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Foreword 

Nesterov have proved the convergence of the discrete subgradient algo- 
rithm for minimizing convex finite functions bounded from below. 

When the objective function is a lower semicontinuous convex extended 
function (which happens when one minimizes problems with constraints), 
the subgradient algorithm makes no longer sense since we do not know 
whether the iterations belong to the domain of the objective function. 

Hence the idea is to approximate the objective function by its Moreau- 
Yosida approximation, which is differentiable, and to use the gradient algo- 
rithm applied to this approximation. We prove the convergence when both 
the steps of the algorithm converge to oo and the Moreau-Yosida parameter 
converges to 0. 



1 The Nesterov Theorem 

Theorem 1.1 Let us assume that a convex function V : X w R is bounded 
below. 

Assume also that the steps of the subgmdient algorithm 

whew pn E aV(xn) satisfy 

Then the dec~asing sequence of scalars 

Ok := min V(zn) n=O, ..., k 

converge to the infimum v := infZEx V(x) of V when k 4 oo. 

2 The Regularized Gradient Algorithm 

When V is a lower semicontinuous convex extended function, the sub- 
gradient algorithm makes no longer sense since we do not know whether 

Pn xn+l := zn - 6,,- belongs to the domain of V. Hence the idea is to  
l l ~ n l l  

approximate V by its Moreau-Yosida approximation V' defined by 

and to use the gradient method for the Moreau-Yosida approximation. Hence, 
we have a sequence with two indices, the step of the approximation and the 
parameter A. 

Recall that V, is convex and differentiable. If JAx denotes the unique 
point which achieves the minimum of V,, then 

Theorem 2.1 Let us consider the Morwru-Yosida approximations Vx of a 
nontrivial lower semicontinuous convex function V : X w R U {+oo} is 
bounded below. 



We consider the regularized gradient method 

whem 
X X 1  pn := Vi(zn) = i(z; - JXZ:) 

Assume that 
00 

lim 6. = 0 k x 6 .  =+or, 
n-ca 

n=O 

Then them exists a subsequence of VA(zi) which converges to the infimum 
v := infzEx V(z) of V when k 4 or, and X H O+. 

Proof - We prove this theorem by contradiction. If the conclusion is 
false, there exist r ]  > 0, N > 0 and p > 0 such that 

V n > N, V I: p, v + 2q I VX(Z;) 

Let 3 E X such that V(3) < v + r]  5 Vx(zi) - q. Hence 

V n _> N, V X < p, V(S) + q I VX(~;) (2.2) 

First, we observe that 

X X X 
so that, by recalling that llxi+l - z2II = and that zn - 2 n + ~  Pn 

6n 
have 

llp:lI' we 

X X llxn+, - all2 = 112, - all2 - 26. 

Let us set for any k 2 N 

a: := min (J&,z;-i) 
n=N,.. .,k (IP,(I 

Since VX(Z) _< V(Z), we deduce that from the definition of the subdifferential 
and the choice of Z that 



so that af > 0. By summing up the above inequalities from n = N to 
k > N,  we obtain: 

On the other hand, we check easily that under assumption (2 .1 ) ,  

c k = N  6: converges to  0 
C;=N 6n 

Indeed, set 7 k  := ~ k = ~  6:, ~ k  := ~ k = ~  6n and K ( E )  the integer such 
that 6k 5 E whenever k 2 K ( E ) .  Then 

k = K ( c )  k = K  ( c )  

so that 

Since + 00, we infer that 

7 k  limsup - 5 E 
k d c a  7 k  

By letting E converge to  0, we have checked (2.4).  

Properties (2.3)  and (2.4)  imply 

x 5 pk := Ck n = ~  62 n IIzN - i l l 2  
k  + k  converges to 0 

C n = N  6n 2 C n = N  6n 
( 2 .5 )  

Let us take X := Pk and n k  be the index such that 

Let us set 



We see at once that 

The first inequality implies that 

by the definition of the subdifferential. 
We thus deduce from (2.2) that 

so that we obtain the contradiction r) 5 9 which converges to 0. 
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