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FOREWORD 

The authors study value functions of a differential game with payoff which 
depends on the state a t  a given end time. They consider differential games 
with feedback strategies and with nonanticipating strategies. They prove 
that value-functions are solutions to some Hamilton-Jacobi-Isaacs equations 
in the viscosity and contingent sense. For these two notions of strategies, 
with some regularity assumptions, The authors prove that value-functions 
are the unique solution of Isaacs' equations. 
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Isaacs' equations for value-functions 
of differential games 

HClGne F'rankowska & Marc Quincampoix 

1 Introduction 
Let us consider the following differential game: 

(1) 
x'(t) = f ( t ,  4 t h  u(t), v(t)), t E [to, TI { i!) u(t)  , u v(t) , v 

The two players act on the state x(.) by choosing controls, u for the first 
player and v for the second one. The goal of the first player is to maximize 
a t  the given end time T the payoff g(x(T)),  the second player wants to 
minimize it. 

Let us recall that the game with the following payoff: 

may be reduced to the above one. In fact, by the simple change of variable 
z := (x, y),  we obtain the new game 



(3) { i) (xf( t) ,  yf(t)) = (f ( t ,  ~ ( t ) ,  u(t),  v(t)), L(t,  x(t),  u(t),  v( t)))  
i i )  u(t)  E U 
iii) v(t) E V 

with the payoff G(x(T),  y(T)) := g(x(T)) + y (T) which is equal to (2). 

Since Isaacs (cf [14]), it is well-known that the value-function satisfies a 
partial differential equation (the Isaacs' equation) when the game is regular 
enough. The solutions of this equation have been studied by Isaacs himself 
in C1 case (see [14]), lipschitz solutions have been studied for example in 
[15], and in [9], [5], [17] for viscosity solutions. However such regularity is 
not always the case (see also for instance [12], [4], [6] ... for control systems). 

We introduce two notions of strategies and we prove that the associated 
value-functions are solutions to Isaacs' equation without any assumptio~ls 
concerning the regularity of g. In this paper, we mainly state results (see 
[13] for more detailed proofs). 

2 Feedback strategies of differential games 

Consider a function f : [0, TI x Rn x U x V H Rn where U and V are tw.0 
complete separable metric spaces. Let us denote by t H x(t,  to, 20, u( . ) ,  v(.)) 
the solution to (1) corresponding to controls u( . ) ,  v(-) ,  starting from xo at 



time to (i.e. such that x( to )  = xo) .  We shall need the following assumptions: 

( i )  f  is continuous 

i i )  V ( t ,  x )  E [0, T ]  x Rn, V ( u ,  v )  E U x V  the sets 
f ( t , x , u , V ) ,  f ( t , x , U , v )  are compact and convex 

I iii) V ( t , x , u , v )  E [O,T] x Rn x U  x V ,  
functions f ( t ,  x ,  ., v )  and f ( t ,  x ,  u ,  -) are 
1 - Lipschitz, where 1 > 0  

i v )  V R  > 0,  3 c ~  E L1(O,T) such that for almost all 
t  E [O,T] and for a11 ( u , v )  E U  x V ,  f ( t , . , u , v )  
is cR( t )  - Lipschitz on B(0 ,  R ) .  

I v )  3 k  E L1(O, T )  such that for almost all t  E [0, TI 

SUP,,u sup,,v ( I f  ( t ,  x,u,v)ll L k ( t ) ( l  + 11xl1> 

We call feedback strategy for the first player any function p  : [0, TI x X H 

U such that ( t , x )  H f ( t ,  x ,  p ( t ,  x ) ,  V )  is upper semicontinuous with respect 
to ( t ,  x ) .  We denote by the set of feedback strategies for the first player. 
In a similar way we can define feedback strategies for the second player and 
Q the set of such strategies. We denote by U (respectively V )  the set of 
measurable functions [0, TI H U (respectively [0, T ]  I-+ V ) .  

We assume furthermore the following crucial condition which allows to 
define the value function of the game: 

There exists a pair of feedback strategies (p*,  +*) E x Q such that for 
any measurable control u( . ) ,  there exists an unique solution to 

such that x( to )  = xo and we denote by x(. ,  to,  xo,  u( .) ,  +*(., -)) this solution. 
In a similar way, we assume also the existence and unicity of x(. ,  to, xo, p*(., -), v ( . ) )  

and x ( - ,  to, 5 0 ,  @(., .), $*(., -)). 

( 5 )  { v (to, xo), v ( u ( . ) ,  v ( . ) )  E U x v 
g ( x ( T ,  to, xo, u ( . ) ,  $*(., .))) 5 g ( x ( T ,  to, xo, @(., $*(., .))I 
5 g ( x ( T ,  to, xo, P(.,  9, v ( . ) ) )  



Definition 2.1 If (5) is satisfied, we call 

the value function1 of the diferential game with feedback strategy. 

3 Contingent solutions to Isaacs' equations 

Consider the following contingent2 inequalities: 

I O ( T ,  .) = g(.) and V ( t ,  x )  E Dom(O)  
i )  if t E [0, T [ ,  then 
SUP"€ u infv€ V D@(t ,  x ) ( l ,  f ( t ,  x , u ,  2 ) ) )  I 0 
i i )  if t E [0, T [ ,  then 
SUPUEu i n f v ~  V D 1 0 ( t , 5 ) ( 1 ,  f ( t ,  2 ,  U ,  v ) )  L 0 

O ( T ,  .) = g(.)  and V ( t ,  x )  E Dom(O)  
i )  if t E [0, T [ ,  then 
infve v S U P U E ~  DtO(t ,  5 ) ( 1 , f ( t ,  x , u ,  v ) )  I 0 
i i )  if t E [O,T[, then 
i n f u ~  V SUPuEu D , O ( t , x ) ( l ,  f ( t ,  x , u ,  4)  2 0 

A such O : [0, TI x Rn I+ is called contingent solution to  the Isaacs' 
equation. We can prove without any assumptions on g the following: 

Proposition 3.1 Assume that (4) and (5) hold true, then the value function 
satisfies (6)i) and (7)ii). 

'This definition is very related to the one of Pierre Bernhard (see [7]). 
2Recall the definition of the contingent epiderivative of O : Rn ++ a t  xo E Dorn(O), 

O(xo  + hv)  - @(lo)  
D ,  O(xo) (u)  = lim inf 

h-O+,v-u h 

or equivalently E p i D I O ( x o )  = TEpiO(xO,  O ( x O ) ) ,  where Epi states for the epigraph. In 
a similar way for the contingent hypoderivative of 8 a t  xo E Dom(O) is defined by 
D , O ( x ) ( u )  := - D l  ( - O ) ( x ) ( u ) ,  and the contingent derivative of O a t  xo E Dom(O) is 
defined by: 

GraphD@(xo) = T ~ r o p h ~ ( x ~ ,  @ ( l o ) ) .  



Proof - Let us prove (6)i). Fix ii E U and h > 0. Define xh a solution of 
x l ( t )  = f ( t ,  x ( t ) ,  ii, +*) t E [to, to + h] such that x ( tO)  = 50 .  Let us introduce 

21 if t E [to, t o  + h] 
Y'*(t, ~ ( t ,  to + h ,  xh(tO + h ) ,  (P*(., .), +*(., .)))) 
if t > t o + h  

Then by the very definition of W ,  
W ( t o  + h ,  ~ h ( t o  + h )  = g ( x ( T ,  to + h ,   to + h ) ,  d*(. ,  .), $*(., .))) which is 

equal to g ( x ( T ,  to, s o ,  ~ h ( - ) ,  $*(., .))) and by ( 5 ) ,  g ( x ( T ,  to, s o ,  ~ h ( - ) ,  $ * ( a 7  .))I 5 
g ( x ( T ,  to, 5 0 ,  @(., 9, $*(., 9)) = W ( t 0 ,  2 0 ) -  Hence 

lim inf W ( t O  + h ,  xh(t0 + h ) )  - W ( t 0 , x o ) )  < 
h - 

h-+O+ 

Thanks to our assumptions and by the Mean Value Theorem, there exists 
hn 4 O+ such that: 

This yields infVE D, W ( t o ,  x o ) ( l ,  f ( t ,  x ,  E, v)) 5 0 and proves (6)). 
We can obtain other contingent inequalities with suitable regularity as- 

sumptions concerning strategies 

Proposition 3.2 Assume that (4) and (5) hold true. I f ( t ,  x )  H f ( t ,  x ,  p*(t, x ) ,  V )  
is continuous at ( t o ,  xo ) ,  then the value function W satisfies (6)ii). If ( t ,  x )  H 

j ( t ,  x ,  U,  $*(t, x ) )  is continuous at ( t o ,  so),  then the value function W satisfies 

(7) i). 

Now we shall state an unicity result3: 

Theorem 3.3 Assume that (4)) (5) hold true and that W is continuous. 

If ( t ,  x )  H f ( t ,  x ,  (p*(t, x ) ,  V )  is continuous, then any lower semicon- 
tinuous (1.s.c.) function O satisfying (6)i) is larger or equal than M/ 

3 ~ f  the proof in [13] 

5 



If ( t ,  x )  H f ( t ,  x ,  U,  $*(t, x ) )  is continuou~, then any upper semicontin- 
uous (u.s.c.) function O satisfying (7)ii) is lower or equal than W .  

Corollary 3.4 When (4), (5) hold true, and W is continuous and when 
( t ,  x )  H f ( t ,  x ,  U ,  $*(t,  x ) )  and ( t ,  x )  H f ( t ,  x ,  ( ~ * ( t ,  x ) )  are continuous, the 
value function W is the unique continuous solution to Hamilton-Jacobi-Isaacs 
inequalities (6) and (7). 

4 Viscosity solutions to Isaacs' equation 

We first define the lower and upper Hamiltonians of the differential (1): 

H- ( t ,  x ,  p) := m a x v ~  v minu€ u < p, f ( t ,  x ,  21, v )  > 
H+(t ,  x ,  p) := minu€ u m a x , ~  v < P ,  f ( t ,  X ,  21, v )  >, 

Consider two Hamilton-Jacobi equations: 

In this section, we give some results concerning viscosity solutions to 
Hamilton-Jacobi-Isaacs equations. First, we recall the definition of viscosity 
solution by using sub and super differentials4: 

Definition 4.1 Consider H : [O,T] x Rn x Rn H R Let us recall that the 
function O : [ o , T ]  x Rn H E is a viscosity supersolution to the following 
Hamilton-Jacobi equation - z ( t ,  x )  + H ( t ,  x ,  - g ( t ,  2 ) )  = 0 if and on/y  if: 

V ( t , ~ )  E Dom(O) ,  V (pt,  P,) E 8 - O ( t , z ) ,  -pt + H ( t , x ,  -p,) > - O 
The function O is a viscosity subsolution if and only i f:  

V ( t , x )  E Dam(@), V ( p t , ~ , )  E d+O( t , x ) ,  -pt + H ( t , x ,  -p,) 5 0 
A function O is a viscosity solution if it is a supersolution and a subsolution. 

4 ~ e c a l l  the definition of the subdifferential of 4 : Rn -a, a t  zo E Dorn(d) 
a-Q(zo) := { p E Rn 1 lim inf,,,, '(z)-'(zo)-<p'z-zo' I l ~ - ~ o  1 2 0 } and the super differential 

of Q at ro is given by: 8+d(ro) := - 8 7  



We can prove without any assumptions concerning g the following exis- 
tence result: 

Proposition 4.2 Assume that (4) holds true, then the value-function W is 
a supersolution to (8) and a subsolution to (9). 

But when the value-function W is continuous, we have the more precise 

Proposition 4.3 Assume (4). Then if W is continuous and ( t ,  x )  t-t f ( t ,  x ,  U ,  $*(t,  x)) 
is continuous, then W is a viscosity solution to (8). 
If W is continuous and ( t ,  x )  t-t f ( t ,  x ,  (p*(t, x ) ,  V )  is continuovs, then W is 
a viscosity solution to (9). 

Theorem 4.4 Let assumptions of Corollary 3.4 hold true. Let O : [O,T] x 
Rn t-t R be continuous. Then O is the value function of the game if and 
only if it is a viscosity supersolution to (8) and a viscosity subsolution to (9). 

Corollary 4.5 Let us assume (d), (5) and let O : [O,T] x Rn t-t R be a 
continuovs function. If we assume the following Isaacs' condition: 

then the value function is the unique viscosity solution to (9) (or equivalently(8)). 

These results follow from results of the previous section and from the 
following section. 

5 Comparison between viscosity and contin- 
gent solutions to Hamilton Jacobi Isaacs 
equations 

Proposition 5.1 Consider O : [O,T] x Rn t-t verifying (6) (respectively 
(7)). Then O is a viscosity solution to (8) (respectively to (9)). 

This result is a consequence of the following 

Lemma 5.2 Consider O : [0,  TI x Rn t-t R. 



If O satisfies (6)i), then it is a supersolution of (8). 

If O satisfies (6)ii), then it is a subsolution of (8). 

If O satisfies (7)i), then it is a supersolution of (9). 

If O satisfies (7)ii), then it is a subsolution of (9). 

Proof - Let us prove the first statement. If O satisfying (6)i) then5: 

Then by taking the Usupinf7 of this inequality, we prove that O is a super- 
solution to  (8). The proofs of the other statements are similar. 

When value functions are continuous, the notions of contingent and vis- 
cosity solutions of Isaacs7 equations are equivalent. 

Theorem 5.3 Let O : (0, T ]  x Rn H R be a continuous function and le t  (4) 
hold true. Then O satisfies the contingent inequalities (6) (respectively (7)) 
if and only if it is a viscosity solution to the Hamilton-Jacobi-Isaacs equation 
(8) (respectively (9)). 

Lemma 5.4 If (4) holds true. 

Any 1.s.c. function O is a supersolution of (8) if and only if it satisfies 

(6) i)  - 
Any 1.s.c. function O is a supersolution of (9) if and only if it satisfies 

(7) 2) 

Any U.S.C. function O is a subsolution of (8) if and only if it satisfies 
(6)ii). 

5Let us recall (see [2] chapter 6 for instance) that we have the following equivalent 
definition for the subdifferential of a function 4 

a-d(zo)  = { P 1 V q E Rn, D,d(zo)(q) ?< P ,  '2 > 



Any u.s.c. function O  is a  subsolution of (9) if and only if it satisfies 
(7) ii) . 

Proof of Lemma - We already know, thanks to  Proposition 5.1 and 
Lemma 5.2, that contingent solutions are viscosity solutions. Let us prove 
the converse implication. 

Assume that O  is a supersolution to (8), i.e.: 

Hence, for any u  E U ,  in fvEvpt+ < p,, f ( t , x , u , v )  >I 0. But we know, (cf 
[12]) that (pt ,  p,) E d-O(t ,  x )  if and only if (pt , p,, -1) belongs t o  the normal 
cone (TEpiO( t ,  x ,  O ( t ,  5 ) ) ) - .  We claim that 

Assume for a moment that is false, then, by the separation theorem we should 
have : 

3 ( P ~ , P Z , ~ )  E ( T E p i O ( t , ~ , O ( t , x ) ) ) - ,  3 E U S U C ~  that  

v  E V ,  pt+ < p z , f ( t , x , u , v )  >> 0 

This is a contradiction with (12).  So 

V ( t , x ,  y )  E Epi (O) ,  for all u  E U 

{ 1 1 x f ( t , ~ ,  U ,  V )  x { 0 ) n c o ( T ~ p i ~ ( t ,  599))  # 0 

and we can deduce from6 Theorem 3.2.4 in [:I], that { 1  ) x f ( t ,  x ,  u ,  V )  x 
{ 0 )  n TEPjo( t ,  x ,  O ( t ,  x ) )  # 0 ,  for any ( t ,  x )  E DomO. This implies the 
following contingent equation: 

V ( 2 ,  x )  E D o m ( O ) ,  V u  E U, inf Dl O ( t ,  x ) ( l ,  f ( t ,  x ,  u ,  v ) )  5 0  
vE V 

6Let us recall 
Theorem 3.2.4 in 
with compact con 

a duality result in viability theory (due to Ushakov see for instance 
[I]). Consider a closed set K C Rn and let F  be u.s.c set-valued map 
vex values. Then the following two statements are equivalent: 

i )  V z  E K ,  F ( z ) n T ~ ( z )  # 0 
i i )  V  z  E K ,  F ( z )  n co(T'(z)) # 0 

where co is the closed convex hull. 



Let us prove the third statement. Assume that O satisfies 

(15) V ( P ~ , P , )  E g+@(t, x ) ,  sup inf pt+ < p,, f ( t ,  x ,  U ,  V )  >> o 
U E U V E V  

We claim that 

If (16) is not satisfied, by the separation Theorem 

V u E U, 3 v E V such that 

( I 7 )  3 ( p t 7 p x 7  9 )  E ( T ~ y ~ ~ @ ( t ,  2 ,  @( t7  x ) ) ) - ,  
pt+ < pz ,  f ( t ,  x ,  u ,  v )  > < 0 

This is a contradiction with (15). Then, thanks to (4) ,  and since (cf [2 ]  

~.130)7 

lim inf co(T~,,,o (t ' ,  x', y')) C T H , ~ ~ O ( ~ ,  x@(t ,  2 ) )  
(t',x',v')-(t,.,@(t,r)) 

we can deduce that { 1 )  x f ( t , x , u ,  V )  x ( 0 )  c T H y p o O ( t , ~ , @ ( t , ~ ) )  and con- 
sequently (7)ii) holds true. The proofs are similar for the other statements. 
0 

6 Nonanticipat ing strategies 

We shall define value-functions for a concept of strategy studied by Elliot- 
Kalton (see also [9]) .  We denote by U ( t )  (respectively by V ( t )  ) the set of 
measurable functions u : [ t ,  T ]  tt U (respectively v : [ t ,  TI tt V ). 

Firstly let us recall the definition of nonanticipating strategies. 

Definition 6.1 We call nonanticipating strategy for the first player any 
function cr : V ( t )  H U ( t )  such that 

and we denote b y  r ( t )  the set of such nonanticipating strategies. 



W e  call nonanticipating strategy for the sevond player any function P 
U ( t )  H V ( t )  such that 

V t  E [O,T], V ( u , i )  E U ( t ) ,  V S  E [O,T], 
u s a. e. in [ t  s + P(u)  G P(u) a. e. in [ t ,  s] 

and we denote by A ( t )  the set of such nonanticipating strategies. 

This notion of strategies enables us to define the two value-functions: 

Definition 6.2 Consider the upper value-function of the game: 

@(to, xo) := inf sup g ( x ( T ,  to, xo, u ( . ) ,  P ( u ) ) )  
P E  A(t0)  u( . )€U( to)  

and the lower value-function: 

Q(to,xo) := sup inf 9 ( x ( T ,  to, xo, o ( v ) ,  v ( . ) ) )  
a€ r ( t O )  ''(.I€ V ( ~ O )  

Proposi t ion 6.3 Assume that (4) holds true. If g is continuous, then 8 
and @ are continuous. 

Proof  - We shall prove that Q is continuous7 at  some t l , x l .  Consider 
E > 0,  , x2 and 0 5 t l  5 t2  5 T .  By the very definition of the value-function 
8 ,  there exists cr E I ' ( t l )  such that 

Fix C E V. For any v ( . )  E V ( t 2 ) ,  we define ~ ( s )  = 

and for any a we define ~ ( v )  = a(2). 
Hence, there exists v ( . )  E V ( t 2 )  such that Q(t2, 2 2 )  > g ( x ( T ,  t2,x2, ~ ( v ) ,  2 ) ) ) ) -  

E and according to (18) ,  we have 8 ( t l ,  x i )  5 g ( x ( T ,  t l ,  X I ,  o ( v ) ,  v ) )  + E.  On 
the other hand, from Gronwall's Lemma, there exists some R > 0 such that 

Ilx(T, t i ,  X I , C ( ~ ) ( . ) ,  v ( . ) ) - x ( T ,  t2, ~ 2 ,  ~ ( v ) ( - ) , v ( - ) ) I l  I R(IIxi - ~ z l l + ( t i  - t 2 ) )  

7 ~ t ' s  easy to extend the proof when g is uniformely continuous and then the value- 
functions are uniformely continuous too. 



Since g  is continuous, there exists 6 > 0 such that for any ( t 2 ,  x2 )  E R([O, 11 x 
B) we have 

Hence Q ( t l , x l )  - Q(t2 ,x2)  I 3 ~ .  On the other hand for every a: Q ( t l , x l )  2 
inf~( . )E~( to)  g (x (T ,  t l ,  x l ,  a ( v ) ,  v ( - ) ) )  2 infv( . )~v( t~)  g(x(T,t2,52, a ( v ) ,  v ( . ) ) ) - &  
Hence Q(t1, x l )  2 Q(t2, x2 )  - e. We have similar result when t2  < t l  and for 
the value-function 9. 

7 Solutions to Isaacs equations with nonan- 
ticipat ing strategies 

Proposition 7.1 If (4) holds true, then 9 satisfies (6)i) and Q  satisfies 
(7) ii) . 

Proof - Fix ii E U. Consider Ph E A( to )  such that 

Let define Uh(to) the subset of measurable controls u(.)  E U( to )  such that 
u ( s )  = ii for almost every s  E [to, to + h]. then 

( I 9 )  SUP g (x (T )  to, "0 ,  u( . ) ,  Ph(u))) I @(to, 5 0 )  + h2 
u€Uh(to) 

By the very definition of Ph, there exists some v(.)  E V ( t o )  such that for any 
u ( - )  E Uh, V ( S )  = Ph(u)(s)  for almost every s  E [to, to + h] .  

Let xh ( - )  denote the solution to  x l ( t )  = f ( t ,  x ( t ) ,  ii, v ( t ) )  on [to, to  + h] 
such that xh(to) = xo. From (19), we deduce 

Define P E A( to )  such that for any u( . )  E U( to )  we have P(u) := Ph(g) with 

ii if s  E [to, to + h] 
g ( s )  := 

u ( s )  if s  > to + h 



Hence SUPuEu(,,) s(x(T, to,zo, u(.), b(u)))  5 @(to, xo)+h2 and therefore infpca(t0) sup,Eu(to) g(x( 
@(to, xo) + h2. This proves the following inequality 

On the other hand, there exists a sequence h; + 0 and G E V such that  

this yields Df@(to ,  xo) ( l ,  f (to, $0, u, G)) 5 0 and consequently (6)i). The  
proof is similar for the second statement. 

P r o p o s i t i o n  7.2 If g is continuous, then @ satisfies (6)ii) and Q satisfies 
(7) ii) . 

It is possible t o  prove that  @ is a viscosity subsolution to  (8) and thanks to  
results of section 5 that  it is a contingent solution t o  (6)ii) (see [13] for the 
proof). 

Coro l l a ry  7.3 If g is continuous, then @ is a viscosity solution to (8) and 
Q is a viscosity solution to (9). 

Finally we just state an existence result 

P r o p o s i t i o n  7.4 Assume that (4) holds true and that g is uniformely con- 
tinuous. If we assume the Isaacs' condition ( lo) ,  then @ = Q and the value- 
function is the unique uniformely continuous viscosity solution to the Isaacs' 
equation. 

The proof is based on a theorem of Crandall-Lions concerning the unicity of 
bounded uniformely continuous solution of Hamilton-Jacobi equations (see 
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