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STATISTICAL ASPECTS OF MODEL SELECTION 

RITE1 SHIBATA 

Abstract 

Various aspects of statistical model selection are discussed from the 

view point of a statistician. Our concern here is about selection procedures 

based on the Kullback Leibler information number. Derivation of AIC (Akaike7s 

Information Criterion) is given. As a result a natural extension of AIC, 

called TIC (Takeuchi7s Information Criterion) follows. It is shown that the 

TIC is asymptotically equivalent to Cross Validation in a general context, 

although AIC is asymptotically equivalent only for the case of independent 

identically distributed observations. Next, the maximum penalized likelihood 

estimate is considered in place of the maximum likelihood estimate as an 

estimation of parameters after a model is selected. Then the weight of penalty 

is also the one to be selected. We will show that, starting from the same 

Kullback-Leibler information number, a useful criterion RIC (Regularization 

1nforma;ion Criterion) is derived to select both the model and the weight of 

penalty. This criterion is in fact an extension of TIC as well, as of AIC. 

Comparison of various criteria, including consistency and efficiency is 

summarized in Section 5. Applications of such criteria to time series models 

are given in the last section. 

[(eywords 

Statistical modelling, model selection, information criterion, cross 

validation. 



1. INTRODUCTION 

In any science modeling is a way of approximation of reality. As far as it yields 
a good approximation, a simpler model is better than complex one both for under- 

standing the phenomena and for various applications. for example, forecasting, control, 

making decision and so on. The principle is the same for selecting a statistical model. 

One specific point is that we, statisticians, assume that the number of observation is 

limited and only partial information is available through data which possibly involve 

random fluctuations. Random fluctuation means here various measurement errors as 
well as fluctuations of the system which generates data. By introducing randomness 

into a model, the model becomes much more flexible than a deterministic model and 
resistant to unexpected fluctuations of the system. Another advantage is that we may 

leave the error of approximation as a part of random fluctuations which are introduced 

beforehand into a model as long as the former is compatible order of magnitude to the 

latter. This often results in a simplification of a model. A desirable procedure of sta- 

tistical model selection is, therefore, to reject a model which is far from the reality and 

pick up a model in which the error of approximation and the error due to random 

fluctuations are well balanced. There may be cases where we have to satisfy with a 

model, not the best one but the best possible one in a given family of models when 

only very poor information is available for the underlying phenomena. 

Complexity of a model is restricted both by the size of observation and by the 

signal to noise ratio. Needless to say, complete specification might be possible if an 
infkite number of observations were available for a quite simple system. Otherwise a 

practical procedure is, starting from a simple model, to increase the complexity until a 

trade off between the error of approximation and the error due to random fluctuations. 

To do this systematically, a convenient way is to introduce a criterion to compare 

models. In this chapter, we discuss various criteria, some of which are based on an 

information measure. Although in system sciences, time series models, AR, MA or 

ARMA are quite common, to clarify the point, we first restrict our attention into 

models for independent observations. Extensions to time series models or state space 

models are rather technical. Some of them are explained in the last section.' 

2. INFORMATION CRITERIA 

Let Y, ' = l,...,y,) be n independent observations but not necessarily iden tically 

distributed, whose joint density is denoted by g (Y, ). Hereafter ' denotes transpose of 

a vector or of a matrix, and E denotes the expectation with respect to the vector of 

random variables, Y,. We mean by statistical model a parametric family of densities 

F { f (Y, ; 0 ) , 0 ~  8). The part, usually called model, for example, linear or non-linear 

relation between input and output, is described by parametrization of densities through 

0 in F. A regression equation y = x ' P + e  with explanatory variable x and Gaussian 



error E with mean 0 and variance $ is formulated as the model 

where I$ is the standard normal density. A natural way of evaluating goodness of a 

model F is to introduce a kind of distance of the estimated density f (-;6), an approxi- 

mation to the true g(.) based on Y,, from the g (a). For a while, to simplify the prob- 

lem, 6= 6 v , )  is taken to be the maximum likelihood estimate of 8 under the model F, 

based on Y,. As a distance, a natural choice is the Kullback-Leibler information 

number: 

8 (xu ) dx, . 
f (x, ;6) 

Note that this is a pseudo-distance since the triangular inequality does not hold true. 

This varies with the observation Y, through 6(Y,). As a measure of closeness 

between two densities g(.) and f (-$1, the measure has been widely accepted. It is 

known that the measure is nonnegative, zero if two densities coincide, and additive for 

independent samples x,=(x,, . . . ,xu). More importantly, as is shown below, this has a 

close connection with the maximum likelihood principle or the minimum entropy prin- 
ciple which is a basic in statistical inference. If 

then the expectation of the Kullback-Leibler information number K, (g (.) f (.; 6)) can be 

rewritten as 

(xu )log g (xu Id x. - Ejg (x, ) log f (x, ;6)d x,, . (2.1) 

A problem in using (2.1) as a criterion of comparing models is that the second 

term of (2.1) depends on unknown g(.). We demonstrate that a useful approximation 

is obtained by expanding it for a large number of observations under the following 

assumptions A1 to A4. 

Al. The parameter space 8 is a Euclidean p-dimensional space RP or an open sub- 

space of it. Both the Gradient vector 

and the Hessian matrix 

of the log-likelihood function l(8) = log f (Y, ;8), are well defined with probability 

1, and both continuous with respect to 8. 



A2. E 1 g, (8) I <- and E I H,, (8) 1 <-, where 1 .  I denotes the absolute value of each com- 

ponent of a vector or of a matrix. 

A3. There exists a unique 8' in 8, which is the solution of E g,, (8') =0. For any E>O, 

sup l(0) - ~ ( 8 ' )  
116-8 IB 

diverges to - - a.s.. 

A4. For any ~9, there exists 6 9  such that 

sup I E (&*)'I,, (8)(6-9') - u( I,, (8' V,, (8')-' ) I < E 
116-8 I l d  

for large enough n . Here 

~ , ( ~ ' ) = ~ g , ( 8 * ) ~ ( 8 * ) '  and J,(8)=-EH,(8) 

are assumed to be positive defhite matrices and continuous with respect to 8. 

The assumption A3 assures that 6 - 8' converges to 0 as. as n tends to infinity. That 

is, 6 is a consistent estimate of 8'. The assumption A3 together with A2 implies that 

K, (g (.), f (- $3)) is minimized at 0'. This means that f (. $3') is the best approximation 

to g(-). However such a 8' completely relies on unknown g(.). The situation can be 

further understood by looking at the decomposition, 

The iirst term on the right hand side is the least error of approximation by the model 

F, and the second term is the error due to the estimation of parameter 8' by 6. 
We note that all assumptions above are commonly used regularity conditions. By 

expanding log f (x,;6) around 8', we have 

a log f (x, ;6) = log f (x, $3') + (W )'--log f (x, ;8* ) ae 

where 8" is a value between 6 and 8'. We should note -that the Gradient vector 
a -log f (x,;8) and the Hessian matrix - ae log f (xn;8) are not of the log likelihood aeaw 

log f (Y,;8) of the observations Y,, but of the log likelihood log f (x,;8) of test sample 
x,. Since 

the assumption A3 justifies the expansion; 



From the assumption A4, the expectation of (2.2) is 

Furthermore, by expanding 1(0*) around 6, from the fact that g,(6)=0 we have 

and then 

EJ~(x , , )~o~~(x . ;B)~x .  = ~ r ( 6 )  - trcr.ce*~,,,.ce*)-~) + ~ ( i ) .  

Thus the expected Kullback-Leibler information number (2.1), is written as 

The first term on the right hand side of (2.4) is independent of any model, and we may 

omit it. Therefore a practical procedure for selecting a model is to compare values of 

for various models F, where tn(O*) is an estimate of tn(O*) = tr(I,,(0*)Jn(e*)-') which is 

the sum of the second term on the right hand side of (2.2), the penalty for the increas- 

ing model size and the bias correction appeared in (2.3). 

There are various ways of estimating t,(0*), and different criteria may follow. If 

g(.) is equal to one of densities in F, say f (-;go), then O'=flO, I,(O~=Jn(O,) and 

t, (0') = p  . Therefore, for the case when g (.) is expected equal to or very close to one 

of the densities in F, the criterion known as Akaike's Information Criterion [2], 

NC = - 2 ~ 6 )  + 2p 

follows from (2.5) since t,,(O*)=p. Multiplication by 2 is only a convention.. 

A more general procedure of estimating t,(0*), suggested by Takeuchi [36] is the 

following. An example may illustrate his idea. 

Example 2.1 

Let us consider a simple location and scale family 

[Y~:'] with the standard normal Here, 0'=(p.o), 8 = (-,-)~(0.-), and f (v, ;0)=;0 - 



density $. In other words, this is exactly the same as the observational equation 

yi=p+ei with normal error ei-N (p,d). Note that the assumptions above are only for 

speclfylng a model but not for restricting the observation generating mechanism g(.). 

We only assume that the yi's are independent observations with the same fist  and 

second moments. Since p* = x Eyiln and o* = x ~ ( y , - p * ) ~ / n ,  we have 

and 

where p(l)=z ~ ( y ~ - j . ~ * ) ' / n  for !>I. Then, 

By replacing M4) by the 4th sample central moment P(~)=z(v,-n4/n and oa2 by the 

maximum likelihood estimate $=z(yi-n2/n respectively, we have an estimate of 

a (0'). 

A statistic which follows fiom (2.5) is then 

Multiplication by 2 is again a convention as is in AIC. The difference between TIG 

and 

AIC = -21 (6) + 4 

is clear. The discrepancy of the shape of g(.) fiom the normal density is counted in 

nG. 
By applying the same technique we can derive TIG for the problem of selecting a 

sample transformation y. Consider models; 

r I 

where yr' is the derivative of y. Then 

follows, where p(4)=z(y(yi ) - ~ ) ~ / n  and d=z(y(yi ~ ) ~ / n  with p=m(yi )/n . Comparing 



TIC@,), we may select a transformation y. 

However, such a procedure of deriving an estimate of tn(O*) is not widely appli- 

cable. It is laborious to find an estimate of tn(O*) model by model. And there is no 

definite answer, what kind of assumption is appropriate for the yi's. Before proceed- 

ing to a generalization of TICo, let us consider another example. 

Example 2.2 

A Gaussian regression model yi=xi'B+ei with m -dimensional regression parameter 

p is denoted by 

We first only assume independence of yi 's. Then 

and 

Here pi(l)=~(ei) '  for 1>1 with ei=yi-xi8p*, i = l , .  . . , n  and X=(x,, . . .,xn)' is the 

design matrix. Denoting the hat matrix by H=(hY)=X(X'X)-'x' we have 

If we assume that the first and the second moments of ei 's are the same, then 

and so we have 

where t?i=yi-xib, and fi and 6 are the maximum likelihood estimates. 

One possible way to avoid such assumptions on g(.) that the second moments are all 

the same, is to make use of the following inequality. 

Here the equality holds true if and only if pi(l)=E(ei) =O and pi(2) = ~ ( e , ~ ) =  d for all 

i ,  and the value becomes the same as in (2.6). The right hand side of (2.7) can be 

estimated by 



This estimate is possibly biased. However it is toward a safer direction. More penalty 
is put on models which are far from the best fitting. The resulting criterion is 

TIC(F,) = -21 (8) + 2in. 

This example leads to a general definition of TIC. We only assume that Y, is a 

vector of independent observations. Since we are modeling independent observations, 

it is natural to assume that the joint likelihood can be decomposed into 

= I], 1, (01, 

where li (@=log f (yi ;0). Estimate I, (8') by 

and J, (0') by 

Then we have a general definition of TIC; 

As noted in the previous example, since 

tr(ij-') tends to over-estimate t,(ea) by the last term on the right hand side of (2.8). 

We can not expect any stable behavior of the maximum likelihood estimate 8, as long 

as such an over estimation is significant. The observations contribute unequally to the 

Gradient of the log likelihood function at o*, which is the solution of 

Thus such a bias does not affect our objectives to select a model which well balances 

the approximation error and the error due to random fluctuations. It is worth noting 

that tr(fS-') is the well known Lagrange-multiplier test statistics [15]. TIC consists of 

two parts, -2 log ( maximum likelihood ) plus twice of the test statistic. 

3. EQUIVALENCE BETWEEN CROSS VALIDATION AND INFORMATION 

CRITERIA 

Cross validation is one of naive methods of checking goodness of fit of a model. 

The observations obtained are divided into two parts. One of them is used for estima- 

tion and the other is used for goodness test of fit. Detailed analyses and discussions 



can be found in Stone[32]. 

In this section we will show that the cross validation is asymptotically equivalent 

to TIC. We restrict our attention into a simple cross validation. By 6(-i), we denote 

the maximum likelihood estimate of 8 based on Y, without using the ith observation 

yi. The cross validation is then defined as 

It is shown by Stone[33] that CV is asymptotically equivalent to AIC, when y . . . ,y, 
are independent and identically distributed and g(.) is a member of the underlying 

model F. It does not hold aue otherwise. However we can show an equivalence of 

CV to TIC. Necessary assumptions are the following A5 to A7 besides A1 to A3. 

A5. For any 0 0 ,  

max sup (1 -i (0) - 1 (0')) 
' I- Ik 

diverges to - = a.s. as n tends to infinity, where 1,(0) = l(0) - li (0). This implies 

that 6(-i)'s, the solutions of 

uniformly converge to 0* as n tends to infinity. 

A6. For any oO, there exists 6>0 such that 

for large enough n,  where 11.11 is the Euclidean norm of a vector or the operator 

norm of a matrix. 

A7. For any O0, there exists 6>0 such that 

rn? sup 11 -1-(0) ~ ~ ( 0 ' ) - '  11 < E 
110-0 Il.8 {aiie) } 

for large enough n .  

From the definition of 6(-i) we have 

and 



Therefore 

is equivalent to TIC. 

Example 3.1 

Consider the same regression model as in Example 2.2. To simplify our discus- 

sion, we regard o as a nuisance parameter and estimate it by 6. From the well known 

equality [32], we have 

To assure the consistency of 6, we may assume that max(hii) converges to 0 as n tends 
i 

to infinity, which is equivalent to the assumption A6. We then have 

which is asymptotically equivalent to TIC when o is regarded as a nuisance parameter. 
1 The tern ( - -~8~/6~-1)  will appear in CV, if 6 ( - i )  is used in place of 6. 
n 

GCV proposed by G. Wahba [40, 181 is a variant of cross validation. It is known 

that GCV is asymptotically equivalent to AIC at least in the context of regression. 

Actually 



and 

= n  + n  l o g 2 ~  + 2  + n  l o g { ( ( l + 2 m l n ~ ) + 0 ~ ( l l n ~ ) ] .  

Therefore GCV may behave differently from TIC. 

Although the equivalence shown above is only for the case of large enough n ,  

this allows us more freedom to choose one of two equivalent criteria, CV or TIC. An 

advantage of the use of TIC is that the calculation is simpler than that of CV. A sim- 

ple reduction is possible for CV in the case of regression, but it is generally not true. 

We have to search for n  maximums l i(6(-i)) i = l ,  . . . , n  to obtain CV. On the other 

hand, only one time maximization of the likelihood is necessary to obtain TIC. 

Another advantage of TIC is that meaning of the value is clear as an estimate of the 

Kullback-Leibler information number. Note that CV and TIC cover wider area than 

the AIC does. 

4. FURTHER EXTENSION OF INFORMATION CRITERIA 

Estimation of parameters in previous sections is always based on the maximum 

likelihood principle. In statistical literature, it is common to use such an estimate 

because of the proof of its efficiency or asymptotic efficiency. However the optimality 

is only valid for the class of unbiased estimators of 6. Since we are measuring the 

closeness of estimated density f (.;6) to g (.) by the Kullback-Leibler information 

number, there is no definite reason why we restrict our attention into such unbiased 

estimators. In this section, we trace the derivation of AIC or TIC for the case when a 

more general estimate, the maximum penalized likelihood estimate, is used for estimat- 

ing 8. 

The penalized likelihood is defined as 

LdY, ;B) = log f (Y, ;B) + U (81, 

where k(0)sO is an arbitrary penalty function which may depend on n  and is twice 

differentiable. The weight MI controls the amount of penalty. 

The maximum penalized likelihood estimate 6(1) is the solution of 



We assume that 6(h) converges to 0*(h)  which is the unique solution of 

By similar expansions as in Section 2, we can show 

E J L ~ X ~  ;B(X))g (xn)dxn = E L L f l n  ;B(u) - E ( B ( A ) ~ * ( ~ ) ) ' J ~  (k)(&x)4* 8 )  + 0(1) .  (4.1)  

where 

Subtracting M ( ~ ( A ) )  from the both sides of (4.1), we have 

E J g (xn )log f (xu ;&x))dxn= E (  I(&A)) - (&AH* (A))'Jn ( ~ ) ( 0 ( ~ ) 4 *  (A)) 1 + 0 (11% 

Since the expansion 

asymptotically holds true, we can rewrite the expectation of the Kullback-Leibler infor- 

mation number as 

where 

Then the TIC is extended as a regularization information criterion, 

RIC = -21 (6(3~)) + 2tr(?(X).f(k)-I), 

where 

and 

When M, RIC is reduced to TIC. Then RIC is in fact an extension of TIC. By RIC 

we can choose X as well as to select a model. One practical procedure is to choose X 

for each model so as to minimize RIC and compare the minimized value of RIC for 

each model. We may overcome instability of the estimate when the model happen to 

be overfitted. 



Example 4.1 

Consider the same regression model as in Example 2.2. To simplify the problem, 

we regard a as a nuisance parameter. As a penalty function we adopt 

The maximum penalized likelihood estimate of P is then a shrinkage estimate, 

@(X)=fi(O)/(l+X). where @(o) denotes the maximum likelihood estimate of P. Since 

f(X) = x t? Xi X; 'I$ 

and 

j(x) = ( i + ~ )  x'x/$. 
we have 

2 R I C K  , 1) = n log 2rcd + x 6; - xi'@(~))Z/$ + - x t?hii /$ 
l+X 

where yi = yi - ti. Here 

RIc(F,,u = ae [ X ( x j ; - x g h i i ) - ~ t ? h i i ) .  
(1+1)~$ 

(5.2) 

The ji which minimizes RIC is then 

- , ea otherwise. 

The resulting estimate of f3 is 

@(I) = (1 - xt?hii/xj?)+ @(0). 

where (a)' = max(a.0). It is interesting to note that a non-negative shrinkage factor 

automatically follows from minimizing RIC. As a special case, for the model with a 

single location parameter p as in Example 2.1, 

p(a = (1 - $/ny)+ y, 

which is a natural shrinkage estimate. 

The minimum value of the RIC for each model is 
r \ 



= n log 2 n d  + ~ ~ ~ ~ / d  otherwise. 

Thus 

Therefore RIC(F,,X) decreases as X increases from 0 and attains the minimum at %. 
Particularly when &, the complete shrinkage estimate p(m)=O follows. By using such 

an estimate we can always decrease the value of RIC except for the case when all 4's 

are 0. We then compare such minimized value for different models F,, and choose 

one of them. 

More generally if the penalty function is of the form of k(0) = - IH 8)l2/2d, then 

where 

H (X) = (hi, (A)) = X (X'X+U 'A )-'x' 

and 

As a result, in this regression context, RIC is closely related to a criterion ?(h)  which 

is mentioned in Titterington [38]. A more closely related criterion is CL proposed by 

Mallows [19]. As far as in the context of regression, RIC is almost equivalent to CL 

and AIC is equivalent to the C, proposed by the same author. 

The effect of introducing maximum penalized estimator and selecting both model 

and the X can be seen in Fig.1. Hundred random samples are generated from 

for k s l .  Here E is a random number normally distributed with mean 0 and standard 

deviation 0.04. The selected order of the polynomial is 5 by TIC or AIC. By RIC, 

the order 4 and M.003 are selected. The order 4 is still overfitting but it 'is compen- 

sated by choosing X as 0.003. 

It is also possible to extend RIC for the case of more than one penalty function. 

Still much works have to be done for this criterion. We leave these for future investi- 

gations. 



Polynominal Regression 

- true curve - coned model ----- model selected by RIC 
---. model selected by TIC or AIC 

Fig. 1 Comparison of three information criteria 

5. COMPARISON OF CRITERIA 

5.1. Consistency 

A lot of papers are devoted to the consistency of various model selection pro- 

cedures. Particular interest is in the inconsistency of the minimum AIC procedure. 

However, we may raise a question whether it is always meaningful to only discuss the 

consistency of model selection. In other words, is the correctness of the selected 

model is always required first? Recall that a model is only an approximation to the 

reality. It is a tradition of statistics to discuss correctness of the estimated parameter 

by assuming that the data are generated from a fixed model. Model selection is how- 

ever somewhat different from typical estimation problem. We are dealing with 

different models and looking for a model which gives us a good approximation. 

Therefore, we should note that the following discussion of consistency is meaningful 

only when the true system is known to be quite simple and one of the underlying 



model can describe the system without error. Furthermore, as is seen later, a mcky 

point is that consistency of the selection is not compatible with goodness of the result- 

ing estimate of parameters. 

To discuss the consistency the following generalization of AIC [5, 4, 9 pp.366- 

367 ] is convenient. 

where a is a pre-determined value which controls the amount of penalty for an increas- 

ing size of the model and may depend on the size n of observations. The result by 

Hannan and Quinn [lo] suggests that under suitable regularity conditions a necessary 

and sufficient condition for the strong consistency is , putting a = a,, , 

liminf a,, I(2log log n ) > 1 
I) 

and 

l i m p  a,, In = 0. 
I) 

That for the weak consistency is 

and 

limsup a,, In = 0. 
n 

The result above is not yet generally proved, but intuitively clear if we note that 

2 {1(6)-1 (go) j is X2 distributed with degree of freedom p if g (-) is equal to f ( ;go), a 

density in the underlying model, otherwise X2 distributed with degree of freedom of the 

order of n .  The condition for strong consistency comes fiom the law of iterated loga- 

rithm. An implication of the result above is that the AIC, TIC or CV introduced in 

the previous section are not consistent. For the asymptotic distribution, see Shibata 

[25], Bhansali & Downham[5], and Woodroofe[42]. They obtained the asymptotic dis- 

tribution of the selected model by applying theorems of random walk. ,Some con- 

sistent criterion procedures have been proposed, BIC by Schwarz[24] and HQ by Han- 

nan and Quinn[lO], which are AIC, with a = log n and a = c log log n for c >2, 

respectively. It is interesting to note the result by Takada[35], that any procedure so 

as to minimize AIC, is admissible under the 0-1 loss. In other word, if our main con- 

cern is the correctness of the selection, there is no dominant selection procedure in 

such class of selection procedures. 



5.2. Optimality 

If we are interested in goodness of a model selection procedure, a natural way is 

to check the Kullback-Leibler distance of f (.;8) from g (.) where 8 is an estimate of 

the parameter 8 under the selected model. Although not exactly the same, an optimal- 

ity of the AIC has been shown in terms of such a distance. The key point for proving 

an optimality property of AIC is that the trade off between the bias and the variance 

remains significant even when n is large enough. If we restrict our attention to the 

estimation of regression parameters, such trade off mechanism is rigorously formu- 

lated. The result by Shibata [26] shows that if the regression variables are selected so 

as to minimize one of AIC, then the selection is asymptotically optimal if and only if 

a=2, that is the case of AIC. Necessary assumptions for the proof are that the shape of 

g(.) is the same as that of F, and the mean vector of observations is parametrized by 

infinitely many regression parameters. Otherwise, AIC is not necessarily optimal. But 

TIC is instead expected to be optimal under a loss function like the Kullback-Leibler 

information number as well as under the squared loss, even when the shape of g(-) 

does not coincide with that in F. This result is not yet completely proved. 

For admissibility under the squared loss with an additional penalty p ,  Stone [34] 

proved local asymptotic admissibility, and Kempthorne [17] proved the admissibility 

under the squared loss. Such results are corresponding to the result by Takada [35] in 

the case of 0-1 loss function. 

All of the results above are in the sense of asyrnptotics. If the size n is fixed, 

theoretical comparison is difficult and the only available results are by simulations. 

Recent paper by Hurvich [ l a  will help the understanding of the behavior in small 

samples, for example, consistency does not necessarily imply the goodness of selec- 

tion. One practical procedure might be obtained by choosing a according to the size n 

( see [31] ). For more detailed discussion on incompatibility between consistency and 

efficiency, see [30], and for comparisons with testing procedures see [29]. 

6. SELECTION OF TIME SERIES MODELS 

There have been a lot of articles on the problem of selecting a time series model. 

In this section, we will review some more criteria of selection of time series models 

and related works, in connection with the general problem of model selection. The 

reader can consult some other review papers on this topic [28, 81. 

6.1. Autoregressive models 

Autoregressive process with order p ,  AR(p), is a weakly stationary process, 

which satisfies the equation, 



where A, ( z  )=l+a ,i +a ,z ,+ . . . +ap zP is the associate polynomial, B is the backward 

shift operator and { E, ) is a sequence of innovations with mean 0 and variance d. 
To completely specify a model, the shape of the dismbution of E, have to be specified. 

It is typically assumed Gaussian, but not resmcted to it. A different shape of the den- 

sity yields different kind of estimates. 

By denoting the joint density of consecutive observations z,=(zl J2, . . .Jn) '  by 

f (2, ;0), we can explicitly specify a model by 

Fp = ( f (z,, ;0); O=(o,a , . . . , a, 0 ,  . . . ,O)'E ( 0 . w ) ~ ~ ~  ) . 

We then have a nested family of AR models ( F p ;  &psP ) for given P. Denote the 

maximum likelihood estimate of 0 under each model Fp by 

To obtain an estimate, the exact maximum likelihood procedure is desirable. The 

approximation error may affect the behavior. Hereafter, we assume that the shape of 

densities in the underlying model is normal. For AR models, we can replace it by the 

conditional maximum likelihood estimate, given z l,.. . ,zp , or the estimate which minim- 

izes 

f ( z p + 1 . .  .. ,z,; 0 l Zl.. . . , Z p ) .  

Then d (p ) = (d ),...,dp (P ),0, ..., 0)' is the solution of the Yule-Walker equation, 

1 " 
and $@I=- Z E , @ ) ,  with N =n-P,where 

N P + l  
* . 

is the sample autocovariance matrix, 

is the vector of sample autocovariances, and 

are residuals. 

Similarly as in the case of multiple regression, AIC, for the model F,, is 

AIC, = N + N log 2xd2@) + a @ + l ) .  

Note that the mamx R and the vector r are defined the same for any order I l p Q  

since the normalization is with N=n-P but not with n-p. This is a crucial point when 

a quasi-maximum likelihood estimate is used in place of the exact one. For example, 



1 " if $@)=- C t, @ l2 is used, then AIC, behaves differently. 
n-P p+l 

On the other hand, TIC becomes 

TIC = N + N log I n d 2 @ )  + {$ D t ( p ) 4 / d 4 ( p ) - l }  

where { R'"; l s l , m l p  ) is the inverse of the p by p principal submamx of R .  

Although little is known about TIC, it is clear that TIC is close to AIC if the true g ( - )  

is close to one of densities in F,, since 

is corresponding to the diagonal element hL of the hat matrix in the case of multiple 
regression and has the expectation p IN. , 

To evaluate the behavior of the selection, we need some assumptions on the true 

density g(z,,). As was mentioned before, it is meaningless to consider consistency of 

the selection unless g ( z , )  is expected to be equal to one of densities in F,, that is, the 

true model A R ( p o )  exists with an order p H .  Under this assumption, the asymptotic 

distribution of the selected order p̂  which minimizes AIC has been obtained by Shibata 

[25]. The distribution is nondegenerate and concentrated on p q o ,  so that the 

minimum AIC procedure is inconsistent and tends to select a higher order than p,.  

This also holds true for AIC, ( Bhansali and Downham [5] with any fixed a. This has 

been extended to multiple AR models by Sakai[23], to ARMA models by Hannan 

[lo, 11,141, to ARIMA models by Yajima [43], and to AR models with a time depen- 

dent variance by Tji$stheim and Paulsen [39]. It is known that the minimum AIC, pro- 

cedure is consistent if a=% is increased with n at the rate that 

liminf ( a n R l o g  log n )  > 1 ( see [lo] ). 
n 

However, for the case when the true g (-) is not expected to be in F, f6r any p rP, 

our main concern may be about the goodness of the resulting inference rather than the 

correctness of the selection. In this case, one natural assumption on g ( . )  is that z ,  

comes from an autoregressive process with infinite order. That is, zn is generated by 

the process, 

where {E, ) is a sequence of innovations with variance 02, A,(B)=l+u , B + U ~ B ~ +  . . . is 

a nondegenerate infinite order transfer function with C 1 a ,  I <=, and A,(z)& for 1 z 111. 

Then we can show an optimality property of the minimum AIC procedure p^. 



Theorem 6.1 

Assume that (F,) is a sequence of innovations which are independent and nor- 

mally distributed and z, is generated by the process (6.1).  If P  is taken to be P, 

which diverges to infinity with the order of o ( n 3 ,  then 

for any selection p from 1 s p  s P .  Here, 1 ~ 1 1 ~  = x, ch x,,, is the norm with the 

autocovariances CL, = E ( Z ~ + / Z ~ + ~ ) ,  and at=(a . . ) is the infinite dimensional vector 

of the coefficients of the transfer function A,(B). Thus 114 @) - a 11: + a? is the one 

step ahead prediction error of the estimated predictor (1 - Ap(B) ) z l l l  of z , : ~ ,  a realiza- 

tion of a process ( zIb  } which is independent of (z, } but has the same covariance struc- 

ture as that of ( z ,  }. The lower bound is attained in probability for large enough n by 

the selection p̂  which minimizes AIC, with a=2. Any other choice of a does not yield 

any selection which always attains the bound. 

Keys for the proof of the theorem are the following facts. The prediction error is 

decomposed into two parts, the squared bias and the variance; 

where a @ )  is the projection of the infinite dimensional vector a on the p  dimensional 

subspace (a=(al ,az  ,... a P , 0 ; . - ) }  with respect to the norm II.II,, and 

$@) = E (Ap(B)z,)z is the residual variance for the eansfer function Ap(B) with the 

coefficients a @). Note that 

is asymptotically x2 distributed with degree of freedom p .  The normalized prediction 

error, 

is close to 

For large p ,  $@)la? is close to 1 and then the estimate above is approximately equal 

to N log 8@) - N log a? + p .  This means that AIC is estimating (6.4) as well as 

estimating the Kullback-Leibler information number for large p .  It is enough to con- 

sider the case when p  is large. The p̂  diverges to infinity and the bias term will be 

dominant for a fixed p .  A remaining problem in the proof of the theorem is how well 

p behaves as an estimate of V  in (6.3) for large p .  The estimation error is relatively 

small and negligible, because V l p  converges to 1 in probability as p tends to infinity 



simultaneously with n. 

In the theorem, the assumption of normality of {E,) which generate z,, is not 

essential. In fact, this theorem was extended by Taniguchi [37] to the case of ARMA 

model selection without the normality assumption on {E,). In our case, instead of the 

normality it is enough to assume that 

x j e la j  I < = for some p > l ,  
J 

and {E,) is an independent identically dismbuted sequence with finite moments up to 

the 16th. The shape of densities in each model Fp is assumed to be normal. 

One other possible extension of the theorem is to the case of subset selection, that 

is, to select a model from the family of models 

which is specified by a set of indices j= ( j l ,  . . . , j p ) .  For the case of multiple regres- 

sion, Shibata [26] has already proved that the theorem still holds true. However as far 

as I know there is no rigorous proof for autoregressive models. 

We can also show an optimal property of the minimum AIC in terms of the 

integrated relative squared error of autoregressive spectral estimate. A fundamental 

relation between two autoregressive spectral densities, g (A) = d /  IA (eai') 1 and 

h (A) = s2/ I B (ex') 1 ', is 

where A I A 1 '=B (AT)+E(A -B ), a and b are vectors of coefficients of A and B , and 

1~x11: = (x, h,,,, x,,,) is the norm with 

( see [1,27] ). In (6.5) the order of transfer functions A and B can be infinite. Since 

and 

I A - B  l Z d l  = Ha-b 11: 
IB l 2  s2 ' 

where 1 x 1 =x 1 xi 1 is the absolute norm of the vector x and H = mfx h (A). The last 

term on the right hand side of (6.5) is bounded by 



in absolute value. 

Consider the autoregressive spectral estimate 

jP ( ) i )  = d @ ) /  I & ( ~ ~ ~ ' ) I ~  

and the true spectral density 

f -(X) = 021 1 A , ( e ~ " ) 1 ~ .  

Putting h (X)=fp (X) and g (X)=f ,(X) in (6.5), we can show optimality of a from Theorem 

6.1, since d @  ) and Ap converge to a: and A -(em') respectively, as p increases 

to infinity simultaneously with n .  

Theorem 6.2 ( shibata[27]) 

1 1  [ 
n - w  2 min E ) ) d ( p )  - a) ) z /a :  

P 

for any selection p .  The bound is attained by in probability for large enough n .  

The criterion autoregressive transfer function, CAT [20] is derived from the prin- 

ciple to select the order p so as to minimize the integrated relative squared error as 

above, 

which is approximately equal to )Id (p ) - a 1 d ( p  ) from (6.5). Noting the con- 

sistency of fp(A) and the decomposition (6.2), we have an estimate, 

provided that an estimate b: of d is available. By replacing (p IN)  & d @ )  by p IN,  

we have the criterion 

It is clear that CAT is equivalent to AIC for large p , so that the theorems 6.1 and 

6.2 also hold true for the minimum CAT procedure. In fact, 

= log d ( p )  - log d + o P ( ( l  

= log 62(p ) + 2p IN + 0 ((p IN)') + 0, ((1 )12) - log id. 

As is easily seen from the derivation, CATo and CAT are more closely connected with 

the integrated relative squared error than AIC. As an estimate of id, Parzen suggested 



the use of 

where m is integral part of n12, y is Euler's constant and 

1 I(A) = - JC zle2N""2 
" r 

is the periodogram. An alternative is to use $(P) which does not depend on each 

model and goes to a: as P tends to infinity. 

Later Parzen [21] proposed a modified CAT, 

This does not require any estimate of a: like a:. Note that 

The behavior of the order which minimizes a criterion is determined only by the 

differences of values of the criterion. Therefore the behavior of the minimum CAT' is 

almost equal to that of the minimum CAT for large p ,  or for p 2p0  when the true 

order po is assumed. Theorems 6.1 and 6.2 will also hold true for CAT*. 

6.2. Autoregressive moving average models 

Autoregressive moving average process with order p and q ,  ARMA(p ,q ) ,  is a 

weakly stationary process, which satisfies the equation, 

where Ap(z) and } are the same as in AR models, and 

Bp(z) = 1 + blz + b2z2 + . . . + bq zq  is the associated polynomial for the moving aver- 

age part. Similarly as in AR models, we can construct a family of models 

l ~ l P , l ~ < Q } ,  in which Fp, signifies the ARMA(p,q) model. 

In each model F,,, densities are parametrized by 8' = (adl ,..., ap,bl ,..., b,). 

Denote the covariance matrix of z, by Q(8)-' or shortly Q-'. Assuming that the shape 

of the densities in the model is normal, we have AIC for Fp,q, 

AIC = -21 (6) + 2(p +q +1) 

with 

where Q and # are the maximum likelihood estimates of Q and $ respectively under 

the model, and I Q I is the determinant of &. There are various methods for obtaining 



the maximum likelihood estimate [ 22 1. Some of them are: 

a) Exact maximum likelihood [3]. 

b) Conditional likelihood. z,,tsO are put zero or extrapolated by backward forecast- 

ing. Maximization is only for the quadratic term and the remaining terms are 

disregarded in the log likelihood function [6 1. 

c) Whittle's approximation of the log likelihood function [ 41 1. 
C . 

d) Three-stage approximation [ 131. 

i) Fit an AR(P), 

ii) obtain initial estimates of parameters by least squares based on the innovations 

(E, ) obtained by using the AR coefficients estimated in i), 

iii) apply a correction to the initial estimates. 

We should be careful to apply an approximation like b), c) and d). Special atten- 

tion should be given to the estimates $ and 14 1, which should be equal to the exact 

ones up to the order of 0 (lln), except the constant which does not depend on p and q.  

Otherwise, AIC will behave differently. 

Simple expressions of TIG and TIC have not been obtained. Findley [7] 

evaluated the bias of AIC as an estimate of the Kullback-Leibler information number 

for the case when the true model is an infinite order moving average process. His 

result suggests a simple expression of TI%. 

A specific problem arises in ARMA model selection, i.e., identijabiliry. If an 

ARMA(p ,q ) is fitted to ARMA@ o,q o) with p and q H ,  then the transfer functions 

A,(B) and B, (B) have common roots, which are not identifiable. Then, the maximum 

likelihood estimates of parameters behave differently. In fact, Hannan [12,14] proved 

that the exact maximum likelihood estimates d l  and gl converge to f 1 if ARMA(1.1) 

is fitted to ARMA(O,O), and Shibata [30] proved that they are asymptotically Cauchy 

distributed if three-stage approximation procedure d) is employed. Therefore, as far as 

the true model is expected to be or close to a finite order ARMA model, inconsistency 

of the selection is troublesome. For example, the minimum AIC is inconsistent even 

when p o d  and qo<Q. A modification of AIC may solve this problem [ 30 1. The use 

of a consistent selection procedure like the minimum BIC or HQ may solve this prob- 

lem, too. But it increases the error of the resulting parameter estimate. Whereas, under 

the assumption that z,, is generated from an infinite order moving average process 

which is not a degenerate finite order ARMA, such problem never arises and an 

optimality property holds true similarly as in AR models [37]. 

How to select a moving average model whose associate polynomial has roots on 

the unit circle is also an interesting problem which has to be investigated in the future. 
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