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Foreword

The new concept of directional derivative introduced for Lipschitzian vector valued
functions helps to formulate a necessary and sufficient condition for the existence of
locally Lipschitz inverse and to characterize its directional derivatives. For €11
optimization, this allows to establish a necessary and sufficient condition for a critical
point to be stable. Fundamentals of the calculus are developed, too.

The results were completed within the frame of the IIASA Contracted Study “The
Development of Parametric Optimization and its Applications.”

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program
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ldpschitgian inverse functions* directional derivatives
and application in C1s1 — optimization
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Abstraot

The paper shows that L. Thibault’s [22] 1imit sets allow an
iff-characterisation of loocal Lipschitzian invertibility in
finite dimension. We oonsider these sets as directional deri-
vatives and extend the calculus in a way that it ean be used
to olarify whether oritical points are strongly stable in
C1’1- optimigation problems.

1.4 Introduction

During the last fifteen years, various concepts of generalized
derivatives have been developed to derive optimality oonditions
for nonsmooth problems or to desoribe implicit funotions. As

a selection of the rich literature to this field we refer to
the basic work [2] and to [1,3500447,42,43,15,16,419,.0.,23].
The present paper aims at the existenoe of a locally Lipschitz
inverse £ of a funotion £ from R® into itself. It turns out
that, for this purpose, the limit sets Df(x;u) of L. Thibault
[21,22] play an important role. In his papers, they are used
in order to extend Clarke’s oaloulus to functions taking values
in topological vector spaces. There, our basic properties of

§ 2.2 (exoept gonneotness) are shown to hold more general.
Concerning these historioal faots the author is in debt to Prof.
L. Thibault for sending the ocorrespondent informations and
papers.

In what follows, reserving the index for partial derivatives,
we denote Dt(x;u) by A £(x;u) and oall these sets direotional
derivatives. They are related to F,H., Clarke’s gemeralized

1) Humboldt-University Berlin, Secotion Mathematios,
PSF 1297, GDR, Berlin 1086



Jacobian 0 £(x) and 1ts extremal points ex 01(x) by

(1.1) (exP2(x)) uc Af(xmu)<c 2(x)u

whenever £: R —> R® 1s locally Lipschitz (for similar relations
in abstract spaces see [ 21]). Our main result will show that

L. Thibault’s sets are orucial in view of the inverse funotion

Theorem 1, Let f£3 RP—> R? be looally Lipsohitz. Then, £ is
Lipschitzian invertible at x (Def, 1) 4f and only if
o0& A2(x;u) for a11 ucB™\{o}. In this case, the
relations u€d £ (£(x);v) and vE A £(x;u) are equivalent.

Example 2 will demonstrate that, even if QDf(x) 1s singular,
some Lipschitz funotion ean have a lipschitgzian inverse, This
w2y, the oonsideration of Af(x;u) is motivated by new reasons
which form the gontent of the unext seotion, In seotion 3 we
show the relation between "strong®™ and "weak"™ stadbillity by an
inmpliocit function theorem and verify that knmown (from Clarke’s
calculus) mear-value theorems inoluding Taylor expansion for
¢’ functious [7] remain valid (and oan be directly shovn)
with the present derivatives. In order to apply the caloulus
and to preserve the 1ff-gondition of Theorem 1 some chain-rules
of eguation-type (seotion 4) and simple functions will be of
interest. Finally, we are able (in section 5) to derive a oom=
plete coh2racterization of so-oc2lled strongly stable oritical
points of optimization problems involving 01’1-£unotions. It
should be noted that this task (whioh is "almost" oompletely
solved for the C°-case by fﬁ, 17, 8]) has essentially sti-
mulated the following investigations and seems to be unsol-
vable without using the sets A £(x;u) (op. Theorem 4).

1,2, Notations, basic definitions

Given 2 bounde€ subset X of the Buclidear apaeé R® we dexnote
the linear space of 8ll Lipschitz funotions f from X into RT
by ¢%1(x,R®). The number Lip (£/X) 1s the smallest Lip-
schits module of £ en X, and by the equation

[f|°i1 - m{ e (x| , 1ap (r/x)}



the so-called Lip-norm is defined. It can be regarded as
a seminorm for the space CO’1(Rn,Rm) of all locally Lip-
sohitz funotions from R® into R, Similarily, the space
¢t 1(Rn R®) consists of all continuously differenliable
‘functions from Rn into R™ having locally Lipsohitz Jaco-

bians, and |
|fl1 A = “max -[ sup Iz(ll 02 (% 1}

Let B(x, E) denote the olosed ball with center x and ra-
dius £ in the underlying space. For a function f
}from Rn into. Rm we call _

Lip f(x) jénfo Lip(f/ B(x,€)) € R _u {oo}

- the Lipschitzmoduleof f at x.
Def. ;f} A continuous function f£: R"'—>R"® is said Lo be
Lipsohitzlan inverti{ble at x 1t there are positive
- € and & such that |
(1) ﬁhe equation -~ £(y) = 2z, y € B(x,€) -has a unijue
N ::'sqll_.utiqii y = f'1(z) whenever z € B(f(x),, & ),and
(11) | ‘thé function £-1 is Lipschitz on B(£(x),d).
Def, 2. A continuous function f: RM'—> 1" is said lo be
weaklv stable at x (with respect to some subsect G
of C ’1(Rn R®) ) if there are positive € and &
such that the equation 1(y) + g(y) = 1(x), ye B(x,e"
has a unique solution y = y(g) whenever g€l and

lg, tx g) < & .
If, additionally, the mapping g r—>y(g) is Lipschitz
'oqvits domain with tlie norm |-|Uzl ) ! then f is
‘oalled strongly stable al x (wilh respecl lu G),

Now, let f: R R pe o continuous funolion and suppose

X, u€ R® to be fixed.

Def, 3. The set Af(x) conslsts ui all poinls we€ " boing
a limit of points

= (2 - G Dy T e,

where xX—> x, yk——rx and x5 4 g%,

Def., 4. The set A £(xju) vonsisly ol all points » ¢ R™
being a limit of pointls




| " ( f(x L) - £ ) - ﬁ. Ke 1,2,00s
where x5 x and A vo.
We oa.ll A £(x;u) directional derivative of f at x.

2. Motivation and basic groperties of the derivaLives

Motivation
Theﬁmain,motivation of considering the set'A;f(x) is given
. by | . '
Lemma ‘l= A oontinuous function f£: RP—=>Rr" ig Lipschitzian
invertJ ble at x.if and only if 0 éﬂf(x)
 Proof: ~Indeed, if 0€ Af(x) then £~' cannot be Lipschitsz
near (x,£(x)). This direoctly lollows from Def. 3,
‘Conversely, if 0d Af(x), Lhen there is some positive €
"suoh that
He(xr?) = £(x’DU 2 E€1llx"’= x’ll for all x*7, x’€ B(x, £,
By the invariance of domain theorem, the set
£( B(x,e)) contains some ball B( £(x),&) (§ »0),
Thus, the requirements of Lef. 1., are satisfled. [J

1)

Because of the chaotio structure of the sequences ingluded
in the definition of A £f(x), it is hard to apply lemma ! Lo
concrete functions. Thevefore, a representation ol A (x>
by means of the "better" sets AL (x;u) is desiranle,

CO 1(1( ,Rm) Lhen Al(x> \/ Ai'(x;u’ .

full=
Proof: The inclusion " o " is tilvial. Lel ze AU(x),

Lemma 2, If f€&

oonsider the sequerices xk, yk, AL as in Def, 3, Selllng
B B N C A S W )
;some (infinite) subseqyuerce ol uk oonvexges Lo uy [full= 1,

_We may assume that lhe original sequence already shows

v{:his propertys Defining Vi o (f(x_k-ltﬂku) *iL'K.xl:) )Y/ L )
we can estimate, lor large l: | ‘
ke vEIE e - 1 mu/i <
: - €1+ Lip 1(x))|[2 (k- u)ll /1

Henoe, we obtain 4 = lim /.k = lim v¥e Al(i,tl) o

1) This fact was already meutioned lu [27] , Remark 2,



2 2 Baeio properties of the dellvaLives

Most of the followinb statements are immediate contequences
of. the definitions and the Lipschitaz prOpelty and need only
'elementary proofs which will be omitted here.

Further, we ‘suppose throughout this section that the Ffunc-
tions’ under consideration map 1" into KM and are locally
Lipsohitz near the points of inlerestl,

(P4 ).j-Af(x_),c B( 0, Iip £(x) )
o gd Af(xiu), A r(xitu) = tAE(xu) , LER
L 8£(x; utv) € Af{xsu) +Ae(xv)
A(f-f-g)(x,u)c Af(x,u) + A glx;u)

(P2) The multifunctions
A£(.) and A £(.;.) are oclosed and looilly bounded.

(P3) If £ is a fuuctional (w=1) then AL{xj;u) i the
interval [ -(-i’)o(x;u) y l:u(‘“-.‘,tl)] vhoere 1 acnole
"F.H., Clarke’s dlreclional Jdescivalive ol 1,

(P4) Af(x;u) € D8(x) u &= { Au I\Q'El‘(x)} whicre
f(x) is T,H, Clarke’s [ 2] gencralized Jacobian,

Indeéd, we may apply the mean—value theorem [3]y, provu-
sition 2. 6. 5., to the points xkrﬂ. u and xX in Def. 4.
JThis yields the existence of some matrioes
© A% aonv (U D(ex + (1-2)(x 2,00 )
-“suoh that OST? |
C2(xS -t-lkuD - 2(x¥) = A A¥ .
%Sinoe the multifunotion ’31% ) is olosed, we obtain
E :; for each acoumulation "point" A of the bounded
880 eheefAk. o
.vNoteqthat property. (P4) implioitly mekes use of Rademaohert
t 'f”Howeyer, (P4) has illustrative character and will
eed in what follows.:.., whe seme is true .for

(Ps) If;, Afv'is extremal in @f(x) then AuéAf(x,u)
' This statement follows from the faot that there is a
sequenve xk-a-x suoh that Df(xk) exist and converge to A.

(P§)1 The sets A £(x,u) are connected.



To verify (P6) we introduce the sets
A f(x,u) = {(f(y+'lu) -£(y))/2: 0<k €€, yé. B(x, €) }
_and note that
Af(x,u) = lim  Sup Af £f(x;u) ,
Now, assume the oontrary, there are open sets .Q, < 1"
suoh that A £(x;u)N &2y # p (1 =1, 2) and
Az(xsu) € QUL, SZ NS, =4 .

- Sinoce Af(x,u) is compact there J.s some € > 0 such Lhal
Ae(xiu) © Q uSl . Because of Aif(x,u)(‘\ Q £ @
the set Acf(x,u) is not oonnected, again.,

- To construct a contradiction, conslder any two elements
a’'and a’’ in Aef(x,u) generated by the pairs (A%, y%)
and. (l”, y’’), respectively. Seiting, Lov 0€ 1L <1,
A@) = t AT+ (=), y(L) = Lyt + (1=L)y’",
a(t) = [£(y(t) +A (W) = eyt DT A (L)
an é_,i'o connecting a’ aud a’’ iu formed. Slice, ~bvious:,
a(t)e’Aef(x;u) (V¥ t), this set ls conuecled. [I

(?7) V€Af(x,u) 1f there are scyucnces s x, WKy
)

and ”Llc"’ 0 such that v = lin (l(xk+7~ uk) l:'(xk))/ik.

(P8) Let £(.) = g(h(.)) where & cna homap M into 1P and
R® into Rm, respectively, 'Then
(1) 4w Ag(x) 3 A nGu) )
(11) If g is a C1—1'Ll110tion, Lhoer (1) Holds as coaibivin
Af(xiu) = Dglh(x))A Ll(x;uw)

: To prove the first statcuenl lel oo = llm qk \m' b

(2.1) a = Es(h(x +7\ u)) - g(u(x")) /A, x5 x, 1o,

Sinoe the sequenoe

,(2 2) :vk ;= ¢ h(x +’A K - n(x%) )/1

T bounded, we may asuume that vk—» ve' D nlxju)
Substituting h(x +2,u) = n(xc) +'). vk in (2.1) we
observe
(2.3) %l ,=Eg(h(xk)+’zl ) - g T /a
and, in view of (P7), a€Ag(h(x) ; v) .
Consider the second statement, and let velh(xju) be
given. Now, there exist sequences xK —>x A ~L0 such thal

'_ v (2 2) oonverge to v. We define af via (2 1) and write




these’ points in the form (2.3). Since 36 ¢! ,iwe may then
estimate , o
lle. - Dgla(x)v ll < 6 where £, —> 0,
Together with (2 1) this lea.ds to Dg(h(x))ve A(x;u). O

'I‘he inolusion (1) 'of (P8) will not necessarily hold as

Vequa.tion if the inner funotion h belongs to C1 In order

to see. this, ‘we suggest to study the following example.

. Example'd: £(x) = galx)), x€ R , g.w_Rz—)- R'  where
h(x) = (x y, 0) -and o

. 0 1f ¥ €0
8(Fy » ¥3) = yg 1L 0Sy, £ 1y,
: ly2| otherwise

'Take‘:i = 0and u =1,

293, The ‘inverse function theorem

The first statement of Theorem 1 1s, obviously,
a. direot ‘consequenoe Of Lemma 1, Lemna 2 and properly (P1),
‘ . To verify the second one, lel ve Af(xju), and let
zk, xk,lk be sequences as 1in Del., 4 where zl =¥» v, liuen
f(xk +.‘2-ku) = f(xk) + 11( oK and

x5 -Fﬂku = f-1( l‘(xk) ~|—’,l]_\ 2 ,

us L2 @+, & - " uu“)) 17x,
In view of (P7) the laLLer weans u€ A (:{.’(x) ; v)
Conversely, let ue A:E (e(x) ; v), and oconsider sequences

xk—" i‘(x), uk—-> u and 'l Y 0 such that

LG R - ‘1 (x l‘)J/lk :

| 1(x +'l v) = f"1(xk) +1 .
‘ By studying the :E-image ol both ui(le‘i, the relalion

. V.GAf(x,u) follows as above. 0

:Now, we present an example that will c¢larify the
relation between F.H. Clarke’s [2] inverse funotion theo-
rem a.nd Theorem 1. It shows, additionally, that the con-
 nected dets A f(x,u) may be non-convex and that the in-

‘ -‘olusions (1 1) can ‘be proper ones,

- Example 2, We define a pleoewise linear homeomorphism h
o R2 into itself satistying 0€ 9 2(0) .



Let ai and bi-(1= 1,...,6).be voolors on the splicre
whioh are arranged as fullows, .
, . . n b b
[ b'
ﬂ? ’
el
' ut ale at! vle ! o . .
Additionally, put a'= y b'= b, The important proper-
ties of the figure are
2 4 N D

(1) &' =1, a2

= b" a’ = -b 4, 8" = =D

- (11) . the . ocommon turning sense ol Lhe vectors ai aud bi
(111) X (@, et < o | 2; (vt bi+1)(. v,
For 1 = 1,..446, we put At - !t , ;l+l), = (it
- whioh are regular matrices as well as rl o i(Ai)'1,
Finally, we define the oones -
k¥t = con ( a?t 'y att!) ; P2 = oon ( b;, 1)
and the function f as ' |
2(x) = Fi 1f x € ki,

Since F maps K1 onto P1 we see ; without any difzti-
culties that f establishes a homeomorphism of R® onto il-
self. Thus, £~ exists and is Lipschitz.

Beocause of F1 = L&) ’ 4 = =~ € ’&f(o)) we have

0 e 9z£(0). .

The non-ccnvexity of A f(O,u) follows via

u GAf(O,u), "-ue A:E(O,u) and 0¢ 4 £(0;u) .

2, Implioit funotions and mean-values

3.1, Implioit funotio

The aim of the next theorem is to show that, under weak
assumptions concerning the set G of variations, the notions
'"Lipsohitzlan 1nverttble", "weakly stable" and "strongly
stable" are equivalent.

Theorem 2, . Let £: R® =» R® pe oontinuous, and let G be’

- ‘some: subaet o2 ¢ 1(Rn R®), Then, at any fixed x ERD;
(1) j £ 1s strongly stable (with resp. to @) whenever it 1is
o Lipsohitznan invertible;

’i(ii) £ 1s ‘Lipschitgian invertible whenevar 1t is weakly



stable (with resb. to G) and, additionally, the set G
- inoludes at least all affine functions g of the type
g(y) = a + Ay where a€R® and rank A S 1.

We note that ‘'the first assertion is already shown for

zeros of multifunotions in Banach-spaces, see[18] , Lemma

3 1.!A olassioal proof can simply apply .Banaoh’s fixed poinl

theorem to the mapping F(y) = £~'( r(x) = g(y) ).

We verify assertion (1i),
Sinoe f 1is weakly stable and G includes all oconstant
functions, the inverse £~ exisls unear (xy £(x))., If it 1is
not Lipsohitz there, one finds sequences xk—#vx,

yk->x, x ;é y such that the points

e = (27 - 2 )/uy - xu
converge to zero, Now, define funcltion gk by selling

k(y) s £(x) -f(xk) < y—xk yl‘ .l( 7 'zk- I y]{*xl"lf -

Eaoh gk maps .R onto a line, hence L;“e: U, ‘'he con-
vergenoe zk—> O implies
|8 |- t é) - 0 l01 vach fixed € > 0 ,

Moreover, the definition of g° ensures that xk and y~
are two different solutions of the equation (in y)

2(y) + &5 = 2(x) ,

both oonverging to x. This oonLradiotion proves Lthe

theorem. (= ‘

For the proof of the seoond part of the theorem, we have
not used the Lemma 1, Therefore, the statement (1i) ocan
be generalized_ by oonsidering more general spaces.

3. 2. Mee.n-value theorems

The next Theorem 3 (1) coincides with Theorem 2.3.7 in[3] in
the oase of finite dimension. However, we present the prouvf |
, in order to illustra.te the simple way how the directional
derivatives can be used and to show that Rademaoher s
theorem is not needed in this oontext. S

heorem 3, Let £€ 0 1(Rn,Rm), and let’ X, u e R,
(1) 1f m=1, “then theré is some ©& (o , 1) such that
Cf(x+u) - £(x) € A £( x+Ou ; u) .
(41) If w1 then 2£(x+u) - £(x) € oconv (O\;éé;'f(aw Ou ; u)).



(1i1) (’I‘aylor expansion) If m=n and f = Dh where
.ne ¢ (Rn, R . ),then thoye L, sone 96(0, 1) such ihatl
h(x+u) - h(x)e ¢ £(x) , u?-l (u, A£(x+Qu ; u)?.

[7] 'uses generalized liessians to make obvious a similar
. statement as (1i1),

,_Proof.» ‘Because of (?u) we may restriot ouraelves to the case
f(x-l-u) = £(x) for proving (1) and (nJ)

(i)—zonsider the function

(3.1) glt) = £(x + tu) , 0€r<1
.Since, obviously, A g(@; 1T A (x4 Ou iy ),
it ‘suffices to show Lhat 0€ Ag(®; 1) for some O in
(0, 1). Omitting Lhe trivial case g = conslant, oac
,may assume min g(.) <€ £(x) (uvlherwlse oonsider the

maximum) 0,
let ©€ arg min ﬁ( ). Then, ® € (0, 1).
With

tc®, t-—» 9 and A =0 - (  we oblain
(g(t+A) - gt /2 € 0 wnd Ap(O; DNy,
CWith t> © , t+© and A . . - O  wedserve
(@) -g® >/ 2u  wd Agl®; DN L, # .
- Therefore, the comnected scel A p(®; 1) (In 1) con-
tains the origin.
(11) Let € = oonv ( N/ Ar( x+®u ; u) ).
‘ Assumeo¢ c. Vet ' '
Since C 1s'non-cmpty, convex and compact there is
. some b € Rm that separates c from the origin:
(32) '~o<<b,o> VY cecC.
Let G. Rn—¥R be defined as G(z) =(b , f(z)) and
- . F(®) ={b,Af(x49usu))
. f;_,Using (PB) with g={(b, .», h=1, we obtain
FC®) = Ad( x+Qu 5 u,
‘_'sBeoause of (1) there is some € (0, 1) satisfying
-{b. ,0) =-.0(xr) ~G(x) € F(B) = (b , A(x+B uju)d.
. I‘his oontradiots (3.2): and 1ndicates 0 € c.
'.(111) We define a funotion g by '
(3.3) g(t) = h(x+tu) -t ( h(x+u) -n(x). ) .
It satisfies g(0) = g(1), Du(t) -(f(x-t-tu) u) -h(x+u)
: . : . '?‘h(X)



and, agsin by (P8)
Apg(r; 1)< {u, Af( x+tTu ; u) Y,
Hence, it is enough to verify :
(3.4) 0 € Dg(o) + 2 Abg(®; 1) for sone ® e (0, 1).
To do so-we introduce a second funotion r as
r(t) = g(t) + Dg(0) ( t - $?2, o
It fulfils the equations
1‘(0) = r(1), Dr(O) =0 _
Dr(t) = Dg(t) + 2 Dg(0) (t - 1/2)
A-Dr(t 1)m ADglt 5 1) +2 Dg(0) .
The.abplioation of statement (1) yields
e g~ (0, 13 (1) - x(0) = br(T) |
3 .,e'_e (o Ty Dr(’t’) - Dr(0) € ADr(6;7?) .

.o t'."

| '<3'.*5"

AU

......

o = r(1) - r(0)€ r(0) +T A or(e 31): -'t‘:ADr(O, 1),
~o0ev( Ang(®; 1) + 2 D0g(0) ).
Sinoe >0, the formula (3,4) 18 true. _' O

The third part of Theorem 3 reveals some information about
a oritioal point x of a ¢l funotion h (Dh(x) = 0) :

If V,_(__u , 4Dh(xju)) >0 for all u # 0 y then there

is some. € >0 such that '

' h(y) -h(x)gely - x (% for all ye B(x, £).

This. oondition, however, is not a neoessary one even if h
-‘is oonvex (why ?)

4 ggg ;;gles a.nd s:Ln_xp_le psohitz f__o_t_._n.-'i.

The property (PB) may be seen as a first and useful chain

'_ruls for the. direotional derivatives being under oonside-

’}ration.k It is, unfortunately, not suffioisnt for our aim

of oonsidering solutions of perturbed Karush-Kuhn—ﬂucker

_systems.: ‘We need some formula for the direvtional deri-

;vativsl’of_a funotion F(x,z) = £(x, g()) under the fol-

,1owing assumptions.

(4 1) “pe.c® @, rY) , g e @, R“‘), and the
partial derivatives Dyf( .) with respeol Lo Lhe
seoond variable exist and are Lipsohitzqan.

The desired formula is



(4.2); AF((x,2);(u,w) = Axf((i,g(ﬁ));u) + Dyf(i,s(i))zig(?a;w}-

By Ax‘-’ we denote the partial direclional derivative with
respeot to x, We will see that (4,2) is true whenewcr g
is a igple funotion,

‘Def5.” A funotion g € P (B, ™ 15 said to be sluple
(at '8 ;) 1f for all sequences 'l J, 0 and.all given pairs
(v,w) satisfying vE Aglzyw) lhere is some sequence
,zk—> g s8uch that v becomes an accumulation point of

,,k. CaC e+, w - &) ) /2,

' p “We investigate the formula '

(4 3) A (&) () = A 2((%,7)iu) +A f((:'i,'i"),v),
whioh is not true, in general.

The left-hand side oonsists of all limits of the kind
(4. 4) i'_ak [ 2(:5+2 u, 7+ v) - f(xk,yk)]/lk

noh ( k)yk)—"' Ciy}')’ ak-’ a, 1 “/O'
".L‘he _ight-he.nd side is formed b sumd X = b+ K witn
(4. 5)}"‘ € o (20 o u,§)-2(F T oy +
e (2% y +3, v)-f(x, y ))/ ﬂk ’

"gxk,y ) — Gc,y), bc—)- b, O, ['bk~l/0
Suppose the sequenoee in (4.4) to be given. To obtain
a = lim ¥ .We may put o, = {Bk =--')- and estimate the
differenoe
‘(4 6)k ' ak - v¥ (a, = p% _

If o"—» 0, then (4. 3) holds as inolusion "M,
"Conversely, suppose’ the sequenoces in (4 5) to be given, Then,
) we oan try to replaoe the second term b by
¢ i’(x,'Q + oLy v) - f(x,‘rlk) )/(:Lk . where q}f—»'i '

‘and. |
q(4 7) ) p2 - b2" -0 (at least for some subsequence),
I:B this ie poesible, then we .oan put 2 -ctk ’ yk 'f(,k
_rvand_, wit‘h the resulting a* (4. 4), again estimate the dirf-
| : ‘,;{".(4‘ 6) o~ O, the inolusion DM 45 now
- truesin.(473). - |
'Summarizing, two questions remain orucials

(1) When does (4 6) tend to zero ?

"‘(ii) When oa.n b]‘ac be replaced by plz{ with given d’k

suoh that (4. 7) is true ?°




 Step e~ Reoall the suppositions (4.1) and oonsider

' formula (4 3) in this particuldr case, Sinoe £2(X, .) 1s
oontinuously differentiable (and simple, Def,5),

, question (11) finds a positive answer, -

To_answer (1) we set L o

x’= x +‘1ku, y'= yk+')-kv,'i'- X, y = yk,' L= A .
‘The’, differenoe 0= o (4.6) then becomes

0 = [(f(x y ¥O)=£(x’, y)) - (2(x, ¥’ )-f(x, ¥ 1/x
S L(f(x, )-f(x, ) (f(x, y)-2(%, ¥yl
| o /% ¥ 0/1 ..vf

Setting 9 = ‘7 + *(y - y) we may write

T 5 <n f(x' ) - Dy(x, )) (yi- 7 ) at

and estimate o
I o1|| Lo x’- x Ily -yl = Lllilkull _lly'-k'i" .
A similar estimation for 0, shows that ¢ = ¢ tends to
zero. o
Thus, -(4,3) holds for £ (4.1) with
A pE((%,F); v) = DE(R,Y) v -
The latter :I.mplies that f4 2) 1s true as inoclusion "<V,

Steg 2; Finally, suppose g in (4.2) to be simple, and
let bab +Df(x,g(z))v (v€Ag(Z,w)) be
some element of the right-hand side in (4. 2)

We write bi as a limit of bk where

b14- Ef(x +Au g(2)) - f(x ’ g(z))]/l ) xk—éx,ikJO.

' Sinoe g;is simple, there are sequeuoes yk and 2z~ such that

s .
setenAfF((x, z) (u w)), and the sequenoce vk # bk + bk
| oonverges to’ b1 + Dyf(x, g(2)) vV o. {leoalling the LnLo; sral:
estimation used, in step 2 for ¢ = ¢, we obtain b = a,
and” (4 2) is verified. O ‘
It remains to olariiy whioh funeLions are slmnple.,



The- family of simple functions lorws a proper subclass

‘of. Co 1(Rn R™) even 1f n = 1 and m = 2, The problem to

oonstruot some: corresponding non-simple example is ledit

to the reader. We will: concentrate on the hext two

"positive" statemsnts.

3" Every funotional € C0 1(Rn,R) is simple
. (at eaoh point) | -

Proof aLet vG Af(..-u) and 2 4 0. be given, We write

| Y,H%lim vk where, with oertain related seguenoces

(4 IE R C 2O w) - 265) Moy, x, & 0,

' “ix;:;.any k and oonsider the line-segment I =[x ,xk+o(,l ul ,
,where**ll uu w 14may be assumed -The lemma is true if
_.the following'oan be shown: '

.-':For suffioiently large t > t(k), there exist y € I,
‘such that

whoie (2(rte Apw) - £GP )2y
satisfy | wb - vkl 1/k . :
* Let L be some Lipsohitz module of £ nea.r X, and let t(k)
;og _chosen euoh that :

(4 9) » Ay <ol (2L +1 )1 forall 4 >t(k) .
éAssume that, for some t»t(k), such point yt does not
"-_:ex:Lst Considering wt as a continuous function of y
‘either wb > v +1/k or "y vk 1/k wmust e

, ltrue for all points in Ik. We may suppose the

'jfirst oase. By using this inequality suooessively jor

, jy" - xX + s8d, u , s= 0, 1, _...,['olk/il.t]~ {

-and applying (4 8) we obtain: jafter sowe elemcunlary
~oaloulations, that z i= X + N?.t u fulfils

......

R ..{-ﬁ-f:f(z) - f(x 0y u) > 2,( Nk - 1)

' ‘. 'where lv IéL is assumed ‘Becausc of . (4.9) we have
N)(u/a)-1 > 2kL '

'?Y’hioh' together with llz - (x¥ + 0o u)”‘.’,\t y leads
'T?to a’ oontradiotion regarding the Lipsohitz assumption. [

Note that the lemma, partioularily, says that F.H, Clarke’s
direotional derivative uay be wrltten as

fo(x,u) = m-sup k( £(x*+ u/k) - £ )
' -l' X



We finish thia seotion with

-Lemma 4, : The funotion gt R—> R%", defined by

- g(t) - (t© Ly & ), t© = min{O 1t} @P. max{0, t}
1s 'simple. The set Ag(t,v) consists of all

-‘ff as= ( a._, at) € r? satisfying |

_(410) e-a te-O, a+a-y,}a'a+>,0.

roog The set‘.{&;ﬁeﬁned by (4.10). ogpta.ins Ag(t;v)
'beoa.uae of (P4) and A = kel g(t)v. We-note that this
| a.rgumenta.tion :I.s not oonsequently oonoerning the re-
'mark after the proof of (P4), but it gives more in-
:'formation than the (easily possible) ‘elementary proof,
Now, let a€ A, and let 'lkwlr 0 be given. The construc-
tion of xX—> t, suol that
ak 1o (g(Fa,v) - g ) /2,

~oonverge to a, 1s then very easy. _
If t #0 then x=t. Let t = 0. Them, we put

o o if v=0
X = 71 a if v>0
11{ if v<0 . O

De 'Stgong;y stable oritical points in ¢'alo optimlzation

Consider an optimization problem
P(a,b,0):  inf f(x) +{ay,y x? 5. t.
. gs(x) £ v 1 1= 1,.00,m
, hy (x) = J= 1yeeeyD
" _where a, b, o are regarded as (small) parameters
and- £, gy, hy are supposed to Lelong ta ¢ (8D, ),

- Following 1!1. Kojima [11] we assign to P the function

CEE , Df(x) + Z P Dgi(x) + Ez Dh (x)
(5.1) Fx,y,2)= [ - gi<x>
- _ - hd(x)
_which lies in CO 1 RIHIR, iy,
‘The oritioal point ~of P(a,b,0) are described by
, equation -
(5.2) F(x,y,2) = ~ (a,b,0).
+ Their relation to Karush-Kuhn-''ucker points (l&l('l‘l’) is
. given by the (Lipsohitalan) correspondence



(X)Y’S) Oritioa]_ — (Jt, yQ' z) KKTr
(x:Y;z) KKTP © => (x;y+g(x),z) oritioal,_

Let B = (x;?,i) be some fixed oritioal point of P(O 0,0).

We ask after the existenoe of some neighbourhoods N(s) and U(O)

suoh that N(E) oontains exaotly one oritioal point s of
_UP(a,b,o) whenever (ayb,0) € UCO) where, additionally,

~ the. reeulting funotion is Lipschitz, This property (often
foalled "strongly stable") means obviously that F (5.1)
_eis Lipsohitzaan 1nvert(ble at 8. Consequenoes of this fact
-a8 well as euffioient oonditions for Cz-problems are to
‘be found in several papers; the ones closest to the presenl
are. (perhaps) [8] ﬁ1]amd [17]whereas similar properties
‘for local minimizers are the subjeot of [9] and [10].

Reoelling Theorem 1 we have to olarify whether oondition
(5.3) 04 AF( T ;5 r) forall r= (u,v,w) £ 0
holds, |

In order to use the chain rule (4.2) 1t is convenient to

write F in the form

R '(Df Dg, ... Dg; O ... 0 Dhy ... th
F(x,5,2) = | =8 0 ... O B 0 ... O NS

... NVeh 0 ... O O0,.,0 O ... O 2

Here;'ell veotors included are considered as oolumns,
and the matrix depends on x only. We demote it by M(x),
and write b(y,z) for the vector on the right.
Applying Lemma 4 to the w funotions Yy > (yl ’ f?‘ ol
independent ‘variables we cee Lhat b is slmple and that

- Av((F,8); (v w)) consists of all veotors (O at,a”,w)

) satisfying _
(5.4) . a+a*=v, a] =0 (ie;J;_,), a] = 0 (1€1I) and
""-‘.aa;-ia; >0, '

{1..;-yi< o} L= 1 7, >o}, 1= {1 ¥- o}

‘ ijy the help of formula (4.2) we obtaln

"AF(s,r) = A (Mb)(x,b(y,a) ju) -

' + Db(Mb)(x b(.y,l:)) Ab(()’,&) (vyw))
The first term of the right=hand side oonslsils of all
veotors of the kind



Le

. -Dg(i)m whero fGA (D:E + (y@) Dg + sTDh)( X5 u) =3
" -Dh(x) u . s! H(u) : A

'Note that for 02- funotions, the set H(u) 1s simply

Hu . 1f H denotes the Hessia.n of the Lagrangian with respect

to x a.t ry o
‘The seoond term of the right-hand side has the form
- MCX) Av a.nd oonsists of veotors of the kind
zﬂ-",ngi(") + ZWJth(x) |
a where a, a' are
| ;0 - - | restriotedito (5.4).
Surnma.rizing 'we obtain.. Condition (5.3) holds true iff
- the system _
S (Za] Dgi(x) + Zwy bh () )e 1(u)
(5. 5) S Dg( ) u =a
, Dh(x) u 0,
with at, a~  according to (5.4),
has the trivial solution (u,v,w) = 0 only,
Let us introduge some seoond, more convenient system
with va.riables uy,®, 3 by the oconditions
oy Dgi(x) + (,5‘] D (x) € 1(u)

| :L€IUI T
(s .63 ‘ °L1 Dgi(x) V iEIo
/ Dgi(x) = 0» Viel,
Theorem .4, Condition (5. 5) of "strong stabllity"

holds true if and oaly if the system (5. 6) has only
the ‘trivial solutlon (uyel,p) =0

~_ Proof' - Indeed, if (u, v,w) solves (5.9) with oertain a*,
a,frgm (5.4) then we f£ind that (u,ol,3) with
cL"a':';-'-a."' (5- ~ w solves (5.6) (We remove the com—
ponen'l_:s oL 1€I_ ), Conversely, if (u,ol )
solves (5 6) we construct a solution of (5.5) as
follows. :

1€1: 'vi = Dg (x)lu y a'{ =0 , uI = Dgi(’g) u
1€I 'vi'_ Dg,i(x) u -oil y By = oy _5\1 = b ()
i€I : V1'='.‘A-QL1 ’ ay = —&i ) ;t1 = U,



Setting w = = (3 the vector (u,v,w) solves (5.5).
Sinoce, finally, nontrivial solullons are preserved
under.the giveli trensiormations (which 1s not Airlli-
oult to see), nothing remains to prove. [J

In order to interprcte this resull we define the tangent
space associated with (x,y) as

: T(Sc','y) = -[u ¢ Dh(x) u = 0, DbiKX) u=0 Vi€l }

To each: ueT(x,y) there corresponds some (norme.l-) oone

K(u): ={ R 1€-‘ ;LEII oL, Dg, (X) +-Z:J: PJDhJ(-")

. where eLiDg (x)T €0 Vie 1 } .

‘The | theorem then says that: condition (5.3) 18 equlva-
lent to the .two requirements |

) - The gradients Dgi(x) (iG.I I ) and Dh (X) are

~linearly independent (LICQ)

(11)~ KN H(u) = § Zfor each u€ T(%,5) , u#0.
»It_seeme natural to understand (i1i) as a sepond-order con-
dition., | -

If the involved funotions are C° then system (5.6)
desoribes a linear complementaritiy preblem.“ The question
whether such problems have non—trivial solutions was com-
pletely solved by S. M. Robinson f17]

Since ¢ z,ud £ 0 for zekK(u), condition (ii) holds true

whenever ue‘l‘(x,y)\ {0} and v¢€ H(u) imply (v,u) > 0,

Conoluding remarks
_7In oemparieon with the L1-oase, we note two important unplea-
~ sant_ properties of ¢! functions: ' -
I In spite of (PZ) the multifunotion ywr»r A, fK(x,y),u\
| may ‘fail to be olossd; see Lxample 1,
2.'Suppoee, f: R=> R to have a Lipschitedan inverse and try
-~ to. determine its only zero by any iberative proccdure
}whioh ooinoides with Newton’s method at all points where
. is differentiable. Then, the prouvodure. may fail to con-
‘verge (locally) as it generates an alternaLing sequence
with almoet all initial points; see[14],§2.3.

-'Aoknowledgement. Many fruitful disousslIons with my oollecupucs
D. Klatte and K, Tamner as well as with M.Th. Jongen and



F. No&itka have influenced the presenl investigations
in a very cqnstruotive manner.
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