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Abstract 

A decomposition method for large-scale convex optimization problems with block- 
angular structure and many linking constraints is analysed. The method is based on 
a separable approximation of the augmented Lagrangian function. Weak global con- 
vergence of the method is proved and speed of convergence analysed. It is shown that 
convergence properties of the method are heavily dependent on sparsity of the linking 
constraints. Application to large scale linear programming and stochastic program- 
ming is discussed. 
Keywords: Large-Scale Optimization, Decomposition, Augmented Lagrangians. 



1. Introduction 

Rapid development of computing technology, emergence of parallel, massively parallel 
and distributed computing systems provides us with an increasing computing power 
but also creates a need for specialized approaches that can use it efficiently. The 
principal objective of this paper is to analyse properties of a decomposition method 
for very large optimization problems which can be easily implemented on a variety of 
parallel and distributed computer architectures. 

Let XI ,Xz,.  . . , X L  be nonempty closed convex subsets of Rnl, Rn2,. . . , RnL, re- 
spectively, and let f; : Rni -+ R, i = 1,2 , .  . . , L be convex functions. Next, let A; be 
matrices of dimension m x n;, i = 1,2, . . . , L and let b E Rm.  We consider the convex 
programming problem 

L 

min [f(x) = z f i ( x i ) 1  

There is a vast literature devoted to decomposition methods in linear and nonlinear 
programming (see, e.g., [ll]). They are usually in one way or another related to the 
famous decomposition principle of Dantzig and Wolfe [4] and to the duality theory 
based on the ordinary Lagrangian function. 

A much smaller number of works is devoted to decomposition-type methods based 
on the theory of augmented Lagrangians. Although the augmented Lagrangian function 
does not possess decomposability properties of the ordinary Lagrangian, some special 
tricks and problem transformations can be used to allow decomposition (see [3, 6 ,  5, 
18, 19, 20, 211). 

A promising decomposition method based on the augmented Lagrangian function 
- the Diagonal Quadratic Approximation Method (DQA) - has been succesfully ap- 
plied to large-scale stochastic optimization in [12] and [13]. Its basic idea of separable 
quadratic approximation of the augmented Lagrangian can be traced back to [19]. 
The method proved well-suited for parallel and distributed computation because it 
has modest communication requirements and allows for a distributed implementation 
of the coordination procedure [13]. It has found successful application in stochastic 
programming and appears to have potential to solve a much broader class of problems. 

The objective of this paper is to present the method in a more general form for 
large-scale convex optimization problems and to  carry out a detailed analysis of its 
convergence properties. 

The paper is organized as follows. 
In section 2 we remind some basic definitions and results associated with augmented 

Lagrangians and the multiplier method. Section 3 is devoted to the description of the 
DQA method; we also introduce some sparsity measures for the linking constraints. In 
section 4 we prove global convergence of DQA (in terms of objective function values). 
In particular, we formulate conditions on the stepsize that directly involve sparsity 



properties of the problem. Speed of convergence is analysed in section 5: we show 
that for some important classes of problems (such as linear or quadratic programs) the 
speed is heavily dependent on the number of blocks linked by any single constraint. In 
this way we relate sparsity to  the number of iterations necessary to solve the problem 
rather than to  the cost of one iteration. Finally, in section 6 we have some examples 
that illustrate the potential of the method. 

Our approach and results differ significantly from earlier works on similar ideas. 
The results of the pioneering work [19] are mainly empirical. In [5] and [20] there 
is a local convergence analysis for problems with twice differentiable functions under 
second order sufficient conditions. Finally, [13] considers linear stochastic programming 
problems. Our results generalize and improve those of [13] by broadening the class of 
problems under consideration (convex problems with general linking constraints), by 
providing detailed convergence rates and by introducing the issue of sparsity as the key 
factor in the assessment of efficiency of DQA. In the special case of stochastic linear 
programs they are sharper than those of [13]. 

In our work we use elementary notions and results of convex analysis (for an exten- 
sive treatment see [15, 14, 91). For every x in a convex set X C Rn we use Ii'x(x) to 
denote the cone of feasible directions 

I(X(X) = {d E Rn : d = P(y - 4, Y E X ,  P 2 0). 

Its conjugate cone (I(x (2))' is defined by 

I *  = { g E R n : ( g , d )  L O f o r a l I d ~ I i ' ~ ( x ) )  
= { 9 E  R n :  ( 9 , ~ - X )  2 Ofor all y e  X) 

For a convex function f : Rn -, R and 6 2 0 we define the 6-subdifferential a t  x by 

its elements are called 6-subgradients. For 6 = 0 we shall call do f (x)  the subdifferential, 
denote it by d f (x) ,  and call its elements - subgradients of f at x.  

2. Preliminaries 

The ordinary Lagrangian associated with (1.1) has the form 

L I L 

L(x, a)  = C fi(xi) + (a, b - C ~ i x i )  = (b, a )  + C [fi(xi) -   AT^, xi)) . (2.1) 

We can use it to  derive the dual problem 

where g is the dual functional, 

- 

g ( a )  = inf L(x, a )  = (b, x )  + C g i ( a )  
xEX i=l 



with X = XI x X2 x . - .  x X L  and 

g ; ( ~ )  = inf [f;(x,) - ( A T K ,  xi)] i = 1,2 , .  . . , L. 
l i € X i  (2.4) 

Relations between (1.1) and (2.2) are based on fundamental results of the duality 
theory for convex programming (see, e.g., [15, 141). 

Proposition 1. Assume that (1.1) has an  optimal solution and at least one of the 
following conditions is  satisfied: 

( i )  ri Kx(xO) n { d  : A d  = 0 )  # 0 at some  xO E X such that Ax0 = b; or  

( i i)  X is a polyhedral set. 

Then (2.2) has an optimal solution and 

(a)  for every optimal solution i of (1.1) and every optimal solution ir of (2.2) 

(b) for every optimal solution ir of (2.2) a point 2 is  a solution of (1.1) i f  and only if 

L ( i ,  ir) = min L(x, ir), ( 2 . 5 ~ )  
z€X 

Condition (2.5a) can be also expressed in an equivalent subdifferential form: there exist 
g; E d f,(2), i = 1 ,2 , .  . . , L such that 

It is exactly Proposition 1 that motivates the classical decomposition methods for 
(1.1). Calculating the dual function (2.3) and its subgradients simplifies by decompo- 
sition into independent problems in (2.4), so (2.2) can be easier to solve than (1.1). 

However, there are well-known disadvantages of the dual approach based on the or- 
dinary Lagrangian (2.1). They are associated with the non-uniqueness of the solutions 
of subproblems (2.4) and more precisely with the non-uniqueness of the value of Ax 
a t  these solutions. It results in non-differentiability of the dual functional (2.3) and 
calls for an application of rather involved nonsmooth optimization methods for solving 
the dual problem (2.2). Even in the linear case, the Dantzig-Wolfe method requires 
constructing the master problem, which may be interpreted as a cutting plane method 
for solving (2.2) (see [ll]).  Recovery of the primal solution by (2.5) is not easy, too. 
For very large problems with many linking constraints ( l . lb)  these difficulties make 
the ordinary dual approach impractical. 

There are two closely related ways of overcoming this difficulty, both based on reg- 
ularization. The primal regularization method, known as the proximal point method 
adds to the objective of (1.1) the quadratic term ipl(x - [ \ I 2  with some penalty pa- 
rameter p > 0. It makes (1.1) strictly convex which implies existence and uniqueness 



of solutions to the regularized versions of (2.4). This results in an improved behavior 
of the dual functional, but has the drawback that an additional outer iteration eoop 
over ( is necessary. 

A corresponding dual approach is the regularization in the space of multipliers n. 
In place of the ordinary Lagrangian (2.1) we introduce the augmented Lagrangian 

with a penalty parameter p > 0. For the augmented Lagrangian we can formally copy 
the duality results from Proposition 1 with the regularized dual function 

y(n)  = inf A(x,n)  
x E X  

and the regularized dual problem 

max y (n).  
nERm 

There are many theoretical and computational advantages of the augmented La- 
grangian approach over the ordinary dual method. The most important one is the 
possibility of solving the dual problem (2.8) by the following algorithm. 

M e t h o d  of Mul t ip l iers  

S t e p  1. For fixed multipliers nk  find a solution xk of the problem 

S t e p  2. If Axk = b then stop (optimal solution found); otherwise set 

nk+' = nk + p(b -  AX^), (2.10) 

increase k by 1 and go to Step 1. 

The following two propositions summarize the fundamental properties of the method 
of multipliers. 

P ropos i t ion  2. Let the assumptions of Proposition 1 be satisfied. Then the sequence 
{nk)  generated by the method of multipliers is convergent to a solution .ii of (2.2). 

Proposi t ion  3. Assume that fi ,  i = 1,2, .  . . , L are convex polyhedral functions and 
Xi, i = 1,2 , .  . . , L are convex polyhedral sets. Then, if (1.1) has a solution, the method 
of multipliers is convergent in finitely many iterations. 

However, a serious disadvantage of the method of multipliers is that (2.7) is not sep- 
arable, so problem (2.9) cannot be split into independent subproblems for x;, i = 
1,2 , .  . . , L. One possibility to overcome this difficulty is the use of alternating direction 
methods (cf. [8, 7, 61). 

In the next section we shall present another method for decomposing the augmented 
Lagrangian. It is based on successive separable approximations of (2.7) and extends 
and refines the earlier ideas of [19] and [12] (for a related work see [3, 201). 



3. The separable approximation 

Clearly, non-separability of (2.7) is due to the existence of the quadratic penalty term, 
which contains products (A;x;,Ajxj). To overcome this difficulty we introduce for 
i =  1,2, ..., L the functions A ; :  Rni x Rn x Rm -t R, 

where 2 E Rn is an additional parameter, n = ~ f = ,  n;. The main idea of our approach 
is to replace problem (2.9) by L problems 

min A ~ ( x ~ , Z ,  K"), i = 1,2, .  . . , L 
€Xi 

(3.2) 

and to iteratively update the parameter Z by making steps towards the solutions of 
(3.2). It is not difficult to see that (3.2) is equivalent to the minimization of (2.7) with 
respect to x; with xj ,  j # i frozen at zj.  However, we are not going to use (3.2) in a 
Gauss-Seidel fashion, but we shall rather solve it for each i in parallel and then update 
5 .  This approach is called in [2] a nonlinear Jacobi algorithm. 

It is well known that for ii to be a solution of (3.2) it is necessary and sufficient 
that 

a~,(j.,, z, T") n (~i'~,(i~))* + 0, (3.3) 

where the subdifferential is with respect to the first argument (see, e.g., [15, 141). 
However, it is in general rather difficult to solve (3.2) with perfect accuracy, especially 
when fi is a nonsmooth function. Therefore, we introduce the set of approximate 
subgradients of Ai  

It is obvious that D:(z,, 2,  n)  C d,A;(z;, 5, n )  but we assume that the gradient of the 
quadratic term is exact and only subgradients of f, are subject to errors. Basing on 
that, we introduce the set of approximate solutions 

In other words, for every z; E Sf(?, K )  it must be possible to find 

such that 
g; E (Ii'x, (xi))* 

We are now ready to  describe the method in detail. It should be noted that DQA is 
a sub-algorithm for carrying out Step 1 of the method of multipliers in a decomposed 
fashion. 

In what follows T > 0 and 0 5 p < 1 are parameters of the method. 



The DQA Method 

Step 0. Set itk?' = xk-' and s = 0. 

Step 1. For i = 1,2, .  . . , L find 
E s,!~(z~*', ak) 

with 
1 < - p P ~ ~ ~ i ( x ; p S  - zf3s)112. 

" - 2  

Step 2. If A;x~'" = AiitfvS, i = 1,2, .  . . , L, then stop; otherwise set for i = 1,2, .  . . , L 

increase s by 1 and go to Step 1. 

Remark. It is worth noting that the above method is (abstractly speaking) imple- 
mentable in the sense that the stopping criteria (3.8)-(3.9) depend on the current 
point xftS,  not on the solution of (3.2). As an illustration, let us assume that 
(3.2) is solved by minimizing a function 

where f. is a piecewise-linear lower approximation of fi. If xf" is a solution of 

this approximate problem, then there is a subgradient hi E 8 -t f .(xfl") such that 

Obviously, hi E 8, fi(xf9") with 

This is the value of c, in (3.8) at if". If (3.9) holds, we can stop the minimization 
procedure; otherwise the piecewise-linear approximation has to be improved (e.g., 
by ading a cut derived at i f " ,  see [lo]). 

In the next section we shall show that if the parameters T and p fulfill some simple 
conditions, then the DQA method generates sequences {xk~"),"=, and {itk'") zo whose 
accumulation points are solutions of (2.9). But before proceeding to the convergence 
analysis we shall make a simple observation that will allow us to obtain much stronger 
convergence results and estimates of the speed of convergence than earlier works. 

Let mi be the number of nonempty rows of A; and let us define a zero-one matrix 
E; of dimension m x m; as follows: it has a 1 at position (k , l )  iff the k-th row of 
A; is the I-th consecutive nonempty row of A,. Thus, columns of E; are orthonormal 



unit vectors, E'E, = I. Introducing additional variables t i  E Rm* we can equivalently 
reformulate (1.1) as follows 

L 

min C fi (xi) (3 .11~)  
i= l  

(x;, 2;) E Z;, i = 1 , 2 , .  . . , L, 

with 
Zi = {(xi ,z i ) :  xi E Xi, A i x i =  Eizi). (3.12) 

The subproblems (3.2) for the new formulation have the form 

The approximation of the augmented Lagrangian terms in (3.13) is quadratic with a 
diagonal Hessian. 

Suppose that 
Ai2fvs =  if'^, i = 1 , 2 , .  . . , L. (3.14) 

Then, in view of (3.12), we can substitute in (3.13) ~ ~ 2 : "  and Aixfl' for E,i;'" and 
E~Z?.' and arrive at (3.2) for the original problem (1.1). With (3.14) Steps 1 and 2 of 
the DQA method are identical for both formulations. Finally, if we define i;kvO such 
that Ai iFo =  i if" then by (3.8) we shall have (3.14) for all s. Therefore, the DQA 
algorithm is invariant under the transformation (3.11). 

We shall use transformation (3.11) to introduce some measures of sparsity that will 
be relevant for further analysis. For every i = 1 ,2 , .  . . , L and j = 1 , 2 , .  . . , mi we define 
the set of neighbors of variable zij 

where Eij denotes the j t h  column of E;. In terms of the original formulation (1.1), 
V(i, j) is the set of (k, 1) such that the 1-th nonempty row of Ak has the same position 
as the j- th nonempty row of A;. 

With the number of elements in V(i, j )  denoted by I V(i, j )  1, we define the maximum 
number of neighbors 

N = maxIV(i, j)l. (3.16) 
'91 

By the definition of E;, for every (i,  j) and every k # i there is at  most one 1 such 
that ( k ,  I )  E V(i, j). Thus N is the maximum number of blocks linked by any single 
constraint, decremented by one. It is worth noting that this definition is invariant 
under the transformation (3.11). 

In the next two sections we shall show that convergence properties of the DQA 
method heavily depend on the number of neighbors N. 



4. Convergence 

Let us define the function 

L L 2 
1 A ( x ,  5, T )  = ( b ,  n )  + C A i ( x i ,  2 ,  n) - - p ( L  - 1) 

i = l  2 

Clearly, A is the function that is (approximately) minimized in Step 1 of the DQA 
method. 

We shall prove convergence of DQA by estimating the improvement in i\ at each 
step and by bounding the difference between A and the true augmented Lagrangian 
(2.7). In this way we shall be able to show that for appropriately chosen stepsizes each 
step of DQA improves the values of the augmented Lagrangian as well. 

We start from estimating the difference between the augmented Lagrangian and its - 
separable approximation A .  

Lemma 1. For all x ,  5 and n the following inequality holds 

Proof. By direct calculation we obtain 

Expansion of the quadratic terms yields 

L L 1 
b - A i ~ i - C ~ k ? r  

k f i  

1 1 L 

( 7  - ( X  2 ,  = -PC C ( A i x i ,  A k x k )  + , j p ( L  - 1) C C ( A i ? i ,  A I ~ X )  
i = l  k f i  i=1 k f i  

2 

i=1 k f i  i=l  k f i  s#k, i  

Noting that in the last sum each product (AkZk ,  A,?,) appears exactly L - 2 times we 
can rewrite the last equation as follows 

i = l  k f i  

1 L 

L i = l  k f i  



Using transformation (3.11) we obtain 

1 L 

Let us observe that each of the terms IIEij(zij - t"ij)112 appears in this sum at most 2N 
times, with N given by (3.16). Indeed, for fixed i and j there are at most N neighbors 
(k, I )  E V(i, j ) ;  conversely, the pair (i ,  j) itself may be a neighbor of a t  most N other 
pairs. Therefore 

Since the columns Eij, j = 1 , .  . . ,mi  are orthogonal, the last inequality yields 

Putting E;(z; - 2;) = A;(x; - 2;) we obtain (4.1). The proof is complete. 

The progress in the minimization of A; at Step 1 of the DQA method can be 
estimated as follows. 

Lemma 2. ~f 25'" E T) ,  i = 1,2 , .  . . , L then 

Proof. For brevity we shall skip the superscripts k , s  from x:'~ and 55'", because they 
do not change here. 

Directly from the definitions of A; and d, f;, 

L 
T = f i(xi)-  f i ( Z i ) -  (A; ~ , x i - Z i )  - P  b - C A j Z j , A i ( ~ j - j . i )  

j=l 



with hi E 8, f i (x i ) .  By (3.4) we can rewrite this inequality as 

1 
Aj(xi,  5 ,  T )  - Ai(zi ,  5 ,  T )  5 (gi, xi - 5, )  + c - -plIAi(xj - zi)Il2, 

2 (4.2) 

with g; E Dt(x ; ,  5 ,  T ) .  Since 5;  - xi E ICx, ( x i ) ,  from (3.7) we get 

Using this inequality in (4.2), in view of (3.9), we obtain the required result. 

We are now ready to  prove convergence of the DQA method. 

Theorem 1. Assume that the sets X i ,  i = 1,2, .  . . , L are bounded. If in the DQA 
method 

1 - P  O < T < -  
N '  (4.3) 

where N is given by (3.16), then: 

k,s  - k s (a) for all i = 1,2 , .  . . , L lim,,, A;(xi  - x i p  ) = 0 ;  

(b) each accumulation point of the sequence { x k * s ) ~ o  is a solution of (2.9). 

Proof. By Lemma 1, 

Next, by Lemma 2 and the convexity of A(., 5 ,  T ) ,  

1 L 
k,s  - k s ,  2 5 - 5 ~ r ( l  - p)  C IJAi(xi - x i t  , I l l  . 

i=l 

Combining the last inequality with (4.4) we see that for s = 0,1 ,2 , .  . . 

Thus for T satisfying (4.3) the sequence { ~ ( 5 ~ ~ " , 7 r ~ ) ) ~ ~  is decreasing. By the bound- 
edness of the sets X i ,  A ( x ,  7 r k )  is bounded below for all x E X .  Therefore the sequence 
{A(5k1s, rk))g0 is convergent. Since the left hand side of (4.5) converges to  0,  so is the 
right one, which proves assertion (a) .  



Let x* be a limit of a convergent subsequence {xk~S)sEs of the sequence { x ~ ~ " ) ~ ~ .  
Let us consider the sequence {9:'s)sE~ such that (3.6) and (3.7) hold: 

By the compactness of the sets Xi and by the boundedness and upper semicontinuity 
of the e-subdifferential (cf. [9 the sets D:' (sfvs,  i k l s ,  nk )  are uniformly bounded for all 1! s. Therefore the sequence {g; '"1 is bounded. Then for every accumulation point gf of 
{g:'s)sES after passing to the limit in the last relation (over an appropriately chosen 
subsequence) we get 

9; E (I<x,(xf))*. (4.6) 

In the last relation we additionally used the upper semicontinuity of the conjugate cone 
(Kxi (xi))* with respect to x;. 

Next, by (3.9) and (a),  e, -t 0. Then (by upper semicontinuity of the e-subdifferential) 
each accumulation point of the subsequence hl E 8,' f,(xf7'), s E S, is an element of 
a f,(xf). In view of (3.4), 

9; E aA,(xf, i*, nk) ,  (4.7) 

with some accumulation point 5' of Since (a) implies A,xf = A i i f ,  then the 
subdifferential of the augmented Lagrangian (2.7) with respect to  xi equals 

Combining (4.6), (4.7) and (4.8) we conclude that 

which implies optimality of x* for problem (2.9). The proof is complete. 

5. Speed of convergence 

Our analysis of the speed of convergence will be based on inequality (4.5). Technically 
speaking, our aim is to  relate the right side of (4.5) to some measure of the distance to 
the solution. 

We start from the following relation between e-subgradients of the augmented La- 
grangian (2.7) and e-subgradients of our approximation A. 

Lemma 3. For every g = (gl, 92,. . . ,gL) such that g; E D:(xi, 5 ,  n )  there is w E 
a,A(x, n )  such that for every d = (dl ,  d2, . . . , dL) with di E Rni 



Proof. By (3 .4 )  there exists hi E 8, f i ( x i )  such that  

Defining 
L 

T 
W ,  a -  - h .  a - ATT - PA; 

we get 

Thus 

By the  definition of E; we can find 7;  and ti such tha t  

Aidi = ,Titi. 

Then 

Let us observe tha t  
1  if ( k ,  l )  € V ( i ,  j )  

(Ei j ,  E M )  = 0 otherwise. 

Therefore 

with 

By the  orthogonality of Eij ,  j  = 1 7 2 . .  . , m i ,  

Next, we have 



Since (k, I) E V(i, j) iff (i, j) E V(k, l) ,  each term q-il appears in this sum at most N 
times, so 

L mk 

By the orthogonality of Ekl, 1 = 1 , 2 . .  . , mk, similarly to (5.5), we can rewrite the last 
inequality as follows 

L 

l / r 1 1 2  I N 2  C l l E k ~ k 1 1 ~ .  
k = l  

Putting together (5.4), (5.5) and (5.6) we obtain 

After subtitution of (5.2) and (5.3) we arrive to the required result. The proof is 
complete. 

In our further analysis we shall denote by ~ ( n )  the set of solutions of (2.9). The 
next lemma provides us with the desired relation of the expression a t  the right side of 
(4.5) and the distance to the solution. 

Lemma 4. For every x = ( x l , .  . . , xL) such that x; E Sf(2 ,  n) ,  with r satisfying (3.9), 
we have 

where 
A(n) = min A(x, 9). 

=EX 

Proof. By the definition of the r-subdifferential, for every x E X, every w E a,A(x, n )  
and every 2 E R ( n )  

A(5, n )  2 A(x, n )  + (w, 5 - x) - c. (5.8) 

We shall estimate (w, i - x)  for a selected w. 
If xi E Sf(?, n )  then we can find g; E D: (xi, 5 ,  n)  such that (3.7) holds. Therefore 

By Lemma 3, there is w E a,A(x, n )  such that (5.1) is satisfied. Then the last inequality 
yields 

(w;, 2; - xi) > (w; - g;, 5; - x;), 



We can now go back t o  ( 5 . 8 )  to  get (with the help of ( 3 . 9 ) )  the required inequality 
( 5 . 7 ) .  The proof is complete. 

To estimate the speed of convergence we shall need the following assumption on 
the growth rate of the augmented Lagrangian function. 

Quadratic Growth Condition. There is -y > 0 such that  for every x E X 

It is clear that ( 5 . 9 )  is satisfied by linear and quadratic problems ( 1 . 1 ) .  
We are now ready to  prove our main result on the speed of convergence. 

Theorem 2. Let the assumptions of Theorem 1 and the Quadratic Growth Condition 
(5.9) be satisfied. Then there exists q  E ( 0 ' 1 )  such that for all s = 0 , 1 , 2 , .  . . the 
following inequality holds 

irk)  - i\(sk) 5 q ( ~ ( 5 ~ ~ ~ , 7 r ~ )  - i\(sk)). (5 .10 )  

For u = 0 

where a = maxl<i<L IIAiII - - 
Proof. Let us denote 

A, = A ( f k t S ,  sk )  - i \ ( s k ) ,  

A, = A(xk7', 7 r k )  - i\(sk). 
From ( 4 . 5 )  we obtain 

We shall estimate the  last term in the above inequality. From Lemma 4 we get 



where C  = c r ~ 7 - ) .  
We shall consider two cases. 

Case 1 :  p = 0. 

From (5 .13 )  we obtain 

Substituting the last estimate into ( 5 . 1 2 )  we get 

By convexity of A ,  
T A ,  2 dS+l - ( 1  - T ) A , .  

Combining the last two inequalities and rearranging terms we obtain 

This yields (for T < l / N )  

which completes the proof in this case. 

Case 2: p > 0. 

Multiplying both sides of (5 .13 )  by p and adding to them C 2 A s / 2  we obtain 

This immediately yields an inequality similar to (5 .14 ) :  



The rest of the analysis is similar to Case 1, only the constants differ slightly here. 
While one could expect that the convergence rate of DQA (as an algorithm involving 

simple iterations (3.10)) can be a t  most linear, it is interesting to analyse the constants 
that appear in (4.5), (5.15) and (5.11). 

Let us a t  first note that a small p > 0 does not significantly change convergence 
properties of the method, because using in (5.17) the approximation 4- x 
1 + ~ l p C ~  we get C1 x llp2C2 and (5.16) becomes very close to (5.14). It is therefore 
sufficient (and much easier) to  look a t  the case of p = 0. 

We see that  in order to  make the estimates of the one-step decrease (4.5) and (5.15) 
as large as possible, the stepsize T should maximize the expression 

which yields 
1 

So, the recommended stepsize does not depend on the penalty parameter p, but it 
depends on the number of neighbors N .  

The estimated covergence ratio q in (5.10) exhibits even stronger dependence on 
N .  After substituting (5.18) into (5.11) we obtain (for pa2N2/y  >> 1) 

I q x l -  
8pa2 N 3  ' 

While there is no surprise in the negative influence of the penalty parameter p on the 
speed of convergence, the dependence of q on the number of neighbors N  is astonishing. 
In direct approaches to  large scale linear programming (like the simplex method or 
interior point methods) sparsity of the problem influences the cost of one iteration. 
Here it improves the rate of convergence of the decomposition method. It is clear that  
we can profit a lot from having very loosely linked blocks. 

If (1.la) is a polyhedral function and the sets X; are polyhedral, we can further 
sharpen the above estimates, by noting that in the neighborhood of k ( n )  we have 
y = pp  with some p > 0 independent of p (P may be taken equal to  the value of y for 
p = 1). Then (5.19) reads 

and the asymptotic speed of convergence is fully determined by the properties of the 
original problem, not by the penalty parameter. 

Obviously, we have derived here only upper bounds on q, so we should not conclude 
that large N must result in slow convergence. It is, however, possible, as the following 
example shows. 



Example 1. 

Consider the problem 
1 

min - C ( x i ) '  
2 .  r = l  

and the associated augmented Lagrangian 

Clearly, the number of neighbors N equals L - 1 here. 
Suppose that x = 0. The separable approximations take on the form 

By straightforward calculation we obtain the solution of (3.2): 

Thus (3.10) reads 

It follows that convergence properties of DQA are determined by the spectrum of the 
matrix 

For even L the spectrum is contained between 

(corresponding to the vector [l -1 1 -1 . . I T )  and 



(corresponding to the vector [I 1 . 1IT). It is obvious that we must have 

which makes n 

For large L the DQA method becomes very slow. 

Summing up, although our estimates are not sharp, they show that DQA can 
substantially profit from sparsity of the linking constraints. 

6. Applications 

We start from two straightforward applications to general linear programming prob- 
lems. 

Example 2: Decomposition of decisions in linear programming 

Consider a linear program in the standard form 

min cTx 

x 2 0. 

It is already in form (1.1), with x; denoting the i-th component of x and with the 
augmented Lagrangian 

Subproblems (3.2) are then simple one-dimensional minimization problems: 

where Aj is the j- th column of A and 

T c = c - A  T. 

They have a closed-form solution 



which can be substituted for Step 1 of the DQA method. As a result, we obtain a very 
simple iterative procedure with alternating steps made by (6.2) and (3.10), well suited 
to massively parallel computing systems. 

It follows from Theorem 1 that the stepsize 7 in (3.10) can be chosen from the 
interval 

where Ir(A) is the maximum number of nonzeros in a row of A. Best estimates of the 
speed of convergence can be obtained for 7 in the middle of the interval. 

The first example has been included mainly for illustrative purposes; for the ap- 
proach to be efficient we need to have the number of nonzeros in rows to be bounded 
by small number. But applying the same trick to the dual problem yields a more 
interesting method. 

Example 3: Decomposition of constraints in linear programming 

Let us consider the dual to (6.1): 

max bTn 

p > 0. 

Clearly, the optimal Lagrange multipliers x associated with (6.4) solve the primal 
problem (6.1). The augmented Lagrangian has the form: 

Denoting the approximation point for (n ,p )  by ( i f ,  b)  we obtain for i = 1,2 , .  . . , m the 

1 2 max {bini - - p l l ~  - ai(n; - % , ) I [  1 , 
pi 2 

where a, is the i-th row of A and 

E = c - ~ ~ i i - f i .  

For the dual slacks p j ,  j = 1 ,2 .  . . , n, the subproblems are simpler 

1 
max {-zjpj - ? I ] E  - ej(pj - i j ) \ 1 2 } ,  
P, 20 

with e j  denoting the j-th unit vector in Rn. Again, subproblems (6.5) have closed-form 
solutions 

- ni = n; + - ((ai,E)-:), i = 1 , 2  ,..., m ,  
llai1I2 



This can be substituted for Step 1 of DQA, with Step 2 of the form 

Again, only E changes from iteration to iteration, so implementation of such an iterative 
procedure on massively parallel computing systems can be quite efficient. 

By Theorem 1, the stepsize T in (6.6) can be chosen from the interval 

where /,(A) is the maximum number of nonzeros in a column of A. To obtain best 
estimates of the speed of convergence we should choose T in the middle of this interval. 

In Example 3 we need to  have the number of nonzeros in columns to  be bounded 
by a small number which is far more practical than a bound for row lengths. There are 
many problems with short columns, such as generalized networks, dynamic inventory- 
type problems, etc. 

Our third example is more serious; it describes an application of the method to 
stochastic programming, which proved successful for very large problems with hundreds 
of thousands of variables [13]. 

E x a m p l e  4: Scenario decomposition in stochastic programming 

In a multistage stochastic programming problem (see, e. g., [16, 171) each xi repre- 
sents a sequence of decisions at time stages t = 1,2, .  . . , T :  

that has to be made in scenario i = 1,2, .  . . , L. The sets Xi, i = 1 , 2 . .  . , L, are given 
by scenario-dependent constraints that describe the evolution of the system. In the 
simplest case it may be 

x ; ( t ) l O ,  t = 1 , 2  ,..., T. 

However, the scenario subproblems cannot be solved independently, because a t  time t 
only the scenario data 

are known. Therefore we have to  impose on the sequences x;(t), t = 1,2 , .  . . , T an 
additional nonanticipativity constraint: if for some t scenarios i and j have common 
past and present, i.e. 

s,(B) = ~ ~ ( 0 1 ,  e = 1,2, .  . . , t, 



then we must have 
x;(t) = xj(t) .  

The set of all scenarios j that coincide with scenario i up to time t is denoted A(i,  t ) .  
The multistage stochastic programming problem can be stated as follows: 

z i ( t ) = x j ( t )  for all j ~ A ( i , t ) ,  i =  1,2 ,..., L. (6.7b) 

x ; € X i ,  i = 1 , 2  ,..., L; ( 6 . 7 ~ )  

pi denotes here the probability of scenario i .  The problem has form (1.1) with very 
many linking constraints. Clearly, many of the constraints (6.7b) are redundant and 
we can work with a carefully selected subset of them. In [13] the following approach 
has been applied. If at time stage t scenarios i l  , iz, . . . , ik form a group with common 
past data, then we can enforce nonanticipativity by the following constraints: 

The number of linking constraints is still large, but the maximum number of neighbors 
N is only 1 (each constraint links variables from two blocks). Therefore the stepsize in 
(3.10) can be chosen from 

O < T < l - / I .  (6.9) 

and the best speed of convergence can be quite high. 
Thus, our analysis allowed us to improve the results of [13], where 0 < T < 1 

f was required (with p = 0). It also explains good behavior of the method with 7 = 5 
observed for large-scale stochastic programming problems. 

Our examples make it easy to identify classes of problems to which our techniques 
apply directly; we can also indicate problems for which DQA may be slow. One of 
them is the multicommodity network flow problem with many commodities, because 
its linking constraints relate decisions (flows) from all blocks. Then the number of 
neighbors N is large, we have to use very small stepsizes and convergence is slow. 



References 

[I] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, (Aca- 
demic Press,1982). 

[2] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation 
(Prentice-Hall, Englewood Cliffs, 1989). 

[3] G Cohen and D.L. Zhu, "Decomposition-coordination methods in large scale op- 
timization problems: the nondifferentiable case and the use of augmented La- 
grangians," in: Advances in Large Scale Systems, vol. 1, J .  B. Cruz (ed.), JAI 
Press 1984, pp. 203-266. 

[4] G.B. Dantzig and P. Wolfe, "Decomposition principle for linear programs", Oper- 
ations Research 8(1960) 101-111. 

[5] LV. Findeisen, F.N. Bailey, M. Brdyi, K. Malinowski, P. Tatjewski and A. Woiniak, 
Control and Coordination in Hierarchical Systems, Wiley, New York, 1980. 

[6] M. Fortin and R. Glowinski, "On decomposition-coordination methods using an 
augmented Lagrangian," in: Augmented Lagrangian Methods: Applications to 
the Numerical Solution of Bocudery- Value Problems, M. Fortin and R. Glowin- 
ski (eds.), North-Holland, Amsterdam, 1983, pp. 97-146. 

[7] D. Gabay and B. Mercier, "A dual algorithm for the solution of nonlinear vari- 
ational problems via finite-element approximations," Comput. and Math. Appl. 
2(1976), pp. 17-40. 

[8] R. Glowinski and A. Marocco, "Sur l'approximation par dldments finis d'ordre un 
et la rdsolution par pbnalisation dualitd d'une classe de problkmes de Dirichlet non 
lindaires," Revue Fran~aise d'Automatique Informatique Recherche Ope'rationelle, 
Analyse Nume'rique, R-2(1975), pp. 41-76. 

[9] J.-B. Hiriart-Urruty, E-Subdiflerential Calculus, in: Convex Analysis and Optimiza- 
tion, Research Notes in Mathematics 57, PITMAN Publishers, 1982, pp. 1-44. 

[lCI] K.C. Kiwiel, Methods of Descent for Nondiflerentiable Optimization (Springer- 
Verlag, Berlin, 1985). 

[ l l]  L.S. Lasdon, Optimization Theory for Large Systems, Macmillan, New York, 1970. 

[12] J.M. Mulvey and A. Ruszczyriski, "A diagonal quadratic approximation method 
for large scale linear programs," technical report SOR 90-08, Department of Civil 
Engineering and Operations Research, Princeton University, Princeton 1990 (to 
appear in Operation Research Letters). 

[13] J.M. Mulvey and A. Ruszczyriski, "A new scenario decomposition method for 
large-scale stochastic optimization," technical report SOR 91-19, Department of 
Civil Engineering and Operations Research, Princeton University, Princeton 1991. 



[14] B.N. Pshenichnyi, Convex Analysis and Extremal Problems, Nauka, Moskva, 1980 
(in Russian). 

[15] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton 1973. 

[16] R.T. Rockafellar and R.J.-B. Wets, "Scenarios and policy aggregation in optimiza- 
tion under uncertainty," Mathematics of Operations Research 16(1991) 1-23. 

[17] A. Ruszczyriski, "Parallel decomposition of multistage stochastic programs", 
Mathematical Programming 1992 (forthcoming). 

[18] A. Ruszczyriski, "An augmented Lagrangian decomposition method for block diag- 
onal linear programming problems", Operations Research Letters 8(1989) 287-294. 

[19] G. Stephanopoulos and W. Westerberg, "The use of Hestenes7 method of multi- 
pliers to resolve dual gaps in engineering system optimization", Journal of Opti- 
mization Theory and Applications, 15(1975), pp. 285-309. 

[20] P. Tatjewski, "New dual-type decomposition algorithm for nonconvex separable 
optimization problems", Automatica, 25(1989), pp. 233-242. 

[21] N. Watanabe, Y. Nishimura and M. Matsubara, "Decomposition in large system 
optimization using the method of multipliers," Journal of Optimization Theory 
and Applications, 25(1978), pp. 181-193. 


