of 
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the FAP Project at IIASA is aimed at modeling agro-ecological land resources assess- 
ment for agricultural development planning. For this purpose both the relevant sets of 
data and the software for generation of mathematical programming problems have been 
developed (cf Fisher et. a1.[6]). 

The research which provided testing examples discussed in this paper is described 
by Fischer and Shah in [7], who summarize the problem in the following way: "Food, 
crop and livestock production in most West African countries has in recent years not 
expanded fast enough to keep up with population growth. The main contribution of 
this study relates to a quantitative assessment of the potential role of forage legumes 
in contributing to livestock supplies on a seasonal and spatial basis together with their 
importance in conserving soil as well as improving soil fertility. The approach, based on 
Agro-Ecological Zones (AEZ) land resources inventory, is aimed at specifying national 
level development scenarios, integrating crop and livestock sectors to appraise the scope 
for food self-sufficiency in thirteen West African countries." A more detailed description 
of this research is beyond the scope of this paper. The FAP Project has selected from this 
study eighteen examples of models whose characteristics are listed in Table 1 in Section 4. 
The name of each problem reported contains both the name of a country for which the 
model was generated and a two- (or three)-character acronym which identifies the kind 
of scenario tested for this particular model. However, we would like to stress, that the 
examples were not selected for illustrating the research reported in [7] but rather for 
providing different (from the numerical point of view) examples that represent well the 
corresponding class of LP problems. 

3 Primal-Dual Method 
We shall present in this section the basic ideas of a primal-dual logarithmic barrier method. 
For a detailed discussion of its theoretical properties the reader is referred to Kojima et 
al. [12] and Megiddo [15]. 

The method deals at the same time with a dual pair of LP problems: 

i minimize c x, ( l a )  

subject to: 
Ax = b, 

5, S L 0, 

where c, x, s, u E Xn, b E Xm, A E Xmxn and 

maximize biy - uiw, ( 2 4  

subject to: 
Aty + z - w = c, 

Z, W > 0, (24  

where y E Xm and z, w E Xn. 
Its key idea is to handle inequality type constraints by means of logarithmic barrier 

functions, which leads to the following Lagrangian for (1)-(2) 
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where p denotes the barrier parameter. 
The first order conditions necessary for the point (x*, s*, y*, z*, w*) to be optimal for (3) 

are 

xz = pe, ( 4 4  

S W  = pe, ( 4 4  

where X, S, Z, and W are diagonal matrices with the elements xi, sj, zj and wj, respec- 
tively and e E 92" is a vector of ones. 

The basic primal dual algorithm takes one step of the Newton method to find an 
approximate solution to (4) for a current p and modifies (usually decreases) p accordingly 
to the progress made in reduction of the duality gap. The algorithm terminates when the 
duality gap is reduced to a predetermined tolerance. 

Newton's direction for any of the variables considered x, s, y, z and w may be decom- 
posed into two parts 

affine scaling one A, and centering one A,. The first one is supposed to improve the 
objective (reduce duality gap) while the second one points to the analytical center of the 
simplex which in practice means keeping current iterate away from the boundary of a 
feasible region. The presence of A, component in (5) ensures practical fast convergence 
of the algorithm as it prevents the trajectory from approaching those constraints which 
are not binding at the optimum. It is a useful property of the primal-dual algorithm as 
it allows elimination of blocks of inactive constraints in its successive iterations. 

Basic algorithm applies the first order Newton's method to find corrections of a current 
iterate x, s, y, z, w. Mehrotra proposed a computationally attractive modification that 
incorporates higher order information into the primal-dual method, namely, computes the 
k-th order approximation of the optimal trajectory that starts at a given point and leads 
to the optimum. The number of primal-dual iterations can thus be reduced significantly, 
which, as long as the order of the Taylor polynomial is not too large, gives remarkable 
computat ional savings. Efficiency of the Mehrotra's predictor-corrector technique results 
from the fact that it reduces the number of very expensive factorizations of A O A ~  matrix 
and better exploits the information from a single factorization (solves more equations with 
the same decomposition). It thus reduces the computation time considerably as the cost 
of solves with triangular factors of A O A ~  is at least an order of magnitude smaller than 
that of the factorization. 

It is not in the scope of this paper to discuss theoretical aspects of the primal-dual 
method. An interested reader is referred to paper of Mehrotra [16]. Instead, we shall 
address a very promising computational technique that can naturally be embedded into 



J .  Gondzio, M. Makowski - 5 -  Solving a Class of LP ... 

any of its implementations. This technique allows early identification and elimination of 
inactive inequality-type constraints. To our knowledge, HOPDM is the only primal-dual 
code with such a technique incorporated, and as a result of our experience gained on 
FAP problems, we want to recommend it as an attractive option to be included in any 
primal-dual implementation. 

We exploit the structural property of the primal-dual logarithmic barrier algorithm 
that follows optimal trajectory leading from a given point to the optimum of a linear 
program (see e.g. Megiddo [15]). What is even more important is that this trajectory 
is supposed to lie deeply in the interior of the feasible region and not to approach those 
constraints which are not binding at the optimum. It is a specific feature of the method 
resulting from the presence of logarithmic barriers in Lagrangian and, consequently, the 
presence of a centering term in the Newton's direction (5). Hence it is possible to formulate 
a practical rule for early elimination of inactive inequality-type constraints. 

From the first order optimality conditions for a given point to be optimal we get 

yi(Ax - b); = 0, for i = 1,2,. . . , m, (6) 

which for inequality-type constraints translates to the requirement 

yix;" = 0, for i = 1,2, . . . ,m,  (7) 

where xf is a slack (surplus) variable associated with the i-th constraint. If thus some 
slack variable sf is bounded away from zero, which in practice gives condition 

with some predetermined threshold [ ([ = 1) and dual variable associated with appropri- 
ate constraint satisfies 

I ~ i l  < 6 

for some predetermined tolerance 6 (6 = lo-'), then we assume that at the optimum 

x;" > 0 and y; = 0. 

In other words, i-th constraint is presumed inactive at  the optimum and may be removed 
from the LP problem formulation. 

The technique of elimination of inactive constraints proved to be very efficient in 
practice. Next section addresses its application to solving FAP problems. 

Test Results 
We have run two LP solvers on a sample of 19 problems (cf Section 2). The first solver 
is a state-of-the-art simplex implementation MINOS 5.3 from Murtagh and Saunders. 
This version is, up to our knowledge, the newest one available and represents significant 
improvement over the earlier one (version 5.1) of 1987. The second is a higher order 
primal-dual code HOPDM of Altman and Gondzio that, when applied to solving problems 
from the Netlib collection, has been shown to compare favorably with other primal-dual 
codes available, e.g. OBI of Lustig et al. [13] and the code of Mehrotra [16]. 

The HOPDM is coded in fortran-77, and the interface library as well as the dynamic 
memory allocation is coded in ANSI-C. We have used the standard fortran-77 Sun com- 
piler and the Gnu C compiler, both with the optimization option. The same fortran 
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compiler and option were used for compiling MINOS. Our code can also be compiled by 
the Microsoft Fortran 5.1 and C ver. 6.0 for PC under DOS. 

The tests have been performed with HOPDM and MINOS on a Sun Sparc-2 computer 
with the Weitek 3170-based FPU run at 33.0 MHz. The values of the SPEC (the Sys- 
tem Performance Evaluation Cooperative) indices for this machine are 21.8 and 22.8 for 
SPECint92 and SPECfp92, respectively. Less informative but more common MIPS and 
MFLOPS values are 28.5 and 4.3, respectively. 

Both solvers were run with the default settings of parameters for controlling stability 
of respective methods except for one custornization done to  the HOPDM. Namely, the 
default starting point has been replaced by the following: 

0.5 if uj < 00; 
X j  = 

10 otherwise 

This modification was motivated by the presence of a very large number of upper bounds 
equal to 0.75 or 1.0 in the FAP linear models and resulted in the average 20-50% improve- 
ment of the HOPDM efficiency. 

Table 1: Comparison of MINOS 5.3 and HOPDM. 

Problem 

Gambia B2 
Gambia B2 
Liberia B9 
Liberia B1 
Liberia B7 
Liberia B2 
Liberia B52 
Senegal B7 
Senegal B2 
Burkina B7 
Cameroon B9 
Cameroon B1 
Cameroon B7 
Cameroon B2 
Nigeria B2 
Cameroon B52A 
Nigeria C82 
Nigeria B52 
Cameroon B52 

Table 1 summarizes the results obtained. It contains dimensions of problems solved 
(M, N and N Z  denote, numbers of rows, columns and nonzero elements, respectively) 
and iteration counts and computational time in seconds for both solvers used. 

We report only pure solution time (with excluded time for model input and solution 
output) for both solvers compared. The omitted time for model input and solution output 
may reach the level of considerable fraction of the time spent in solver, especially if the 
input/output format is the popular but inefficient MPS one. For actual implementation 

M N NZ 

153 203 1604 
246 1379 9401 
384 1330 10355 
392 1331 10171 
412 1930 13761 
420 1931 13085 
461 2547 18887 
826 6979 48666 
833 6980 45487 

1026 8525 60184 
1566 6938 56993 
1574 6939 56091 
1731 11573 81419 
1739 11574 76584 
1846 16422 103580 
1881 20429 168740 
1989 31041 267345 
1992 29614 239862 
2057 21203 193167 

MINOS HOPDM 
iters time 

9 0.1 
746 8 
898 11 

1853 24 
1693 22 
2332 34 
2807 45 
8494 274 
9410 309 
7604 269 
7546 355 

10645 522 
11935 701 
23423 1351 
43723 3009 
41084 3089 
19758 1792 
54304 5102 
39046 3213 

iters time 
13 2.1 
36 46 
24 27 
36 44 
27 41 
40 67 
41 94 
53 390 
47 362 
49 413 
38 345 
44 420 
49 575 
66 753 
64 987 
58 1120 
61 1568 
67 1731 
63 1414 
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of the HOPDM we have applied the concept of MP-DIT (Mathematical Program Data 
Interchange Tool) from Makowski and Savelsbergh [14]. We have implemented an interface 
library which can be used by a solver, by a problem generator and by a report writer. The 
library uses an efficient binary format (which is hidden from a user) for data interchange 
which makes it possible to replace the need of generating a formatted MPS file with a 
problem generator and processing such a file by a solver. Such an approach is not only 
much faster but it is also easier to implement for both a problem generator and a solver. It 
is presently planned to make the interface library available as a public domain software for 
non-commercial applications. As a result of using the interface library, the time needed 
for the model input is much smaller than that required by reading and processing the 
MPS-format input and it became negligible compared with time required to solve the 
problem. Such an approach is of course independent of the LP solver chosen, so its 
contribution is not taken into account in the results collected in Table 1. It is however 
strongly recommended for any real-life application. 

Results collected in Table 1 show that for smaller problems MINOS is faster. HOPDM 
favorizes a large problem size. The breakpoint (for this particular class of problems) is 
about M = 1000. In other words, if problems with the number of constraints larger than 
a thousand are to be solved, then it is advisable to use the logarithmic barrier method 
for this purpose. 

iteration M nz(A) nz(AAT) nz(L) MF'LOPS 
1 2057 193167 90878 169823 16.7 

3 2 2057 193167 90878 169823 16.7 
34 2048 192759 90247 168169 16.5 
3 6 1978 188734 82419 149923 13.8 
3 8 1974 186010 81279 147124 13.4 
40 1951 183381 78979 142995 12.8 
42 1930 179076 76751 137332 12.0 
44 1907 171873 73777 132433 11.4 
46 1893 169734 72265 129866 11 .O 
48 1875 164149 69751 124992 10.4 
50 1853 141389 65943 119891 9.8 
52 1808 127424 60066 111487 8.8 
54 1754 114436 54405 102889 7.8 
56 1684 103674 48384 94452 7.0 
58 1659 101290 46483 90746 6.7 
60 1639 100344 45876 88019 6.5 

Table 2: Changes of the Cameroon-B52 problem size 

Our next experiment demonstrates advantages of eliminating inactive constraints dur- 
ing the optimization process. Results collected in Table 2 monitor changes of the size of 
the real problem to be solved for one of the largest linear program from our collection. 
For subsequent iterations of the primal-dual algorithm it thus reports: number of LP 
constraints M, number of non-zero elements of still active part of A, number of non-zero 
elements in the adjacency structure AAT, number of off-diagonal elements of Cholesky 
factor L and number of millions of flops (floating point operations) required to compute 
Cholesky decomposition of ABAT matrix. This last value may be viewed as the approx- 
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imate cost of a single primal-dual iteration (it is supposed that Cholesky decomposition 
takes 60-70% of the time of every iteration). 

It easily follows from the analysis of Table 2 that primal-dual logarithmic barrier 
method is able to eliminate a remarkable fraction of LP constraints before reaching op- 
timum, which is not possible in a simplex method. Thus if the linear program has a 
considerable number of inequality constraints and a supposition exists that many of them 
will be inactive at  the optimum, then it is advisable to apply logarithmic barrier method 
to solve it. A problem's property of having many inactive inequality constraints can easily 
be identified in the problem's solution. One can expect that any problem with many more 
rows than columns should possess such a property. We encourage OR practitioners to try 
primal-dual logarithmic barrier method in such cases. 

The last observation we would like to share is due to specification of large values 
of lower and/or upper bounds whenever a default bound value should not apply for a 
particular column. This widely used approach (which is also recommended by some LP 
solvers) has no negative-side effects for the simplex method. However, it results in a 
substantial increase of computation time for a logarithmic barrier method. For example, 
specification of large values of bounds that served for removing default bounds for the FAP 
examples have resulted sometimes in more than doubling the execution time. Therefore 
we strongly recommend, for interior point methods, explicit specifications of a lack of a 
respective bound. 

5 Conclusions and Remarks 

We have presented in this paper the performance of two LP solvers: MINOS version 
5.3 simplex implementation and HOPDM predictor-corrector primal-dual code applied 
for solving FAP problems of different sizes (the largest tested example has over 20,000 
variables and close to 200,000 non-zero elements). For those particular linear programs 
growth of the size clearly favorizes primal-dual code, which, as we assume, is typical in 
general. 

We have shown that the ability of early identification (before the optimum is reached) 
of inactive constraints, that is mutual for logarithmic barrier approach, may remarkably 
improve its performance. Time savings that results from application of this technique 
vary from 10% to 30% for FAP problems and we expect similar results on a wide class of 
LP problems that have remarkably many inactive constraints at  their optimum. We have 
shown the advantages of using for real-life applications an efficient tool for interchange of 
data between a solver and a problem generator. Finally we pointed out an easy change 
in the LP problem specification which can result in substantial performance improvement 
of a solver based on logarithmic barrier method. 
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