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Foreword 

This paper introduces a problem of parameterization in mathematical models of immuno- 
physiological processes. The assumption of similarity allows us to recalculate the model pa- 
rameters for a given body through known parameters for the so-called basal organism or the 
"average" for a group of patients. The formal approach to the problem of parameterization and 
the method of parameter estimation for a given organism are discussed. The respective problems 
arise from applied motivations that come from biological and medical issues. 
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PARAlMETERIZATION IN MATHEMATICAL MODELS 

OF IMMUNO-PHYSIOLOGICAL PROCESSES 

A.L. ~sachenkov', I.B. Pogozhev, S.M. Zuev2 

1. Introduction. 

Even though much progress has occurred in the theoretical immunology and 

mathematical modelling of disease, many problems are still unresolved. One of the essential 

problem is a parameterization of the disease model for a given patient. That is especially 

important then we try to use the model for the decision making, for example, choose the 

individual therapy or forecast of individual disease dynamic. The principle obstacle consists 

in estimating significant number of model parameters at the beginning of the disease, then 

the number of observations are not enough yet. To overcome this obstacle the idea about 

parameterization in the models of immuno-physiological processes was proposed by 

Marchuk in eighties years and developed by Pogozhev (1988), where the possibility of 

parameterization was confirmed by experimental data. 

For the individual estimation of model parameters, we must have at least m 

measurements of the state vector, where m is the number of unknown parameters. For 

example, if we have a possibility to do measurements every day (a dream) we can evaluate 

the model parameters after m days. If m- 10, our forecast of disease course loses its 

significance. Here we discuss an approach for the solution of this problem which is based 

on the assumption (Pogozhev, 1988) of the rnicromovements of particles in the liquid media 

of an organism and their similarity for different bodies. Genuinely, during the immune 

response T- and B- lymphocytes, macrophages, viral particles, antibody, some organic 

molecules etc. interact with each other as well as with other cells and molecules of the 
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organism. The value of model parameters a! = (cul ,cu2,. . . ,cP')~ may be considered as functional 

depending on the micromovement intensity. So, we suggest that the difference between the 

similar organisms is conditioned by the differences in micromovement intensity. Therefore 

we can use the coefficient of similarity, HL, to recalculate the model parameters for an given 

patient through a known parameters for the so-called basal organism or "average" for a group 

of patient. 

In this work the formal approach to the problem of parameterization and the method 

of parameter estimation for the given patient are proposed. 

2. The problem of parameter estimation 

Consider the disease model in the form 

where xt=x(t) is a vector of state variables ( molecular concentrations, such as antibody, 

antigen, appropriate lymphokine or other molecular substances, and cellular 

populations, this might refer to B, T, and macrophage cell lineages etc.), 

CY is a vector of parameters, 

f(. ,.) is a vector function so that VcuE D E  Rm there exists an unique and 

asymptotically stable solution of the Cauchy problem (1). 

Denote by 

i x, = { x,, tee,  i=12 ,... fl  }, 0 = { tl,t 2,..., tN ) E [ o , ~ ,  

observed data, where M is a number of patients, 

X, is a trajectories set of state vector, and assume that the vector x, can be measured 



in discrete instants of time tE 9. 

Example 1. Consider the dynamics of so-called generalized index of patient state 

severity (GI) [1,2,3], which is described by the equation 

According to this model the decrease in organism damage due to infectious disease, 

for the patients with favorable disease dynamic, is an exponential in time.The 

parameter a! > 0 is an integral characteristic of the recovery process. Any deviation 

from this regularity suggest an unfavorable disease dynamics. For more detail see 

Marchuk, Zubikova, Pogozhev and other. If the values of GI in the instant of time 

t,, b,. . . ,t, are connected by straight lines we have what we call a trajectory bunch. 

A typical situation is given on Fig. 1 and 2. One can see that the observed trajectories 

of GI, X,, can be considered as a realizations of some random process 

At the same time the model (3) is deterministic. Therefore, the trajectories from X, 

do not belong to the set of model solutions. Following Zuev (1988) one make 

Assumption 1. Assume that the model (3) describes the process in the average. It 

means that exists a vector cr* such that 

where x,(a!) is a solution of (3) for a!=a!', 

and E is an operator of mathematical expectation. 
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Figure 1 The trajectories of GI for the 
patients with viral hepatitis treated by drug A 
(the set Xa(From Zuev, 1988). 

Figure 2 The trajectories of GI for the 
patients treated by drug B (From Zuev, 1988). 



The problem is to estimate a' by X,. In the other words, we need to construct the 

estimate a,=P(X& such that 

2.1. Stochastic model for observed data. 

To eliminate the discrepancy between the deterministic model and a random character 

of observed data we turn to the stochastic model of the process x , (for detail see Zuev, 1988). 

This model is written in the form 

The first equation is a continues model for the unobserved process x:, the second one 

is a measurement model, where Q is a constant r xn matrix and 

is a random process, which is a model of measurement error ( white noise with discrete 

time), 

A random process t, in Rm has a piece-wise continue with the probability one trajectories, 

with 



A small parameter E>O has an order hourslday. It means that the random deviations of the 

trajectories from the deterministic dynamics are short-run compared to time of changing of 

state vector x,. In other words, a random disturbances are fast. In p] was shown that, for 

a small E > 0, the deviation 

can be approximated by the linear model in the form 

where w, is a gaussian process with independent increments and 

Here r is a matrix of intensity. 

2.2. Estimating or' 

Let ak E D C Rm, where D is a closed convex set, be a known initial guess for a', then 

a, = a' + 6a (14) 

where 6a is unknown and small as compared to d. Using (12) we write the model for the 

deviations in the form 



Here 6x,=x:-x:, and x: is a solution of the system 

d k  k  k  
z x t  = Ax1 ,a?, ts[O,TI, x, = c. 

The system (15) is linear by unknown parameter and to estimate the vector 6a we can 

use the methods of the filtering theory. Let r€  (, ti+l € 9, and R(t,+l,ti) be 

fundamental matrix 

Then the model (15) can be rewritten in the form 

where 



Here Wi is gaussian random vector (integral of deterministic function by Wiener 

process) with zero mathematical expectation and a known covariance matrix. The filter 

equation for this model are well known, see for example f]. Let 6cr, be a solution of the 

filter problem, then for the next iteration we can use 

This iterative scheme is equivalent one from ['I. Here we need to solve the filter problem 

on each iteration. 

3. Parameterization 

A traditional approach to the problem of parameter estimation based on the 

assumption that the number of observation N must be more than the number of unknown 

parameters m. If N> m, then, generally speaking, there are many well-known algorithms for 

parameter estimation, for example see [7,8], but then N< m, we cannot use any algorithms. 

Unfortunately that is a typical situation in the medicine then we want to estimate the model 

parameters at the beginning of therapy. To overcome this obstacle the idea about 

parameterization of the model parameters was proposed by Marchuk and developed by 

Pogozhev. 

3.1. Basal and Studied organisms. 

Consider two organisms, the first one we will call "basal" and a second one "studied" 

or "given". Suppose that the parameters of the basal organism are known. Consequently we 

have two models 



and 

The first one describes a disease process in the basal organism, where a is a known, 

and the second one in the given body, where a is unknown. 

Assumption 2. Let the parameters a and a be connected by the correlation of 

similarity 

where HL is a coefficient of similarity, 

v(x,y) is a vector function such what 

Now, if the function v(x,y) and a vector g are known then for estimating of unknown 

parameter a we must to evaluate only the coefficient of similarity. Clearly, the estimation 

of the one unknown parameter is a simpler problem. 

Explanation. The state variables of the disease model are concentration of 

interacting particles (cells, molecules and etc.). These particles interact with each 

others by means of the movement of the liquid media in the organism (blood, 

lymph). By this means, the micromovement intensity of particles in the liquid media 

is an important factor influencing on the rate of biochemical processes in the body. 

Suppose that the model parameters are connected by means of some common factors 

G 
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where is a known vector of parameters for so-called basal organism or 

"average" for the given group of patients, and for the evaluation of this parameter we 

can use the methods which was mentioned above, G is an unknown micromovement 

intensity of interacting particles. 

Denote Q micromovement intensity of interacting particles for the basal organism, 

then 

So, the parameter HL we can interpret as normalized intensity of the micromovement 

of interacting particles in the liquid media of the organism. This means that for M patients 

we have to write M models 

which are distinguished only by the parameter HL. 

3.2. Estimating of HL. 

Based on the previous results, let us study the problem of HL estimating by 

x = { xt, ~ € 0  }, 0 = { tl,t2 ,..., tN } (28) 

According to (26) we have 



Appropriate stochastic model for observed data (see Section 2.1) is 

Repeating the manipulation from the Section 2.2 we can write the filter problem in the form 

For the estimation HL we have an iteration process again: HI.+-+,=HL, + 6HL. But the 

analytical form for v(x,y) is an unknown yet. It call us to study the process in question on 

the microlevel. 

4. The system of interacting particles. 

Consider a system of interacting particles in the liquid media of the organism. Let us 

denote for the time t 

be generalized coordinates of the interacting particles system and 



be corresponding generalized rate, where s is a number of degrees of freedom in the system 

of interacting particles. Using the generalized coordinate allows us, in principle, to describe 

complex progressive and revolving movement of the particles in the liquid media (blood and 

lymph). The number of degrees of freedom s has the order approximately lo7 (a number of 

particles). Now, we can write, formally, the movement equation in the form 

where IJ is a generalized force, which describe the disturbance of the liquid media by the 

organs and tissues of a living body, 

~ ( t )  is a disturbances with the characteristic time r1= 1 sec., which describe the 

movement of the liquid media due to heart beat. It should be mentioned that the 

variables q(t) and ~ ( t )  have the same characteristic times. 

t,, is a disturbances with the characteristic time 7,= sec.(average time interval 

between contacts of the particles). 

E > 0 is a small parameter with order rdr1 - 

The movement of the system due to a(t) we will call a trend and due to 4: a random 

movement. To describe a trend we need to do averaging by the fast variable. Suppose that 

the following limit exist 

More precisely, the following limit takes place, uniformly by 7, for any 6 > 0 



where P(A) is a probability of event A. Thus we have 

Consider the normalized difference 

Theorem 1. Assume that the random process t, with the values in Rm has a piece-wise 

continues, with the probability one, trajectories and satisfy the condition of strong 

mixing with the coefficient Y(T) such that 

and 

Moreover, for all T E  [O,V and C < w 



Then the process 

as ~ 4 ,  weakly convergence on [O,V to gauss process with the independent 

increments, zero mathematical expectation and covariate matrix 

where 

This is a simple variant of the Theorem 3.1 from (Ventcel at al, 1975). Using this 

Theorem, for small E, we can rewrite of the movement equation in the form 

where w, is a wiener process, B(t) is a matrix such that 

B(t)B T(t) = R(t) 

It is a known, that for the diffusion process x,, 

At = A(x,t)dt + B(xJ)mot 

the conditional probability density p(x,t I %,td) satisfy to the Fokker-Planch equation 



where A is a shift vector, and 

D=BBT is a diffusion matrix. 

Thus for the system (46) we have 

1 + - C R.. a'p(4,t) 
2 i,i ' aqia4,' 

By this means, in the system of interacting particles the shift of the particles together with 

liquid media due to heart beat and etc. is described by the vector J /  and the Browian 

movement by the covariance matrix R(t). It should be noted that for the centralized process 

we have 

Now consider the characteristic time T2 during which the separate micromovements of 

particles in the liquid media of the organism must be thoroughly mixed (this is approximately 

1 min). It means that for the time interval more than 72 we can consider our stochastic 

process as a stationary stochastic process 



. where the matrix D is not dependent on time. Under this condition we can start to study the 

micromovement similarity for two organisms. 

4.1. Similarity of the diffusion processes. 

Definition 1. Two diffusion processes x(t) and y(t) are called stochastic equivalent 

if, for any t, their conditional density p,(u,t) and p,(u,t) are 

almost everywhere u. 

Compare two organisms. The first is a so-called basal one, the parameters of which 

are known = (a1,a2,. . . ,am)T. The parameters of the second organism a = (a1, a2,. . . , a")T are 

unknown. Now we want to investigate its similarity. Let for t > T, 

be generalized coordinates, and 

be generalized rate of the system of interacting particles. 
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Pogozhev's Hypotheses. From the thorough analysis made in P] it follows that the 

general vital functions are approximately similar not only in different bodies but in 

many mammals as well. Organisms are much alike: they consist of cells of 

approximately equal size, however their total number defines each body size. The 

sizes of inter-cellular space, blood capillaries, erythrocytes, lymphocytes, 

macrophages and other particles interacting in the immune process are also almost the 

same as well as the volume fraction of an organ's liquid media such as blood plasma, 

lymph, intra-tissue fluid, their temperature and viscosity, concentration of 

lymphocytes, proteins, glucose and other interacting particles. Vital lung volume and 

heart mass vary with body mass, and about five systoles fall on one breathing cycle 

in humans and many other mammals. 

The analysis of these and modem physiological data allows us to adopt the 

following assumption of similarity of interacting particle micromovements in liquid 

media of the organisms to be compared: 

where V,, are specific rate of blood circulation (calculated per mass unit); 

T,, are average durations of cardiac cycle of an organism in question and the basal 

one respectively; 

symbol = in (57) and below is interpreted as stochastic equivalence of a 

corresponding random process [IT. 

A stochastic equivalence means that all available statistical information about the 

organism in question, which we can obtain in terms of generalized rates dq(t)/dt, we can 

recalculate using generalized rates for the basal organism. For this purpose we must multiply 

a generalized rate of basal organism on the quotation VJ&, and change the time scale &T,. 

In other words for the different bodes we use its individual "physiological" time. This fact 

corresponds to main theses from (Shmidt-Nielson, 1987). 
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Let us now use the idea of transformation (57) and consider the following relation. 

u(t) au(bt), (58) 

where a and b are unknown constant a,bER1. To find them let us consider the process 

u'(t) = au(bt). (59) 

on the time interval more than 7, and establish the condition of stochastic equivalence 

u(t) =ii(t). The conditional densities for u(t) and u(t) are 

a 1 -fin = - x D.. a'p<un 
at 2 i,j ' a u , h j '  

Now, we can write the analogous equation for the process ii(t). Clearly, that 

Then from (60) we have 

Using (62) and Definition 1, for the stochastic equivalence of the process u(t) and ii(t) the 

following relation must be hold 

Differentiating (58) we have 



Comparing previous relations we have 

Thus 

and if 

then we have 

which was called by Pogozhev as a relationship of similarity. Now, it should be mentioned 

that for the diffusion processes the following relationship is hold 

and for (58) we have 



Repeating previous calculations we can write the equations for densities 

This means that for the shift vector we have a transformation 

- 
qJ =,lm$ 

and same results can be obtained for the non-stationary case. 

4.2. Parameterization of the model. 

Let us now return to the model (29) Now we have to define an analytical form of the 

function v@,HL). Let ~ ( 7 )  and TJ(T) be the number of interactions of particles during the 

period T in the given and basal organisms respectively. These values are functionals of the 

trajectory of the interacting particles system 

q ( r )  = JCg(t), Ostsr) = u r  
q ( r )  = JCg(t), Ostsr) = pr 

To explain this proposition we can consider the number of interactions as a random process 



of the events, which is stationary with the intensity p.  In this case, the probability of z 

interactions is 

Then the average number of contacts is pr. Using the relation of similarity we have 

The vector of parameters a in the model (29) is proportional to intensity of 

interactions p and 

where y is a constant vector. From (76), for the given organism, we have 

a = a H L  

In such manner 



4.3. Similarity of the homeostasis levels. 

The reaction of the homeostatic system to perturbations is described by the linear 

system 

Here c is a vector of disturbances, 

A is a matrix of parameters, 

B is a vector, which is interpreted as a rate of influx of particles into zone of 

interacting. Therefore this vector is proportional to the shift vector $. 

This allows us to consider the vector B as a lineal functional of $, and we can write 

B = G ( ~ J ) = G ( @ ~ ~ J = @ G @ ) = @ B  (81) 

According to the model (80) the homeostasis level is 

x" = A-'B 

Then, taking into account our previous results, for the given organism we have 

where A and B are the parameters of the basal organism. So, we obtain 

These transformations of parameters are sufficient for this work. The reader can find others 
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in (Pogozhev, 1988). For example, for the effective volume we have 

5. The model of carbohydrate metabolism. 

To conform our theory consider the model of carbohydrate metabolism which is 

known as Bolier model 

where y , is the quantity of glucose in the intestines, x: =G,-G* and G, is the concentration 

of glucose in the blood; x:=I,-I*, I, is a concentration of insulin in the blood, G* and I* are 

related homeostasis levels. Let gi, i = 1,2,. . . ,6, G* and I* correspond to the basal organism. 

Using the previous results for the individual one we have 



In the model the parameter HL 

takes into account the individual character 

of the metabolism process in the given 

organism. For the group of M patients we 

have H1, HL2,. . . ,HLM individual 

parameters. 

Here, we discuss some practical 

examples following Pogozhev. In Fig. 3. 

the dynamics of the sugar in the blood are 

presented. Every sugar curve corresponds to 

a single age group of healthy persons and 

describes the average sugar dynamics in this 

group after glucose loading. These curves 

we can consider as curves, which were 

obtained from the eight different patients 

with 

I I 

Figure 3 Sugar curves for subjects of different 
age (observation data). G - blood sugar in, t- 
hours after glucose load. Age groups (years); 
1- up to 10; 2- 10-20; 3- 20-30; 4- 30-40; 
5- 40-50; 6- 50-60; 7- 60-70; 8- more than 70. 

For X, we have the model (86), and the parameter HL takes into account peculiarity of 

every curve. In our example, as a basis for calculation of HL we consider the group of 

patients from 20 to 30 years old as a basal trajectory. Using this curve we can estimate Gm,  

Im , and a. Now for our example, we recalculate the parameters of the model (85) for each - 
curve using the relationships 
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Figure 4 Comparison of the sugar curves plotted with the aid of similarity relations with 
respect to "norm". Number of charts and values oh HL parameter corresponds to age groups 
in Fig. 3. 



Here HL is an unknown parameter. For the group of patients from 20 to 30 years 

HL= 1.The results are presented in Fig. 4. 

From the graphs it can be seen that the distinction between curves are completely 

described by the parameter HL. All these results show that the approach, which is proposed 

here, for the model parameterization do not contradict the data of observations. Of course 

this approach should be tested with other models and data. 
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