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Foreword

The simulation of production costs for power systems is a key factor in the capacity expansion as
well as some other questions raised in connection with planning for power systems. This paper
develops a probabilitic model for production cost simulation that is able to handle uncertainty
of both generating units and peak load forecast.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program
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PRODUCTION COSTING SIMULATION IN THERMAL POWER SYSTEMS USING

THE MIXTURE OF CONDITIONAL LOAD DISTRIBUTION FUNCTIONS

J. HOFFER
Computer and Automation Institute, Hungarian Academy of Sciences

Budapest, P.0.Box 63, H-1502, Hungary

P. DORFNER
Hungarian Electricity Board (MVMT>

Budapest, P.0O.Box 43, H-1251, Hungary

Abstract: In the 1980’s the cumulant method became popular in
reliability type algorithms for preoduction cost evaluation,
particularly 1in the evaluation of loss-of-lcad probability
(LOLP), energy not served (ENS) and expected energy generation
(EEG> of a set of generating units belonging to an electric
power system. We developed a probabilistic mode]! which is able
to handle the uncertainty of both generating units and peak
load forecast. In order to model the load including peak load
forecast uncertainty we use conditional probability
distributions. We show that the cumulant method is still
applicable, as we can compute all the moments of the load
duration curve <(load distribution) without discretizing the

density function of peak load forecast.

Keywords: electric power system, production cost simulation,



1. INTRODUCTION

For a thermal power system the prediction of the expected
energy generation of the units, the loss~-of-load probability
and the expected value of unserved energy are important

aspects both in system operation and planning.

For a more realistic and accurate simulation of system
operation, multiblock representation of wunits’ forced outage
was introduced (see (11, (31, (51, 1[6)>. However in the
lHterature the maximum load level is usually fixed at a given
value by the load duration curve. It means that the
probability with which load exceeds the given value is equal
to zero. With this model (representation) of the load duration
curve the peak load forecast uncertainty and extreme load
values cannot be taken into account.

We point out here that in the paper we write about load
duration curve which 1is often called in the literature as
inverted, normalised load duration curve. In the figure,
system load <(the argument of the function> is shown on the
horizontal axis and probability with which load exceeds the
corresponding load value d{dependent wvariable)> is shown on the
vertical axis.

It is very important that we have an accurate
approximation for the distribution of peak locad values (the
tail of the load duration curve), as it can have influence on
the maintenance scheduling plan. It 1is obvious that fewer
changes of the load duration curve, around the minimum load
value, doesn’t modify the number of units to be loaded, only
the expected energy generation of some units changes. On the

contrary, if we perturbe the load duration curve around the



peak load value, keeping 1its original shape, the number of
units to be loaded changes in order to meet the prescribed
LOLP limit. This fact can significantly influence the
maintenance scheduling plan.

In the model of the paper we suppose that the tail of the
load duration curve (ie. the maximum value of load> can
change. The load duration curve, for a given peak load value,
is a piecewise linear function, joining three parts. The first
two parts are the same for all values of peak load. The peak
load value can change according to a well-rknown distribution
(e.g. uniform or exponentiald>. Above the first interval the
load duration curve is equal to 1. The second interval
represents the expected base load domain of the power system,
the third one simulates peak load forecast uncertainty (see

Figure 1.D.
prob.
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The parameters of the locad duration curve (minimum load
value, expected maximum value, the probability of the event
that the load exceeds the previously mentioned value,
parameter(s) of the distribution of peak load forecast)> can be

defined by the energy planner.

Using this representation the exact shape of the load



duration curve becomes unknown, but the cumulant method |is
still applicable, as we can compute all the moments of the

resulting load distribution.

At the Hungarian Electricity Board a program package has
been implemented on an IBM PC XT or AT to check the system
reliability level. The wuser of the package is enabled to
simulate several availlability-situations of the power system,
by setting units available or unavailable, changing the
maintenance scheduling plan, the parameters of the load
duration curve. -

The realistic and easy-to-handle choice for the
distribution of peak load forecast is as follows:

- uniform distribution <(with given maximum load or with given
mean of the maximum loadd,

- exponential distribution <(with given mean of the maximum
load or with given right endpoint of the interval the

probability of which is greater than 0.999.



11. MOMENTS OF THE RESULTING LOAD DURATION CURVE

Let X be the random variable representing the load, T
be the random variable of peak load forecast, o<t be the

probability density function of T with existing moments

CJ=1,...,J:
pctd 2 0,
[0 o)
_[ pCt) dt = 1,
-
[0 o)
[ t7pct> dt < +o, J=1,..,J.
- 00

Let LDC(x), F(x), and (x> denote the load duration, the

load distribution and the load density function, respectively:
F(x> = 1 =~ LDC(x),
Ff<x> = F’C(x).

Let LDCC |t be the conditional load duration function
(supposing 7T = t> and denote by Xt the corresponding random
varijable. Then the load duration function LDC<(x) is the
integral of load duration functions LDC(x|td depending on

parameter t. Using the following notations:

Fdx|t) = 1 - LDC<(x|t),

dF (x|t
Fx|t) - ——— |
dt
we have:
a
LDCOx = [ LDCOx|[t) pCtd dt, 1
-~



o of
F(x> = [ Fox|t> ptd de,

-m

o of
f(xO = f FOx|t> pdtd> de.

-
it is obvious that the explicit form of the load duration
curve depends on the probability density function >, and

we are seldom able to transform it to a quite simple formula.

In order to use the cumulant method we need only the
cumulants of the random variable representing the load.
Cumulants are polynomials of the central moments and thus
polynomials of the moments, as well (see Kendall and Stuart
[2)>). Therefore we need only the moments of the random

variable of the load:

o o
M = j K [j FCx | pCtd dt] dx. ¥))
-0 -0

By virtue of the Fubini theorem (see Rudin [41> the order
of Integrals can be changed in (2>, if the k-th moment.
(k=1,...,K> of the variable Xt exists and it is finite for
all possible t value; {e. 1if the reversed Iintegral is
finite. This last assumption holds in the cases we examine

later. By changing the order of the integral we have the

following formula:

(o o] [ o
M = J’ pCtd [J‘ xkf(x|t) dx] dt.
-0 -0

As the inner integral is equal to M(X’: >

o o]
M = [ peo> M(Xf) dt. 3>
-0



There are several cases when it 1s quite easy to compute
Mcx®>. One of them is as follows: M(Xf) is a polynomial of
the variable t and we know all the needed moments of the

random variable 7T <(see Example 1. and Example 2. below). If

ny

Mx® mp e, )
e "L n

max (nk: kmi, K) < J

hold, then
2 o} nk
Mx® = [ pct> T e, 7 at,
RJ
J=1
s »]
[» o] n
X
Mx™ = [ Te

o J=1

J
kg b PO dt,

nk @

- 2 J
M(X”>-zchj J t7 pct> at,
g=1 *
"k
Mx® - ¢ e My ar
gm1

As 1lustration, consider the following examples:

Example 1.: Xt is of normal distribution, t can be either the

mean or the standard deviation of Xt' Denote the k-th moment

by my, and the variance of the distribution by sz. Then
2 2
m, = s + mg o
and
m = mm + Sz(k-I)m
k 1 k-1 k-2

are valid, and by using the above recursion-formula, it is
easy to see that M(X:) is the polynomial of either the mean

or the standard deviation.



Example 2.: Let Xt be of uniform distribution, and t one

of the two endpoints of the interval of possible values. 1f

the interval in question is I[r,s), then

k+1  k+1
(s -r >
e
(s=ri)ck+1d
sk-rsk 1r+. ; .-*s:r*k“i"'r*'k
N(X:) = »
k + 1

which is a polynomial of either r or =s.

Example 3.: Let Xt be of exponential distribution the

parameter of which is t, T be of uniform distribution on

the interval Ir,sl] (,s are fixed). Then

k!
MxXR > - —
t Y
t
s KR!
M(Xk> - j s dt,
t (s-rd
-
ki S
M - — [ * a
Ss=-r
”
in s - In r for k= 1,
s - r '
MxXE> =
-k 1 1
Ck-1>Cs-r> [ =1 k-1 ] for k> 1.
= r



I11. SPECIFICATION OF LDCd(x|t> AND T USED IN THE PROGRAM

PACKAGE

In our model construction: let a and b be the
endpoints of the interval where the load is simply uniformly
distributed. Let c (0<c<1> be the probabllity of the event
of the load being greater than b or equal to it. In order to

follow the nature of the practical problem, suppose that

pC(t) = 0, for ¢t < b.

We can define the load duration function LDC<x |t as

follows (see Figure 1.D:

1, for x < a,
- - - <
LDCCx |t> = 1 + (x~a>¢c-1O7<b~a), for a = x< b,
c = c{x-bdX/t-b>, for b =< x< ¢,
o, for x Z t
Then applying (1> we have
1, for x < a,
LDCCx> = :o-’- (x—a>{c-1O>/(b-a>, for < x< b,
_[ [c - c(x-bd/Ct-bd) p(td dt, for x = b.
o

For a fixed ¢, f(x|td is as follows:

C1=-¢cd/7b-a>, for a = x < b,

fx|[t) = c/Ct-b>d, for b =< x < t,
0 otherwise.
Moments of Xt can be expressed as follows:
o
M(X’:) = | xR FOc |t dx,
-



b
Mcx':>-_|’x"%:—§dx+jx" € _ dx
a

b t

1-c R c R
-b——_afx dx+—t_bfx dx =
a b

+
. 1-co bR I ghY Y, L RPI R,

R 15b-a> Y ke "

+ + - -
1-erp®t 1R, . ct®e e 1pe | wep® 1Ry
R+ 1Oh-ad *+1

Consequently the moments of X can be expressed by means of

the moments of 7. Substituing in <(3) we obtain:

r+1_ k+1
-Qa

M(\’k> - (1-¢><b

2 &
CR+1DOCL-ad

+ kf—i [M(Th»m'rk">b+...+m7>bk'1+b"].

In the program package T is supposed to be of
exponential distribution, the possible values of which are

greater than b or equal to it. Let d <(d>0) be the parameter

of 7T. In this case the density function is

{0, for t < b,
pCt) =

d exp(-d{t-bd), for t 2 b.

We think that the assumption of exponentiality is close to
the nature of the peak load distribution. We suppose that T
could be modellised with uniform distribution as well, but we
have no numerical experience for this case yet.

The expected value of T |is

10



1

H(T)-b+a,

and the reader can easily verify <(using the method of partial

integration) the following recursion formula
Mcrd> m o) 4 L mardh, for 32z

This completes the details of computation of M(Xk).

In order to speed up the calculations we used a recursion

formula for the quantities

o = _b_h-—ah
R b-a
and
w, = MR+ marR e +oa R
as well. It is obvious that
R
vkﬂ = v,a + b,

= M(Th) + w b.

Y+ I
Since
o -erpRt R,
R+ 15b-a>
* [M(T") + M7 e e Marp® 4 b"],
we obtain

- +
M(xk) . <1 C)Uh+1 cwk+1

kR + 1
M(X‘k> can be expressed by means of vh and w, as well:
F k
(1-c)(vka+b > 4+ cIMT )ﬂ"hb]
McxT> = —

11



1V. CONCLUSIONS

Following the method described in the paper we need not
discretize the density function p(t)>, and in this way there
is no need for evaluating loss-of-load probability, energy not
served and expected energy generation of units repeatedly for

all the impulse values of peak load forecast.

12
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