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FOREWORD

The authors study value functions of a differential game with payoff which
depends on the state at a given end time. They consider differential games
with feedback strategies and with nonanticipating strategies. They prove
that value-functions are solutions to some Hamilton-Jacobi-Isaacs equations
in the viscosity and contingent sense. For these two notions of strategies,
with some regularity assumptions, The authors prove that value-functions
are the unique solution of Isaacs’ equations.
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Isaacs’ equations for value-functions
of differential games

Héléne Frankowska & Marc Quincampoix

1 Introduction
Let us consider the following differential game:

{ 1) /(1) = f(t,2(t), u(t),v(t)), t € [to,T]

(1) H) wt)eU wlt)eV

The two players act on the state z(:) by choosing controls, u for the first
player and v for the second one. The goal of the first player is to maximize
at the given end time T the payoff g(z(T')), the second player wants to
minimize it.

Let us recall that the game with the following payoff:

' T
2) o=@+ [ Lit,2(0), u(t), o(t))dt

may be reduced to the above one. In fact, by the simple change of variable
z := (z,y), we obtain the new game



with the payoff G(z(T),y(T)) := g(z(T)) + y(T) which is equal to (2).

Since Isaacs (cf [14]), it is well-known that the value-function satisfies a
partial differential equation (the Isaacs’ equation) when the game is regular
enough. The solutions of this equation have been studied by Isaacs himself
in C! case (see [14]), lipschitz solutions have been studied for example in
[15], and in [9], [5], [17] for viscosity solutions. However such regularity is
not always the case (see also for instance [12], [4], [6]... for control systems).

We introduce two notions of strategies and we prove that the associated
value-functions are solutions to Isaacs’ equation without any assumptions
concerning the regularity of g. In this paper, we mainly state results (see
[13] for more detailed proofs).

2 Feedback strategies of differential games

Consider a function f:[0,7] x R® x U x V + IR™ where U and V are two
complete separable metric spaces. Let us denote by ¢ — z(t, 2o, o, u(:), v(-))
the solution to (1) corresponding to controls u(-), v(-), starting from z, at
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time to (i.e. such that z(¢o) = zo). We shall need the following assumptions:

(i)  f is continuous

it) VY (t,z)€ [0,T] x R*, V¥ (u,v) € U x V the sets
f(t,z,u,V), f(t,z,U,v) are compact and convex

i) V(t,z,u,v)€ [0,T]x R*x U x V,
functions f(t,z,-,v) and f(t,z,u,-) are
(4) < | — Lipschitz, where 1> 0

iv) YVR>0,3cp€ L'(0,T) such that for almost all
t € [0,7) and for all (u,v) e U xV, f(t,-,u,v)
is cp(t) — Lipschitz on B(0, R).

v) 3k € LY(0,T)such that for almost all ¢t € [0,7]
\ SUP ey SUPyev ||f(t,a:,u,v)|| < k(t)(l + ”.’L‘”)

We call feedback strategy for the first player any function ¢ : [0,T] x X —
U such that (¢t,z) — f(t,z,¢(¢,z),V) is upper semicontinuous with respect
o (t,z). We denote by @ the set of feedback strategies for the first player.
In a similar way we can define feedback strategies for the second player and
U the set of such strategies. We denote by U (respectively V) the set of
measurable functions [0, T] +— U (respectively [0,7] — V).

We assume furthermore the following crucial condition which allows to
define the value function of the game:

There exists a pair of feedback strategies (¢*,%*) € ® x ¥ such that for
any measurable control u(-), there exists an unique solution to

z'(t) = f(t,2(t), u(t), ¥*(t, z(t)))

such that z(tg) = zo and we denote by z(:, e, zo, u(-),%*(-,-)) this solution.
In a similar way, we assume also the existence and unicity of z(-, to, zo, ©*(+, ), v(*))

and :l‘(-, to, zo, QS*('a ')a "»b*(" ))

V (t0,20), V (u(-),v(:)) € U x V
(5) ( (T to, To, u () (’ ))) g(.’t(T to, To, ¢ ( ) "rb*( )))
< g(.’l:(T t0,$0,¢ ( )av( )))
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Definition 2.1 If (5) is satisfied, we call
W(tO’ ‘TO) = g(.T(T, Lo, Zo, ¢*('7 ')7 ¢*(', )))

the value function' of the differential game with feedback strategy.

3 Contingent solutions to Isaacs’ equations
Consider the following contingent? inequalities:

[ O(T, ) =¢(-) and V (t,z) € Dom(0O)
i) if t € [0,T[, then

(6) ¢ sup,eyinfuev DiO(¢, 2)(1, f(t, z,u,v)) <0
1) if t € [0,T[, then

| sup,cyinfuev D O, z)(1, f(t,z,u,v)) 20

( O(T,:) =g(-) and V (t,z) € Dom(0O)
J i) if t € [0,T[, then
infue v sup,cy D1O(t, z)(1, f(t,z,u,v)) <0
it) if ¢ € [0, T, then
| infuevsup,cy D,O(t, z)(1, f(t,z,u,v)) 20

A such © : [0,T] x R* — IR is called contingent solution to the Isaacs’
equation. We can prove without any assumptions on ¢ the following:

(7)

Proposition 3.1 Assume that (4) and (5) hold true, then the value function
satisfies (6)i) and (7)ii).

1This definition is very related to the one of Pierre Bernhard (see [7]).
2Recall the definition of the contingent epiderivative of © : R® — R at zo € Dom(0),

D,O(zo)(u) = liminf O(zo + hv) - 6(20)

h—s 0+, v—u h

or equivalently EpiD, ©(zo) = Tgpio(zo, ©(z0)), where Epi states for the epigraph. In
a similar way for the contingent hypoderivative of © at zo € Dom(©) is defined by
D,O(z)(u) := —D,(—0O)(z)(u), and the contingent derivative of © at zo € Dom(0) is
defined by:

GraphDO(zo) = Tgrapho(zo, ©(z0)).



Proof — Let us prove (6)i). Fix 2 € U and h > 0. Define z; a solution of
z'(t) = f(t,z(t),u,¥*) t € [to,to+ h] such that z(to) = zo. Let us introduce

*(t, Z(t,to + h,:l:h(to + h)’ ‘P*(" ')’ "/’*(" ))))
t>to+h

u if te€ [to,to+ A]
up(t) := ¢
if

Then by the very definition of W,

Wi(to + h,zn(to + k) = g((T, to + h,z(to + &), ¢*(-,-), ¥*(+,+))) which is
equal tog(:l:(T, to, To, uh(')’ ¢*(" ))) and by (5)’ g(IE(T, to, Zo, uh(')’ ¢'*(" ))) <
9(z(T, to, 2o, ¢*(-++), ¥*(*,))) = W (to, z0). Hence

lim inf W(to + h,za(to + b)) — W(to,z0))

h—s0+ h

<0

Thanks to our assumptions and by the Mean Value Theorem, there exists
h, — 0% such that:

Th,(to+ hy) — 20
hn

— w € f(to,z0,7,V)

This yields inf,e v D, W (o, 20)(1, f(t,z,%,v)) < 0 and proves (6)i). O
We can obtain other contingent inequalities with suitable regularity as-
sumptions concerning strategies

Proposition 3.2 Assume that ({) and (5) hold true. If (t,z) — f(t,z,0*(t,z),V)

is continuous at (to, zo), then the value function W satisfies (6)ii). If (¢, ) —
f(t,z,U,v*(t, x)) is continuous at (Yo, zo), then the value function W satisfies

(7)i).

Now we shall state an unicity result?:
Theorem 3.3 Assume that (4), (5) hold true and that W is continuous.

o If (t,z) — f(t,z,¢*(t,2),V) is continuous, then any lower semicon-
tinuous (l.s.c.) function © satisfying (6)i) is larger or equal than W

3¢f the proof in [13]




o If(t,z) — f(t,z,U,¢p*(t,z)) is continuous, then any upper semicontin-
uous (u.s.c.) function © satisfying (7)ii) is lower or equal than W.

Corollary 3.4 When (4), (5) hold true, and W is continuous and when
(t,z) — f(t,z,U,¢*(t,z)) and (t,z) — f(t,z,¢*(t,z)) are continuous, the
value function W is the unique continuous solution to Hamilton-Jacobi-Isaacs
inequalities (6) and (7).

4 Viscosity solutions to Isaacs’ equation

We first define the lower and upper Hamiltonians of the differential (1):

H_(t,z,p) := max,ev mingev < p, f(t,z,u,v) >
H+(t,.’t,p) i= Minyey MaX,ev < p, f(t,a:,u,v) >,

Consider two Hamilton-Jacobi equations:

(8) —82(t,2) + Ha(t, 2, —52(t,)) = 0
o(T,-) = g¢()
—28(4,¢) + H_(t,2,~2(t,z)) = 0
® {e&»=a» ’

In this section, we give some results concerning viscosity solutions to
Hamilton-Jacobi-Isaacs equations. First, we recall the definition of viscosity
solution by using sub and super differentials?:

Definition 4.1 Consider H : [0,T] x IR* x IR* — IR Let us recall that the
function © : [0,T] x R" v~ IR is a viscosity supersolution to the following
Hamilton-Jacobi equation —%%(t,a:) + H(t, =z, —%(t,x)) = 0 if and only if:
v (t,.’lt) € Dom(@), v (ptapz) € B_G(t,z), —p: + H(tvxa —p:r) >0
The function O is a viscosity subsolution if and only if:
v (tax) € Dom(e)’ v (ptapa:) € 6+@(t,.’17), —pt + H(t,.’t, _pr) <0

A function © is a viscosity solution if it is a supersolution and a subsolution.

4Recall the definition of the subdifferential of ¢ : R® +— R, at 2o € Dom(¢)
d_¢(z0) := {p € R"|liminf,_,, &z1=#(@=<p.r=20> 5 (} 514 the super differential

flz—=oll

of ¢ at z¢ is given by: 846(z¢) := —0-(—¢)(z0).
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We can prove without any assumptions concerning g the following exis-
tence result:

Proposition 4.2 Assume that ({) holds true, then the value-function W is
a supersolution to (8) and a subsolution to (9).

But when the value-function W is continuous, we have the more precise

Proposition 4.3 Assume (4). Then if W is continuous and (¢t,z) — f(t,z,U,¥*(t,z))
is continuous, then W is a viscosity solution to (8).

If W is continuous and (t,z) — f(t,z,¢*(t,z),V) is continuous, then W is

a viscosily solution to (9).

Theorem 4.4 Let assumptions of Corollary 8.4 hold true. Let © : [0,T] x
R — IR be continuous. Then O is the value function of the game if and
only if it is a viscosity supersolution to (8) and a viscosity subsolution to (9).

Corollary 4.5 Let us assume (4), (5) and let © : [0,T] x R* — IR be a
continuous function. If we assume the following Isaacs’ condition:

(10) V(t,z,p), H-(t,z,p)= Hi(t,z,p),
then the value function is the unique viscosity solution to (9) (or equivalently(8)).

These results follow from results of the previous section and from the
following section.

5 Comparison between viscosity and contin-
gent solutions to Hamilton Jacobi Isaacs
equations

Proposition 5.1 Consider © : [0,T] x R" +— IR verifying (6) (respectively
(7)). Then © is a viscosity solution to (8) (respectively to (9)).

This result is a consequence of the following

Lemma 5.2 Consider © : [0,T] x R" — R.
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If © satisfies (6)i), then it is a supersolution of (8).

If © satisfies (6)ii), then it is a subsolution of (8).

If © satisfies (7)i), then it is a supersolution of (9).

If © satisfies (7)ii), then it is a subsolution of (9).
Proof — Let us prove the first statement. If © satisfying (6)i) then®:

{ Y (pi,pz) € 0-O(t,z), V (u,v) € U xV,

(11) D,0(t,z)(1, f(t,z,u,v)) > p+ < pz, f(t,z,u,v) >

Then by taking the “supinf” of this inequality, we prove that O is a super-
solution to (8). The proofs of the other statements are similar. O

When value functions are continuous, the notions of contingent and vis-
cosity solutions of Isaacs’ equations are equivalent.

Theorem 5.3 Let O : [0,T] x R" — IR be a continuous function and let ({)
hold true. Then © satisfies the contingent inequalities (6) (respectively (7))
if and only if it is a viscosity solution to the Hamilton-Jacobi-Isaacs equation

(8) (respectively (9)).
Lemma 5.4 If (4) holds true.

o Any ls.c. function © is a supersolution of (8) if and only if it satisfies
(6)).

o Anyls.c. function © is a supersolution of (9) if and only if it satisfies
(7)1).

o Any u.s.c. function © is a subsolution of (8) if and only if it satisfies
(6)ii).

5Let us recall (see [2] chapter 6 for instance) that we have the following equivalent
definition for the subdifferential of a function ¢

0-¢(z0) = {p|Vq € R", D, ¢(z0)(q) >2< p,q¢ >}



o Any u.s.c. function © is a subsolution of (9) if and only if it satisfies
(7)ii).

Proof of Lemma — We already know, thanks to Proposition 5.1 and
Lemma 5.2, that contingent solutions are viscosity solutions. Let us prove
the converse implication.

Assume that O is a supersolution to (8), i.e.:

(12) v (piapr) € B_O(t,z), sup lgépt'*' < p,,f(t,:z:,u,v) ><0
uc UV

Hence, for any u € U, infyev pi+ < ps, f(t,z,u,v) >< 0. But we know, (cf
[12]) that (p:, ps) € 0-O(t, ) if and only if (p;, pr, —1) belongs to the normal
cone (Tepio(t,z,0(t,z)))”". We claim that

(13) Yue U, {1} x f(t,z,u,V) x {0} Nco(Tgpio(t,z,0(t,z))) # 0

Assume for a moment that is false, then, by the separation theorem we should
have:

(14) 3 (pt,pz,9) € (TEpio(t,z,0(t,2)))~, Ju € Usuch that
VveV, p+ < ps, f(t,z,u,v) >>0

This is a contradiction with (12). So

{ V(t,z,y) € Epi(0), forallu e U
{1} x f(t,z,u,V) x {0} Nco(Tepio(t,z,y)) # 0

and we can deduce from® Theorem 3.2.4 in [l], that {1} x f(¢,z,u,V) x
{0} N Tgpe(t,z,0(t,z)) # 0, for any (t,z) € DomO. This implies the

following contingent equation:

V(t,z) € Dom(0),VueU, 12{, D,O(t,z)(1, f(t,z,u,v)) < 0

5Let us recall a duality result in viability theory (due to Ushakov see for instance
Theorem 3.2.4 in [1]). Consider a closed set K C R" and let F' be u.s.c set-valued map
with compact convex values. Then the following two statements are equivalent:

i) Vze K, Fz)NTk(z)#0
ii) Yze K, F(z)Nco(Tx(z)) # 0

where co is the closed convex hull.



Let us prove the third statement. Assume that © satisfies

(15) Y (pt,pz) € 040(t, ), sup iél{/p,—}- < pz f(t,z,u,v) >>0
uelUv?

We claim that

(16) Fue U, {1} x f(t,2,u,V) x {0} C co(Trypes(t,, 0(t, 7))

If (16) is not satisfied, by the separation Theorem

3 (pt,P2,9) € (Trypoo(t, z,0(t, 7)),
pt+ < Pr,f(t,z,u,v) ><0

Yue U, v € V such that
(17)

This is a contradiction with (15). Then, thanks to (4), and since (cf [2]
p-130),

o himint  co(Thypoo(t',2,)) C Thypoo(t,2O(t, 7))

we can deduce that {1} x f(t,z,u,V)x {0} C Thypol(t,z,0(t,z)) and con-
sequently (7)ii) holds true. The proofs are similar for the other statements.
O

6 Nonanticipating strategies

We shall define value-functions for a concept of strategy studied by Elliot-
Kalton (see also [9]). We denote by U(t) (respectively by V(t) ) the set of
measurable functions u : [t,T] — U (respectively v: [t,T]— V).

Firstly let us recall the definition of nonanticipating strategies.

Definition 6.1 We call nonanticipating strategy for the first player any
function a : V(t) — U(t) such that

Vte [0,T], V (v,0) € V(t), Vs € [0,T],
v=7a. e in[t,s] = a(v)=ca(?D)a e inlts]

and we denote by ['(t) the set of such nonanticipating strategies.
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We call nonanticipating strategy for the sevond player any function B :
U(t) — V(t) such that

Vte [0,T], V(u,u) € U(t), Vs € [0,T],
u=da. e inft,s] = P(u)=p(%)a. e inlt,s]

and we denote by A(t) the set of such nonanticipating strategies.
This notion of strategies enables us to define the two value-functions:

Definition 6.2 Consider the upper value-function of the game:

®(to, o) := ﬂelg(fto) u(.félaﬁto)g(x(T’ to, 2o, u(-), B(u)))

and the lower value-function:

Y(tg, o) := su inf T, to, .
(0’ 0) aergo)v(JEV(to)g(z( y 40 -’Eo,a(v),v( )))
Proposition 6.3 Assume that (4) holds true. If g is continuous, then ¥
and ® are continuous.

Proof — We shall prove that ¥ is continuous’ at some ¢;,z;. Consider
€>0,,z,and 0 <t; <t <T. By the very definition of the value-function
U, there exists a € T'(¢;) such that

(18) U(ty,zy) < u(‘)ien‘f(h)g(a:(T,tl,ml,a(v(-)),v(.))) + ¢

Fix © € V. For any v(:) € V(¢2), we define v(s) =

v if s € [t,t,]
v(s) if s € [t2,T]

and for any a we define a(v) = a(v).

Hence, there exists v(-) € V(t2) such that ¥ (¢, z2) > g(z(T, t2, 22, a(v),v)))—
¢ and according to (18), we have ¥(¢,z;) < g(z(T\, ¢, z1,a(v),v)) + €. On

the other hand, from Gronwall’s Lemma, there exists some R > 0 such that

(T, ty, z1,(v)(-), v(-)) — (T, t2, z2, (V) (-), v(:))|| £ R(||zy —z2|[+(t: —12))

"It’s easy to extend the proof when g is uniformely continuous and then the value-
functions are uniformely continuous too.
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Since ¢ is continuous, there exists 6 > 0 such that for any (t2,z2) € R([0,1] x
B) we have

l9(2(T, ts, 21, 2(v)(-),v("))) — 9(2(T) b2, z2, a(v) (), v()))| < €

Hence ¥(ty, z1) — ¥(t2,22) < 3e. On the other hand for every a: ¥(t;,z1) >

infu(-)e V(to) g(.’lI(T, t1, 21, a(v)’ v())) 2 infu(-)e Y(to) g(:z:(T, t2, Z2, a(v)’ v())) —€
Hence ¥(t1,z1) > Y(t2,z2) — €. We have similar result when ¢, < ¢; and for
the value-function ®. O

7 Solutions to Isaacs equations with nonan-
ticipating strategies
Proposition 7.1 If ({) holds true, then ® satisfies (6)i) and ¥ satisfies
(7)is).
Proof — Fix @ € U. Consider f;, € A(to) such that

sup g(.'l:(T, tO’ $0,U(-), ﬂh('u.))) S @(to, IEQ) + h2
u€U(to)

Let define Ux(to) the subset of measurable controls u(-) € U(to) such that

u(8) = u for almost every s € [to, to + h]. then

(19) S, )g(l‘(T, to, o, u(*), Bu(w))) < ®(to, zo) + h*

By the very definition of §, there exists some v(-) € V(to) such that for any
u(-) € Un, v(s) = PBr(u)(s) for almost every s € [to,to + A].

Let z4(-) denote the solution to z'(t) = f(¢,z(t),@,v(t)) on [te,to + A]
such that z,(to) = zo. From (19), we deduce

sup  g(z(T,to + k,zn(to + k), u(:), Br(v))) < D(to, zo) + A°
v€ Up(to)

Define 8 € A(to) such that for any u(-) € U(to) we have B(u) := fr(u) with

’U.(S) i u if s € [to,t0+h]
Tl uw(s) if s>to+h

12



Hence sup,ey(1,) 9(2(T) to, o, u(-), B(u))) < ®(to, z0)+h? and therefore infge a () SUP e 1(10) 9(2(
®(to, zo) + A*. This proves the following inequality

O(to + h,zh(to + ) < ®(to, z0) + A2
On the other hand, there exists a sequence A; — 0 and © € V such that

zh;(to + ki) — zo
hi

— f(tO, To, ‘&, 1-))

this yields D;1®(¢o, z0)(1, f(to, Zo,%,v)) < 0 and consequently (6)i). The
proof is similar for the second statement. 0O

Proposition 7.2 If g is continuous, then & satisfies (6)ii) and VU satisfies
(7)ii).

It is possible to prove that ® is a viscosity subsolution to (8) and thanks to
results of section 5 that it is a contingent solution to (6)ii) (see [13] for the
proof).

Corollary 7.3 If g is continuous, then ® is a viscosity solution to (8) and
U is a viscosity solution to (9).

Finally we just state an existence result

Proposition 7.4 Assume that (4) holds true and that g is uniformely con-
tinuous. If we assume the Isaacs’ condition (10), then @ = ¥ and the value-
function is the unique uniformely continuous viscosity solution to the Isaacs’
equation.

The proof is based on a theorem of Crandall-Lions concerning the unicity of
bounded uniformely continuous solution of Hamilton-Jacobi equations (see

[16]).
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