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1. Introduction 

It is not unusual to have to deal with optimization problems involving discontinuous func- 
tions, for example: optimization problems involving set-up costs or impulse controls (Ben- 
soussan and Lions [5]), the control of discrete events systems (Gong and Ho [14], Rubin- 
stein [36], Ermoliev and Gaivoronski [9]), and control problems with pre- and post-accident 
regimes whose systems' parameters do not evolve continuously. Even a convex optimization 
problem is sometimes replaced by one involving discontinuous penalties such as indicator 
or characteristic functions. Problems defined in terms of marginal functions, expressing 
the dependence of the optimal value of some subproblem (as in stochastic programming 
problems, for example) on certain parameters are in general discontinuous. In order to 
deal with such applications, a number of efforts have been made to develop a subdiffer- 
ential calculus for nonsmooth, and possibly discontinuous, functions. Among the many 
possibilities let us mention the notions due to Rockafellar [31], Aubin [3], Clarke [6], Ioffe 
[18], Frankowska [ll], Michel and Penot [25] and Mordukhovich [26] in the context of 
variational analysis, to Warga [43] for subdifferentials obtained via certain approximating 
scheme, to Demyanov and Rubinov [7] for quasi-differentiable functions, and to Ermoliev 
[E)] a.nd Polyak [30] in the context of stochastic approximation techniques for optimization 
problems. 

Another approach to the differentiation of "nonclassical" functions, which eventually 
became known as the theory of distributions (in Russia, as the theory of generalized func- 
tions), was developed in 1930's by Sobolev [38] and Schwartz [37]. This technique is in 
wide use in mathematical physics and related engineering problems. Although, one ca.n 
find in the literature occasional reference to a connection between these two developments, 
the notion of differentiability in the sense of distributions is not used in variational analysis 
or in the design of solution procedures for optimization problems involving "nonclassical" 
functions. Probably, one of the reasons for this, is that in the theory of distributions, 
(standard) functions defined on Rn are redefined as functionals on a certain .functional 
space. The same applies to their gradients. 

In the development of a subdifferential calculus for (discontinuous) functions, we shall 
appeal to some of the results of the theory of distributions, but our aim is to bring back 
the algebraic manipulations to operations that can be carried out in JRn, in particular, 
by a.ssigning some distributions to a point in JRn. More specifically, we associate with 
a point x E JRn, a family of mollifiers (density functions) whose support tends toward 
x and converge to the dirac function 6 ( x  - .). Given such a family, say {$e, 8 E JR+), 
a "generalized" function associated with a function f : Rn -t R is then defined as the 
clusters of all possible values generated by the pairings of f with $". A set of generalized 
gra.dients, called here mollifier subgradients is defined in a similar fashion. 

From another angle, one can also link this approach to a technique involving "aver- 
a.gedn functions introduced by Steklov [39], [40] and Sobolev [38]. In the case of continu- 
ous functions, these averaged functions converge uniformly to f ,  and is then related to an 



approach suggested by Warga [42-441, see also Frankowska [12]. 

For the gradients of averaged functions there are simple unbiased stochastic estimators 

based on finite differences (some will be mentioned in our development). This opens up the 
possibility of minimizing the original (discontinuous) function through the minimization 
of a sequence of smooth approximating averaged functions. Such an approach, initiated in 
section 5, relies on the ideas inherent in stochastic quasi-gradient methods and dynamic 
nonstationary optimization as were used by Ermoliev and Nurminski [lo],  Gaivoronski 
[13], Katkovnik [19], Nikolaeva [27] in convex nondifferentiable optimization, by Gupal 
[15], Mayne and Polak [24] in the Lipschitz continuous case, and by Gupal and Norkin 
[17] in the discontinuous case. 

Section 2 introduce a notion of convergence for discontinuous function, and prepares 
to way to a justification that averaged functions are consistent approximating functions 
when dealing with the minimization of a discontinuous functions. Section 3 is devoted 
to the properties of averaged functions, and section 4 introduces the notion of a mollifier 

subgradient based on the approximation of a discontinuous function by averaged functions. 
Finally section 5, outlines some potential optimization procedures. 

Let f : lRn -+ be a proper (f $ oo, f > -m)  extended real-valued function with 
dom f = {x E RnI f (x) < m )  the (nonempty) set on which it is finite. Its epigraphical (or 

lower semiconiinuous) closure cl, f is given by 

cl, f (x) := lim inf f ( X I )  = inf lim inf f (xu)  
z"2 zY-2 "'00 

and its hypographical (or upper semiconiinuous) closure clh f is 

clh f (x) := lim sup f ( X I )  = sup lim sup f (xu);  
2'-z zY-z u + m  

inf and sup are taken over all sequences xu converging to x. The function cl, f is lower 
semicontinuous and clh f is upper semicontinuous. 

For an arbitrary sequence of functions { f"  : IRn -+ E, v E IN), we denote by e-li f "  
its lower epi-limit, i.e., 

(e-li fU)(x)  := inf liminf fU(x"),  
I"-2 "'00 

and by h-1s f "  its upper hypo-limit, i.e., 

(h-1s f ")(x) := sup lim sup f "(xu); 
zY--rz "-00 

here also inf and sup are calculated with respect to all sequences converging to x. It is easy 
to see that e-li f"  is lower semicontinuous and that h-1s f " is upper semicontinuous, if 
necessary cf. [33] for more details; note that h - 1s f"  = - e - li(- f "). 



2.1. Definition. Given a sequence of functions { f" : IRn + n , v  E IN), a function 
f : IRn + is an epi-subl imit  of 'the sequence {f ") if cle f 5 e-li f ". It is a hypo-supl imit  
if h-1s f" 5 clh f .  I f f  is both an epi-sublimit and a hypo-suplimit, we shall say that the 
sequence f" eh-converges to f .  

One can view eh-convergence as an extended graph-convergence. With gph f V ,  the 
graph of the function f V ,  eh-convergence means that 

Lim sup,,, gph f V  C { (2, a )  E IRn x I cle f (x) I a I clh f (XI ) 

where Limsup is the ou te r  (superior)  set- l imit;  for a sequence of sets CV,  Limsup, C V  
consists of the cluster points of all sequences { u " )  with u" E C V  for v sufficiently large. 

A notion of eh-convergence (for functions with values in a function space) also surfaced 
in the study of the stability properties of integral functionals with discontinuous integrands, 
Artstein and Wets [I]. 

3. Averaged functions 

Averaged functions will be defined relative of a specific family of mollifiers; our usage of 
the term mollifier differs somewhat from the standard one in that we do not require that 
mollifiers be necessarilyanalytic. 

3.1. Definition. Given a locally integrablefunction f : IRn + IR and a family of moll i f iers  
{ $9 : IRn + R+, 0 E IR+ ) that by definition satisfy 

/Rn 
e d = 1, supp$e := { r E IRn 1 $e(r) > 0 )  C pe IE with pg 10 as 01 0, 

the associated fa.mily { fe,  0 E IR+ ) of averaged func t ions  is defined by 

For example, the family of mollifiers could be of the following type: let $ be a density 
function with supp $ bounded, a e  10 as 0 10, and 

A mollifier is thus a probability density function defined on IRn but the family {ge l  must 
possess some specific properties. One can also express fe  as a convolution 

f e = f  *+e. 

Sobolev [38] introduced "averaged functions" in his study of generalized functions 
(distributions) that could serve as solutions of certain equations in mathematical physics; 
he also required that the mollifiers Ge be analytic (of class Cm). In terms of the theory of 
distributions, fe(x) is the value of the distribution f at +*(x - -), x playing the role of a 
parameter. 



3.2. Theorem.  Let { f e ,  8 E R+ ) be a family of averaged functions associated with a 
locally integrable function f : Rn -, R ,  and suppose that xe -+ x as 8 1 0. Then 

cl, f (x) 5 lim inf fe(ze) 5 lim sup fe(xe) 5 clhf (XI .  
e l o  el0 

Consequently, the averaged functions fe eh-converge to f .  

Proof.  It will suffice to prove the first inequality, the second one is evident and the proof 
of the last one is similar to that of the first. eh-convergence is an immediate consequence 
of this string of inequalities. 

By definition of lower semicontinuity, for all x E IRn and r > 0 there exists V, a 
neighborhood of 0, such that f (x  - 2) > cl, f(x) - r for all z E V. For 8 sufficiently small, 
supp qe c V and then 

Hence, lim infe 1 fe(xe) 2 cl, f (x) - E .  The proof is completed by letting E 10. 

3.3. Corollary. Let f : IRn -, IR be continuous, and { fe,  8 E IR+) an associated family 
of averaged functions. Then, the averaged functions fe converge continuously to f ,  i.e., 
fe(xe) -+ f (x) for all xe -+ x. In fact, the averaged functions fe converge uniformly to f 
on every bounded subset of R n .  

Proof.  Evident. 

When the function f is not continuous, one cannot expect to have continuous conver- 
gence of the averaged functions to f .  But that is also more than what is required. For our 
purposes, we only need to establish that the averaged functions converge to f is a sense 
that will guarantee the convergence of minimizers and infima. This is precisely what is 

accomplished by epi-convergence. 

3.4. Definition (Aubin and Frankowska, [4], Rockafellar and Wets [33]). A sequence of 
functions { f V  : Rn -+ E, v E IN ) epi-converges  t o  f : Rn -+ a t  x if 

(i) liminf,,, fY(x") 2 f (x)  for all xu -+ x; 

(ii) lirn,,, f "(xu) = f (x) for some sequence xu -t x. 

The sequence { f "),EN epi-converges  to f if this holds for all x E Rn, in which case 
we write f = e-lm f" .  

Clearly, if f is the epi-limit of some sequence, then f is necessarily lower semicontin- 
uous. Moreover, if the f"  converge continuously, and a fortiori uniformly, to f ,  they also 
epi-converge to f .  



For example, if (x, y) H g(x,y) : IRn x IRm -t is (jointly) lsc at ( 5 , ~ )  and is 
continuous in y at y, then for any sequence y" --t y, the corresponding sequence of functions 

{ f "(., Y"), u E IN ) epi-converges to f ( - ,  y) at 3. 

3.5. Theorem (Attouch and Wets [2]). If the sequence of functions { f" : Rn R, u E 
IN) epi-converges t o  f : Rn --, R at all x E D c Rn, then for any compact set I< c D, 
one has 

infK f V  + infK f ,  

Epi-convergence of the averaged functions fe  to f will be guaranteed by the following 
property of f :  

3.6. Definition. A function f : Rn -+ R is strongly lower semicontinuous at x, if it is 
lower semicontinuous at x and there exists a sequence xu --t x with f continuous at xu 
(for all v) such that f (xU)  4 f(x).  The function f is strongly lower semicontinuous if this 
holds at all x. 

Strong lower semi-continuity excludes the possibility of discontinuities that are lo- 

calized on lower dimensional subsets of R n .  If we think of (x, f (x))  as the state of a 
system, strong lower semicontinuity means that this state can always be reached by fol- 
lowing a path along which the evolution of the system is continuous (with no jumps). If 
x is "time-dependent", then although we may expect sudden changes from one state to 
another, either before or after the jump, the evolution will be continuous, one doesn't 

expect instantaneous jumps followed by an immediate return to normal regime. 

3.7. Theorem. For any strongly lower semicontinuous, locally integrable function f : 

lRn 4 IR, and any associated family { f e y  0 E IR+ ) of averaged functions, one has that 

f = e-lm fe ,  i.e., for any sequence 0" 10, f = e-lm few. 

Proof. Pick any x. We are going to show that the fe epi-converge to f at x. The strong 
lower semicontinuity of f at x provides us with a sequence xu t x such that f (xu)  t f (x) 

with f continuous at xu.  From corollary 3.3, it follows that for all v, fe(xU) -+ f (xu),  and 
consequently a standard diagonalization process will yield (for any sequence Ok t 0 as 
k -+ co) a sequence xk such that feh(xk) -t f(x). This yields condition (ii) in definition 

3.4. For condition (i) of definition 3.4, we simply appeal to proposition 3.2. 

Theorem 3.7 tells us that if one has to minimize the function f ,  the averaged functions 
f e  could be used in a consistent approximation scheme, i.e., that implies the convergence of 
the minimizers. However, before we follow this route, we would have to make sure that their 

properties makes them amenable to minimization by existing -or possibly, modified- 
algorithmic procedures. The remainder of this section is devoted to the continuity and 



differentiability properties of averaged functions, in particular for the class of Steklov 
(averaged) functions. 

3.8. Definition. Given a locally integrable function f  : Rn -+ R, the Steklov (averaged) 
functions are defined as follows: for o > 0 

where 
l/on, if maxi, ...,, Iz iJ  I a/2;  

otherwise. 

Equivalently, 
t n + a / 2  

d y l  ... J dyn f ( ~ ) .  
t n - a / 2  

This class of averaged functions were introduced by Steklov [39] in 1907, and used by 
I<olmogorov and Frkchet for compactness tests in LP. In the context of smooth optimiza- 
tion, they were used by Katkovnik [19], Nikolaeva [27], Gupal [15-161 and Mayne and 
Polak [24]. 

The next proposition records the well-know fact that Steklov functions are locally 
Lipschitz continuous. 

3.9. Proposition. For locally integrable functions f  : Rn -+ R, the associated Steklov 
functions f ,  are locally Lipschitz, i.e., on each compact set I( c Rn, the function f ,  is 
Lipschitz continuous on I( with Lipschitz constant K ,  

K = (2nlo)  sup f  (x), where I{, := { x + z 1 x a: K,  max 12; 1 I 012 ). 
t E K ,  i = l  ,..., n 

Differentiability of average functions, however, cannot be guaranteed in general, unless 
the mollifiers $e are sufficiently smooth or if f  itself has a sufficient level of continuity. 

3.10. Proposition (Sobolev [38], Schwartz [37]). Let f : Rn -+ R be a locally inte- 
grable. Whenever the mollifiers Ge are smooth (of class C1), so are the associated averaged 
functions f e  with gradient 

3.11. Proposition (Gupal [15]). For f  : IRn 4 R locally Lipschitz, the Steklov (aver- 
aged) functions f ,  are continuously differen tiable, and their gradients are given by 



where e, is the i-th unit coordinate vector. 

This gradient can also be expressed as 

where 

This means that V fe(x) is the expectation of the random vector A,(x,() where ( = 
(tl , . . . en) is a random vector, whose elements are independent and uniformly distributed 
on [-1/2,1/2].  In other words, A,(x,() is an unbiased estimator of the gradient of fa at  

3.12. Remark. Although, in the case of discontinuous functions f ,  we cannot "reach" 
differentiability for Steklov functions, it is always possible to do so, if the averaging process 
is repeated a second time. This follows immediately from propositions 3.9 and 3.11. Given 
a locally integrable function f : IRn -t IR, let 

with the densities $, and go as in definition 3.8. We can also express this as an expectation, 

with ( and q random vectors whose elements are independent and uniformly distributed 
on [ - 1/2,1/2]. The gradient can be calculated from proposition 3.11. One has 

where, with zyP(t, t)) := xi - a& - Pqi, 

n 
a P  P 

A a ~ ( x ,  E, 9 )  := x ei [ f (zpP([, t)), - - , zi-l (E, t)), X i  + + 5 , z?Jl(t, t)), - - , *:'(t, t))) 
i= 1 

a P  
- f (zPP(t, t)), - 3  ( ( 7   xi + ati - 2 3 zffP(E7 t)), - .  3 z:'(E7 t)))] p-' 



Again, A,p(x,[,q) is an unbiased estimate of the gradient Vf,p(x) with C,q random 

vectors whose elements are independent and uniformly distributed on [ -1/2,1/2 1. 
3.13. Remark. Let us also record an important relationship between the estimates of 
the gradients of averaged functions and stochastic gradients. We consider the following 
averaged functions: 

with f locally integrable, $ is a density function with compact support and such that V$ 
is Lipschitz continuous. Then, the gradient of fe, 

is locally Lipschitz with constants proportional to 1/02. The following random vector (cf. 
Gupal [ l6 ] )  

1 

is a stochastic quasi-gradient of f o  at  x (Ermoliev [9]), where C is distributed in accordance 
with the density function $, and 1) is a random vector whose elements are independent 
and uniformly distributed on [ - 1,1] .  To see this, note that 

where 0 ( x ,  6, A )  is locally bounded. 

Observe also that if C is distributed in accordance with the density function $0 and 1) 

is a random vector whose elements are independent and uniformly distributed on [ -1,1],  
then 

1 
Ae,n(x, C, 1) )  = a [f ( X  - C + Av) - f (X - C) 11, 

is a quasi-gradient for the averaged function fe ,  i.e., it provides a, possibly biased, estimate 
of the gradient of fe as calculated in proposition 3.10. 

3.14. Remark. To complete this analysis of averaged functions, let us point out that the 
class of averaged functions that we have introduced is based on convolutions with mollifiers 
that are of the same nature as those used in theory of distributions. One could however 
have worked with a more general class and still obtain a convergence result similar to that 
of theorem 3.2; in fact, not just eh-convergence, but most of the results in this section. 
Let { 9 0  : IRn + IR+, 6' E IR+ ) be a class of integrable functions such that cpe(z) dz = 1. 



Suppose that the function f : IRn + IR and the {cpe} are such that fe = f *cpe is well- 
defined (on IRn) and that for all 6 > 0: 

(f ( t ) ( ~ e ( x  - t )  d t  = 0, uniformly in x, lime c p e ( t )  dz = 1; 

To see that the functions f e  still eh-converge to f ,  note for all x E IRn and E > 0 there 
exists V, a neighborhood of 0, such that f (x  - r )  2 cle f (x)  - E for all r E V and that for 
xe + x as 6 10, for all 6 > 0 and 6 sufficiently small, 

and hence lim info 1 fe(xe) 2 cl, f (x )  (after letting E 10). For example, let 9 be the 

gaussian density function, i.e., 

Consider the following family of functions 

Suppose that I f(x)l 5 71 + 7 2  (xlY3 with 71, 72, 73  positive constants. Then, the functions 
fe eh-converge to f as 9 10 and each functions f e  is analytic. One has 

passing differentiation under the integral sign is justified by the theory of tempered distri- 
butions, cf. Schwartz [37]. Thus the random vector Ae(x,C), defined by 

with a gaussian random variable (density cp), is an unbiased statistical estimator of 

Vfe(x>. 



4. Mollifier subgradients 

We are going to exploit the fact that averaged functions determine an epi-convergent family 
of approximating functions, and that rather explicit expressions can be obtained for their 
gradients, to define a new notion of subgradient based on a family of mollifiers. In the 
next section, these subgradients are used to design minimization procedures aimed, in 
particular, at the minimization of discontinuous functions. 

4.1. Definition. Let f : IRn + IR be locally integrable and { f" := f e u ,  v E IN) a sequence 
of averaged functions obtained from f by convolution with the sequence of  mollifiers { $" : = 

$0. : lRn + lR, v E IN ) where 6'" 10 as v + oo. Assume that the mollifiers are such that 
the averaged functions f" are smooth (of  class C 1 ) ,  as would be the case i f  the mollifiers 
$" are smooth. The set o f  the $-mollifier subgradients o f f  at x is by definition 

f (x)  := Limsup~,,{Vf"(xU) I x" + x ) ,  

i.e., the cluster points o f  all possible sequences {V f "(x")) such that x" + x. The full (Q-) 
mollifier subgradient set is 

aefcx)  := U, a,fcx) 

where $ ranges over all possible sequences of  mollifiers that generate smooth averaged 
functions. 

The set dd, f (x)  of $- mollifier subgradients is closed, and clearly depends on the choice 
of the sequence {$") that is used in its construction. The full mollifier subgradient set 

f (x )  is also convex and clearly does not depend on any particular choice of mollifiers. 
The sets d, f (x) and de f (x) are always nonempty if the function f is almost everywhere 
smooth and its gradient is locally bounded on the set where it exists (as in corollary 3.3 
but applied here to V f) .  

4.2. Definition. Let f : lRn + IR be locally integrable and { f" := f e u ,  v E IN) a sequence 
of  averaged functions obtained from f by convolution with the sequence o f  mollifiers { $" := 

$ e u  : lRn -+ lR, v E I N )  where 6'" 10 as v + oo. Assume that the mollifiers are such that 
the averaged functions f" are smooth (of  class C 1 ) ,  as would be the case i f  the mollifiers 
$" are smooth $" are smooth (of  class C1) .  The $-mollifier subderivative o f f  at x in 
direction u is 

f i ( x ;  u) := h-ls( f ")I(.; u)  = sup lim sup (f ")'(x"; u) 
{z~'z) 

where (f ")I(-; u) is the derivative of f "  at x in direction u; sup is taking with respect to 
all sequences x" + x. The full (Q-)mollifier subderivative o f f  at x in direction u is 

fk(x; u) := sup f;,(x; u) 
dJ 



where 1C, ranges over all possible sequences of mollifiers generating smooth averaged func- 
tions. 

Henceforth, when referring to f we always assume that it is locally integrable and 
that { f ") is a sequence of smooth averaged functions obtained from f by convolution with 
a sequence of mollifiers { $", v E IN ). 

4.3. Proposit ion.  The $-mollifier subgradient mapping x I-+ f(x) is outer semicon- 
tinuous (closed graph) and fi is upper semicontinuous. Also 

Proof.  Follows directly from the definitions. 

4.4. Proposi t ion.  The function u I-+ fi(x; u )  is sublinear, i.e., fi(x; -) is convex and 
positively homogeneous. The set-valued mapping 

is closed-, convex-valued. 

Proof .  Since the functions f" are smooth, one has 

Taking l imsup on both sides over all sequences xu -+ x yields 

Similarly, the positive homogeneity of f$(x; .) follows from the linearity of the derivatives 
of the functions (f ")'(x; .). The assertions about the set-valued mapping G$ follow directly 
from the sublinearity of fi(x; a ) .  

4.5. Proposit ion.  One always has 

con%f(x) c G d x )  := { g E IRn 1 (9, u )  I f;l(x; u), V u  E an } 
where con denotes the convex hull. If f (x) is bounded then con f (x) = Gllr (x). 

Proof.  We begin with the inclusion. To any g E a$f(x), there corresponding a 
subsequence {vk) c {v) and x k  -+ x such that v f"k(xk) -+ g. Since ( f"k(xk; u )  = 

(V fVk(xk), u), it follows that 

(9, u )  = lim (v~"~(x'),u) = lim (fUk(xk; u )  5 fi(x; u). 
k-+w k-+w 



Thus a+ f (x) c G+(x) and the convexity of G+(x) then yields con a+ f (x) c G+(x). 

Suppose now that a+ f (x) is bounded. If h E G+(x) \ con a+ f (x), i.e., G+(x) $Z 
con a+ f (x), then by the separation theorem for convex sets, there exists ii such that (h, 21) > 
(g, 6) for all g E con a+ f (5). But f;i(x; ii) 2 (h, ii) and, passing to a subsequence whenever 
necessary, there exists xu + x SO that 

and 
(f ")'(xu; c) = (Vf"(xU), 21) -+ f;i(x; I?). 

Thus, we would have that 

clearly contradicting the existence of such a h. 

4.6. Remark. The approach laid out here could be used to define subdifferentials of 
higher order. For example, if the mollifiers are of class C 2 ,  then the resulting averaged 
function f" are also twice continuously differentiable. With V2 f "(x) the hessian of f u  at 
x, we could define the second order +-mollifier subhessian o f f  at x as 

a$f(x) := Lim sup,+, { v2 f" (xu)  / xu 3 x } , 

i.e., the cluster points of all possible sequences {V2 f "(xu)} of matrices with xV 3 x. The 
function 

n 

f;(x; H) := lim sup(v2  f "(xu), H) = lim sup 
a 

z V - 2  + . , axiax j  
f "(xU)hij  

I , ] = ]  

could be called the second order +-mollifier subderivative off  in direction H. The mapping 
x H a$ f (x )  is closed, the function f$(x; a )  is upper semicontinuous and one has 

con a$f(x) = { H E IR"' I H U  5 j;(x; u), v u  E IR"' J. 

The next theorem justifies a minimization approach based on mollifier subgradients. 

4.7. Theorem. Suppose that f : IRn 3 IR is strongly lower semicontinuous and locally . 

integrable. Then, for any sequence {+"} of smooth mollifiers, one has 

0 E a+f(x) whenever x is a local minimizer of f .  

Proof. Let x be a local minimizer of f .  For V a compact neighborhood of x sufficiently 

small, define 
9 :  V 3 IR with ~ ( z )  = f ( z ) +  1 %  -xI2. 



The function v achieves its global minimum (on V) at x. Consider also the averaged 
functions 

~ ' ( 2 )  = Ln Y(Y - z)dY(y)dy = f V ( 4  + PY(x,z) 

where PV(x, z) = J Iy - z - ~ ( ~ $ " ( ~ ) d y .  From theorem 3.10, it follows that the function 
vV are continuous and theorem 3.7 implies that they epi-converge to 9 on V. Suppose qV 
achieves its minimum at some point zV E V. It follows from theorem 3.5 that zV + x, and 
thus 

Vq"(zV) = VfY(z") + VPV(x, 2") = 0. 

Hence 

V f V(zY) = -VPY(x, 2'') + 0 as v + 03, 

and consequently 0 E d$ f (x). 

In the remainder of this section we explore the relationship between mollifier subgra- 
dient and some other subgradients notions. 

For function f : Rn + R continuous on a neighborhood V of x, Warga [42-441 defines 
subgradients of f at x as follows: Let { f k ,  k E IN) be a sequence of smooth functions 
converging uniformly to f on V, we shall refer to 

as the set of IVarga-subgradients of f at  x (cl denotes closure). I 
4.8. Proposition. For f : Rn + R be continuous on V a neighborhood of x, and 
{ f k ,  I; E IN) a sequence of smooth functions converging uniformly to f on V, then 

Consequently, when f is continuous, dw f(x) coincides with d$ f (x) if in the construction 

of drv f (x) the f are averaged functions generated by the sequence of smooth mollifiers 

{ d k ) .  

Proof. Let 

D(x) = Lim  SUP^+^{ v f k(xk)  ( vxk + x ). 

Let us first show that D(x) C dw f (x). Let g E D(x) be such that, passing to a subsequence 
k k  if necessary, g = limk V f (x ) for some specific sequence xk + x. We have to show that 

for all j and 5 > 0, 

g E Gj,a(x) := cl[  U v f k ( y ) l -  
k2jllz-y156 



Obviously, if k 2 j and Ixk - X I  5 6, then 

Since Gjj6(x) is closed, each cluster point of the sequence {V f k(xk))  belongs to Gj,6(x). 

Hence, g E aw f (x) and D(x) C dw f(x). 

To prove the converse inclusion, one needs to show that for each point g in aw f (x) 
one can find a sequence xk -+ x such that v f k ( x k )  + g. By definition of aw for all j and 
6 > 0, g E Gi,a(x). Let us choose a sequence 6j 10 as j -+ m. Since g E Gj,aj (x) for all j, 

Thus in this set, there exists an element g j  = V f k~ (yj )  such that Jg j  - g ( < l/j. Clearly 

y j  t x, k j  + m and g j  -+ g, so that g E D(x) and aw f (x)  c D(x). 

The equality between the Warga- and the $-mollifier subgradient sets then follow from 
the formula we just proved, and the definition of $-mollifier subgradients. 

In variational analysis, the (regular) subderivative of a lower semicontinuous function 
f : R n t l R i s  

1 
df(x;u) = limsup - [ f ( y + X u ) -  f (y) ]  

y-z,X 10 X I 

with the lim sup calculated with respect to all sequences x' + x, X 1 0. The set of (regular) 
subgradients is 

df(x) = { g  E R ' ~ ( ~ , U )  <df(x ;u) ,  VUEIR") .  

This definition comes from Rockafellar [31] which extends a similar notion first pro- 
posed by Clarke [6] for locally Lipschitz continuous functions. 

4.9. Proposit ion.  For f : Rn + lR locally integrable, one has fL(x; .) < df(x; .). I f f  is 

continuous, then f i (x ;  .) = df (x; -). 

Proof .  By definition of df (x; u) it follows that for an arbitrary E > 0, there exist 62 
such that whenever Jy - x(  < 61, and X E (0, h2), 

Let f "  be the averaged function obtained as the convolution of f and the mollifier $". 
Consider the finite differences 



If 1 %  - X I  < b1/2, X < 6212 and lz l  5 b1/2, then 

& ( y , u , X )  I ( J f ( x ; u )  + e )  

Thus for y close enough to x ,  

from which it follows that f k ( x ;  u )  < 2 f ( x ;  u )  + E .  Letting e  1 0 yields f i ( x ;  u )  < d f ( x ;  u ) .  

We next set out to prove the reverse inequality, assuming that f is continuous. Let 

xu -+ x  and A,  10 be such that 

1 
J f ( x ; u )  = lim - [ f ( x Y  + ~ ~ ~ ) - f ( x " ) I -  

v - w  A ,  

From corollary 3.3, we know that when f is continuous, the averaged functions f V  converge 
uniformly to f on some neighborhood, say V, of x. Thus, with e,  = X,/u, one can always 
find k, such that 

Now from the mean value theorem follows the existence of yY := xu + T,U, Tv E [ 0 ,  A ,  ] 
such that 

1 
- [ fkw(x" + X,u) - f k u ( x V ) ]  = ( f k ~ ) ' ( y U ; u ) .  
A" 

Thus for v sufficiently large, with x" E V and xu + X,u E V, one has 

[ f ( x u  + X"U) - f ( x V  I 
= [ f " (xU + X,u) - f k w ( x " ) ]  + [ f ( x U  + A".) - fkw(xV + Xvu)] - [ f ( x U )  - f k u ( x U ) ]  

5 L( ( fkw )'(yU; 21) + 2 / 4 .  

Taking limsup with respect to u yields 

J f  ( x ;  U )  < limsup( f kw  ) ' ( y Y ;  U )  5 f;l(x; u ) ,  
v-w 

which completes the proof. 

4.10. Theorem. If f : Rn + R is lower semicontinuous and locally integrable, then 

If, in addition f is locally Lipschitz continuous, then 

con a, f ( x )  = & f ( x )  = a f  (11. 

Proof. The first inclusion follows from the relationship between f ( x )  and a\lr f ( x )  (with 

this last set convex), and the second inclusion follows from the preceding proposition. If f 
is locally Lipschitz, then also the averaged functions f" are locally Lipschitz and a, f ( x )  
is bounded. Equality then follows from propositions 4.5 and 4.9. 



4.1 1. Corollary (Gupal [15]). I f f  is locally Lipschitz continuous, then for all a, 10 and 
xu -t x, all dusters points of the sequences {V fa,, (xu)  belong to 8 f(x). 

4.12. Remark. For the sake of completeness, let us also record the fact that for convex 
functions, f : IRn -t IR, we actually have that 

For convex functions, as is well known, the set of gradients can be characterized in terms 
of the expression on the right, cf. [32], for example. In view of the preceding theorem, it 
will thus be sufficient to show that if g E 8 f (x), then g is also included in f (x). Let us 

consider the function 

The function q 1 0 and attains its minimum (= 0) at x; due to the strict convexity of cp, 
x is a unique minimizer of 9. Let 

be the averaged functions associated with q by convolution with the $"; here Pu(x,  y)  = 

J y  - z - x12$"(z) dz. The averaged functions cp" uniformly converge of cp on some neigh- 
borhood V of x (corollary 3.3). Due to the strict convexity of cp, for v sufficiently large, 
the averaged functions $" have a (global) minimizer on V, say y V .  Moreover, y u  -t x, 
since x is a unique minimizer of cp = e-lmqV (theorem 3.7). The averaged functions p V ,  

f V  and PV(x, .) are smooth (theorem 3.10), and thus 

From the conditions imposed on the mollifiers $", it follows that y" -, 0, and hence 

VyPV(x, y")  -t 0, and 

which means that g E drL f (x), as claimed. 



5. Numerical  procedures  

Let us consider the problem of minimizing a strongly lower semicontinuous cp on X,  a 

compa.ct subset of Rn. Let 
1 i f x E X ;  

n x ( x ) =  ( 0  i f x  e x .  

Then, instead of the original problem, one could work with one of the following uncon- 
strained problems involving discontinuous penalty functions: 

minimize f (x) := cp(x)llx(x) + y(1 - UX(X)) 

or 
minimize f (x) := v(x) lx(x)  + y(1- lx(x))d(x, X )  

where d(x, X )  = min{ lx - yl : y E X ) and y is sufficiently large. 

If the function 9 is bounded on X and y > sup{lv(x)l : x E X ) ,  all local minima of 
9 on X are also locally minima of the f functions. 

Assuming that f is also strongly lower semicontinuous, in view of theorems 3.7 and 
3.10, on can always find a sequence of smooth averaged functions f V  (generated by mollifiers 
{ q ! ~ ' ) )  that epi-converge to f ,  and by theorem 4.7, the condition 0 E a+ f (x* ) is necessary 
for a point x* to be a local minimizer o f f  

Let us now consider some optimization procedures for f making use of the approxi- 
mating averaged function f V .  

5.1. Method .  Suppose a sequence {xu)  of global minimizers of f u  can be calculated. 
Then, according to theorem 3.5 any cluster point of such a sequence is a (global) minimizer 
o f f .  

However finding global minimizers of the f V  could be quite complicated. Let us thus 
consider the next method. 

5.2. Me thod .  Here a sequence of approximating solutions {xu)  is build in accordance 
with the following rule. Each function f" is minimized -initiating the procedure at xu-' - 
until a point xu is found such that IV f '(x")( _< e, where e, LO; the starting point x0 is 
chosen arbitrarily. In this method, if 3 is a cluster point of the sequence {xu) ,  then by 
definition of a+ f(5),  passing to a subsequence if necessary, 

lim V f "(xu) = 0 E a+ f (3). 
v + m  

Moreover, this would also mean that 0 E 8f(i) (theorem 4.10), i.e., df(x;u) 2 0 for all 
u E IRn. 

This approach requires estimates of J V  f "(xu)) during the iteration process. In general, 
this could be computationally expensive involving the calculation of multidimensional inte- 
grals. One can however, produce these estimates in parallel with the optimization process 
by a well-known averaging procedure (cf. Ermoliev [8 ] ) :  let 



xO, z0 be chosen arbitrarily in IRn; 
xk+l = x k  - pkzk, k = O,l , .  . .; 
*k+1 = z k  - rk(zk - Xk(xk)), k = 0, I , . .  .; 

where xk approximates argmin f v ,  zk are averaged estimates of v f v ( x k ) ,  X,(xk) are 
stochastic (finite-difference unbiased) estimates for v f "(xk) such that their mathemat- 
ical expectation E{x , (x~) )  = v f "(xk) (see the observations that follow proposition 3.1 I ) ,  
pk 2 0 and r k  > 0 are sequences such that 

5.3. Propos i t ion  (Ermoliev [8, theorem V.81). If the sequences {xk) ,  {zk)  are almost 
surely bounded, then almost surely 

lim (zk - v fY(xk)l = 0, and xk + {x I V fY(x)  = 0). 
k-00 

Thus in method 5.2, we can proceed with the minimization of each f u  until the 
estimate zk of the gradient of Vfv(xk)  satisfy the condition (zkl 5 E, .  

5.4. Method .  A sequence of approximate solutions xu is generated by the following 
rule 

xO E IRn is chosen arbitrarily; 

1 = x u  -pvX,(xV), v = o , 1  .... 
where X,(xV) is a stochastic (finite-difference unbiased) estimator for V fu (xV)  with expec- 
tation E {X,(xu )) = V f u  (xu)  (see the observations following proposition 3.11 and remark 
3.12), p, 2 0 is a deterministic sequence of multipliers. 

This method combines ideas from the method of stochastic quasi-gradients with those 
of dynamic nonstationary optimization techniques, see Ermoliev and Nurminski [lo] and 
Gaivoronski [13]. The following theorem is an example of the possible convergence results. 

5.5. T h e o r e m  (Gupal and Norkin [17]). Suppose the gradient estimates are those in 
example 3.12, i.e., X,(x) = A," ,,, (x, (, q ) ,  the sequence {xu)  belongs to some compact set 
and p, 2 0, a, satisfy the conditions 

00 00 

Pu 2 C ~u = m ,  C( 7 ) < m, lim or, = lim 
a v  - av+1 = 0. 

V 4 0 0  
If= 1 ,=I V-OO orup, 

Then, almost surely, the sequence {xu)  admits a cluster point x* such that 0 E d+ f(x*). 

5.6. Example.  Let us consider the minimization of a probability function: 



We can express f as a mathematical expectation 

Since the function It.) is discontinuous, the function f will in general, not be differentiable. 
To estimate f (x)  and its "gradient," Tamm [41] and Lepp [21] proposed the use of Parzen- 
Rosenblat t kernel-type estimates [29], [35]: 

where + is some symmetric density function on [-co, co]; more recently Marti [23] has 
suggested a similar approach to deal with reliability constraints in structural optimization. 
The funcion f, can also be written as 

where 

Thus +, is an averaged function (with base function - Instead of the original 
function f ,  we have a sequence of approximating function f, constructed (indirectly) by 
means of averaged functions. Tamm [41] in the differentiable case, and Norkin [28] in the 
continuous nondifferentiable case, provided conditions under which f, converges uniformly 
to f ,  and they proposed methods, similar to method 5.2., to minimize f making use of 
the approximating functions f,. Lepp [22] and Roenko [34] analyzed stochastic iterative 
methods, like method 5.4, for the minimization f when it is differentiable, using statistical 
estimates for V f,(x). 
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