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FOREWORD

The authors provide several characterizations of optimal trajectories for the classical Meyer
problem arising in optimal control. For this purpose they study the regularity of directional
derivatives of the value function: for instance it is shown that for smooth control systems
the value function V is continuously differentiable along an optimal trajectory z : [tp,1] —
R™ provided V is differentiable at the initial point (to,Z(#g)). Then they deduce the upper
semicontinuity of the optimal feedback map and address the problem of optimal design, obtaining
sufficient conditions for optimality. Finally it is shown that the optimal control problem may be
reduced to a viability problem.
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Some characterizations of optimal trajectories in
control theory

Piermarco Cannarsa
&
Halina Frankowska

Introduction

Consider the optimal control problem
minimize g(z(1))
over all solutions of the control system

(1) ' = f(t,z,u(t)), u(t) € U

satisfying the initial condition
(2) z(0) = &o-

We recall that by a simple change of variables the classical Bolza problem in control
theory

minimize{tp(::(l)) + fo ' L(t,a:(t),u(t))dt}

over the trajectory-control pairs (z,u) of (1), (2) may be reduced to the one under
consideration.

The goal of the optimal control theory is to find necessary and sufficient con-
ditions for optimality and to construct optimal trajectories. While several results
establishing necessary conditions are available in the form of maximum principle,
it is difficult to complete these conditions to sufficient ones. In this paper we show
that this additional information may be obtained from some properties of the value
function defined by

V(to,z0) = inf{ g(z(1)) | z is a solution of (1) on [to, 1], z(to) = zo }
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When the data of the problem are Lipschitz, then the value function is locally
Lipschitz. When it is differentiable it satisfies the Hamilton-Jacobi equation:

(3) - aa_‘t,(t,x) + H (t>z’_aa_:(t1z)) = 0’ V(l’.) = 9()

where the Hamiltonian H is defined by
H(t,z,p) = sup {p, f(t,z,u))
ue

In general, even in very regular situations, the value function is not differentiable.
But still it solves the Hamilton-Jacobi equation (3) in the viscosity sense (see [12],
13)).

Furthermore V can be characterized as the unique viscosity solution of (3). So it
inherits many qualitative properties of this class of solutions, such as stability and
comparison theorems and also enjoys some numerical advantages (see for instance
o))

Although, as we have just recalled, the value function is not necessarily differ-
entiable, we prove in this paper that the differentiability of V' is preserved along
optimal trajectories. More precisely, we show that if V is differentiable at some
point (to, Zo) and T denotes any optimal solution starting from zo at time g, then
for every t € [tg,1], V is differentiable at (t,Z(t)) (see Corollary 4.3). Actually, the
derivative —V(t,Z(t)) is equal to the co-state of the Pontriagin maximum principle,
which we recall in Section 3.

The value function is also a good tool to characterize optimal trajectories. It is
well known that V' is nondecreasing along trajectories of (1) and is constant along
optimal trajectories.

When the Hamiltonian H is smooth enough and the value function is differen-
tiable at (0, £o), then the following necessary and sufficient condition for optimality
holds true (Lemma 3.5):

Let z(-), p(-) solve the Hamiltonian system

Z(t) = G5t 2(t),p(t))

P) = -F2(tz®),p@), teo1]

Then z is optimal if and only if z(0) = &, p(0) = —V}(0, &) (see Theorem 3.4 for
a more general statement.)

Even when the Hamiltonian is not smooth, the value function may still be used
to construct the optimal feedback map:

(5) 6(67) = {v € fL=V)| zas(te) =0

(4)
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Namely the following property holds true: a trajectory Z of (1) is optimal for our
optimization problem if and only if it is a solution of the differential inclusion

(6) ' € G(t,z), z(0) = &

We refer to [16], [4] for some developments in this direction.

To investigate regularity properties of the set-valued map G we prove the ex-
istence of the directional derivatives of V. For this aim we show that under very
general assumptions on the control system the value function is semiconcave (see
Theorem 4.1).

As a consequence of the semiconcavity of V', we obtain that the feedback map
G is upper semicontinuous and has nonempty compact images (see Theorem 5.1).

In particular whenever the feedback map G is single-valued, it is continuous.
From the above it follows that in this particular case optimal trajectories are con-
tinuously differentiable.

Moreover if the data are convex, then G has convex values and the inclusion (6)
fits the well investigated framework of upper semicontinuous convex valued maps.
In particular solutions of (6) can be obtained as limits of Euler curves.

When the map G does not have convex images the above characterization of
optimal trajectories is not easy to apply. To overcome this difficulty we provide an
alternative approach based on viability theory.

Namely we observe that solving the optimal control problem is equivalent to
solving a control system with state constraints:

i) t'=1
i) = f(t,z,u),u €U
i) 2 =0

iv) (t,z(t), 2(t)) € Graph (V)
v) t(0) = 0, z(0) = &, z(0) = V(0, &)

The last problem is a viability one and may be approached using many results of
viability theory (see [19], [2], [1] and bibliographies contained therein). In particular
solutions of such system can be constructed using Euler curves. We underline that
in this case dynamics 1) — 111) remain regular, but we have to keep trajectories in
the set Graph(V') according to the relation sv).

Finally, we treat the case involving the end point constraints (z(1) € K,) via
penalization techniques. We show that the value function of such problem may be
approximated by the value function of problems with free end points (see Theorem
7.1). A result of the same nature holds true for optimal trajectories.

The plan of the paper is as follows. Section 1 contains basic material on the
value function. In Section 2 we recall some definitions of set-valued gradients and



investigate properties of semiconcave functions. Necessary and sufficient conditions
for optimality are described in Section 3, while Section 4 is devoted to the semi-
concavity of the value function. The optimal feedback map is studied in Section 5
and viability theory is applied to optimal trajectories in Section 6. In Section 7 we
address the problem with end point constraints.

1 Value function in optimal control

Consider a complete separable metric space U and a continuous function
J:[0,1]xR*"xXU — R"

We associate with it the contro] system

(M Z'(t) = f(t,z(t),u(t)), u(t) € U almost everywhere

An absolutely continuous function z : [to,t;] — R™ is called a trajectory of (7) if
there exists a measurable function u : [to,¢;] — U such that z'(t) = f(¢, z(t), u(t))
almost everywhere in [to, ;).

Throughout the whole paper we impose the following assumptions on f

¢) JkeL(0,1;Ry), V(t,u)€[0,1]x U, f(t,-,u) is k(t) — Lipschitz
(8)
1) 34 >0 such that V (t,u) € [0,1] x U, ||f(¢,z,u)|| < v(|=] + 1)

Let g : R” — R be a locally Lipschitz function and £, € R" be given.
We investigate the minimization problem

(9) minimize {g(z(1)) | z is a solution of (7) on [0,1], z(0) = &0}

The dynamic programming approach associates with this problem the value function
defined by

(10) V(to,z0) = inf {g(z(1)) | z is a solution of (7) on [to, 1], z(to) = z0}

Our assumptions allow to apply the relaxation theorem from (2] to show that V is
actually equal to the value function of the relaxed problem:
Consider the convexified differential inclusion

(11) 7'(t) € cof(t,z(t),U) almost everywhere
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We recall that an absolutely continuous function z : [to, t1] — R" is called a trajec-
tory of (11) if for almost every t € [to, 1], 2'(t) € c6f(t,z(t),U). We associate with
(11) the following minimization problem

(12) minimize {g(z(1)) | z is a solution of (11) on [0,1], z(0) = &0}
The corresponding value function is given by
V®(to,z0) = inf {g(z(1)) | = is a solution of (11) on [to, 1], z(to) = zo}
Theorem 1.1 For all (to, zo) € [0,1] X R™ we have
V (to, zo) = V*°(to, z0) = min{g(z(1)) | z is a solution of (11) on [to, 1], (o) = zo0}

Proof — From the relaxation theorem (see [2]) and the parametrization theorem
[2] we know that the closure in the metric of uniform convergence of trajectories
of (7) defined on the time interval [to,1] is equal to the set of trajectories of (11)
defined on [to, 1]. This ends the proof. O

It is well known that the value function is nondecreasing along trajectories of (7)
and therefore a trajectory z : [to, 1] — R" satisfies V (to, z(t0)) = ¢(z(1)) if and only
if V(t,z(t)) = g(z(1)). This leads to a verification technique in optimal control:

A trajectory z : [0,1] > R™ of the control system (7) is optimal for the problem
(9) if and only if z(0) = & and V (t, z(t)) = const (in this case V (t,z(t)) = ¢(z(1)))

Hence instead of looking for an optimal trajectory for the problem (9) one can
search a trajectory of (7) satisfying the initial condition and such that the value
function is constant along it.

We recall that the directional derivative of a function ¢ : R®* > R at zp € X in
the direction ® € X (when it exists) is defined by

_ i P(Z0+ h8) — p(20)

dp
) A—0+ h

36"

Proposition 1.2 The value function V 18 locally Lipschitz. Furthermore for every
trajectory z of (7) on [0,1] and for almost every t € [0, 1] there exists the directional
derivative

1%
3,20 (t, ()

Proof — Local Lipschitz continuity of V' is a well known result. It can be checked
by the arguments similar to [15, Theorem 4.2, p.85] (see also [16]).
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Fix a trajectory z(-). Then the function t — o(t) := V(t,z(t)) is absolutely
continuous. Fix t such that ¢ and z are differentiable at ¢t. Then
. V(t+ h,z(t) + h2'(t)) — V (¢, z(t)) . V(t+h,z(t+ h)) - V(t,=z(t)
lim = lim
A—0+ h h—0+ : h

and the proof follows. O

When the value function is differentiable it has many properties related to dy-
namics of system.
For instance

Proposition 1.3 If for some (to,zo) € [0, 1[xR™ and v € €6f(to, 2o, U), V has the
directional derivative at (to, zo) in the direction (1,v) then this directional derivative
18 nonnegative.

Proof — Consider a solution z(-) of the differential inclusion (11) satisfying
z(tg) = zo, z'(to) = v (by [2] such solution does exist). Since V is locally Lips-
chitz at (¢o,z0) and nondecreasing along trajectories of (11), thanks to Theorem
1.1, we obtain

‘n V(to +h,zg+ hv) - V(to, :L‘o) - lim V(to + h,z(to + h)) - V(to, :L‘o)

li
h—0+ h h—0+ h

>0 0

Unfortunately in the great majority of cases the value function is not differ-
entiable and many attempts to overcome this difficulty recently appeared in the
literature (see [12], [13], [4], [16] and bibliographies contained therein). In the Sec-
tion 4 we provide sufficient conditions for the value function V' to have directional
derivatives in all directions.

To characterize optimal trajectories we introduce two following feedback maps
G:[0,1] x R® ~ R" and G*° : [0,1] x R™ ~» R" defined respectively by

6(t2) = {v € 1(t,,D)] %(m)ﬂ}

and
G(t,z) = {v € cof(t,z,U) | %(t,z)=0}

Then we have the following characterizations of optimal trajectories:

Theorem 1.4 The following two statements are equivalent:
t) z 18 a trajectory of the differential inclusion

(13) ' € G(t,z)

6



defined on the time-interval [to,1].

i1) T i8 a trajectory of the control system (7) defined on the time-interval [to,1]
and for every t € [to,1], V(¢,z(t)) = g(z(1)).

For the relazed system (11) the following two statements are equivalent:

111) 18 a trajectory of the differential inclusion

(14) ' € G“(t,z)

defined on the time-interval [to,1].
iv) z 8 a trajectory of the differential inclusion (11) defined on the time-interval
[to, 1] and for every t € [to, 1], V (¢, z(t)) = g(z(1)).

Proof — Fix a trajectory z of (7) defined on time interval [to, 1] and set o(t) =
V (t,z(t)) for every t € [tp,1]. From Proposition 1.2 for almost all t € [to, 1]

40 = s

Assume that 1) holds true. Thus ¢'(t) = 0 almost everywhere in [to,1]. Consequently
¢ is constant equal to V(1,z(1)) = g(z(1)). Assume next that ¢s) holds true. Then,
differentiating the map t — ¢(t), we obtain that for every t € [to, 1], ¢'(t) = 0.
Thus

ov
o7 ) = °

almost everywhere and therefore for almost all t € [to,1], z'(t) € G(t,z(t)). The
proof of the second statement is analogous and is omitted. O

Corollary 1.5 A trajectory z : [0,1] — R" is an optimal solution of the optimal
control problem (9) if and only if it is a solution of the differential inclusion (13)
and z(0) = €. An analogous statement holds true for the relazed problem (12) and
the differential inclusion (14).

Proof — Since V is nondecreasing along trajectories of the control system (7) we
deduce that Z(-) is optimal for the control problem (8) if and only if V is constant
along Z. Theorem 1.4 ends the proof. D

Theorem 1.8 For everyty € [0,1], zo € R inclusion (14) has at least one solution
satisfying z(to) = zo.

Proof — Consider the optimal control problem

minimize g(z(1))

7



over the solutions of the differential inclusion
Z'(t) € cof(t,z(t),U) ae. in [to,1], z(to) = zo

By Theorem 1.1 it has at least one optimal solution Z. Furthermore V'(t,z(t))
= ¢(z(1)). Theorem 1.4 ends the proof. O

The map G introduced above, in general, does not enjoy any regularity properties
and this is why it is difficult to obtain solutions of the differential inclusion (13). In
Sections 4 and 5 we provide some sufficient conditions for upper semicontinuity of
G and in section 6 we reduce the problem to a problem with state constraints. The
advantage of this approach lies in the possibility to exploit results of viability theory
and, in particular, to get solutions of (14) as limits of Euler curves.

2 Some preliminaries on nonsmooth functions

Consider an open set { C R™ and a function ¢ : I — R. When it is not dif-
ferentiable it is possible to define its gradient taking weaker limits of differential
quotients.

Definition 2.1 Let zo € 1. The superdifferential of ¢ at zo 15 the closed convez
set defined as follows:

Dt p(zo) = { p€R"| limsup #(z) - p(z0)= <p,z— 70 > <0 }
z—zg ||z = zol|

where < -,- > denotes the scalar product.
The subdifferential ts defined tn a stmtlar way:

D™ p(z0) = { p€R"| liminf o(z) ~ p(20)= <P,z = 20 > >0 }
=20 |z — =oll

It is not difficult to show that ¢ is Fréchet differentiable at zq if and only if both
super and subdifferentials are not empty at zo. In this case

D*p(z0) = D p(z0) = { ¢'(z0) }

We always have D*p(z¢) = —D~(—¢)(zo)-
The super and subdifferential may also be characterized using the Dint¢ direc-
tional derivatives, which are defined in the following way:



Definition 2.2 The lower Dini derivative of ¢ at zo tn the direction © 1s given by

_ . zo + h6') — p(zo
el)(@) = , timigt , ST

and the upper Dini derivative of ¢ at zo in the direction © is defined by

p(zo + h8') — o(z0)

(15) 3t p(z0)(8) = limsup W
h—0+, 8'— 86

Clearly

(16) 3~ p(z0) = —37 (—p)(20)

When ¢ is Lipschitz at zo then the definition may be simplified as follows

- . op(zo + h8) — p(z0)
97 ¢(20)(8) = liminf h

and

3%t p(20)(8) = limsup #(zo + h8) = ¢(z0)
h—0+ h

From [16, Lemma 2.7] we know that

D p(z0) = {p€R"| VO ER", 9 p(2)(6) 2 <p,0 >}

and
(17) DYp(zo) = {peR™| VO € R", 8+<p(z0)(6) <<p,6>}

Definition 2.3 Assume that ¢ 18 Lipschitz at xo € Q1. The regularized lower deriva-
tive of ¢ at zo in the direction ©® € R"™ 15 defined by

.. z+ hO) — p(z
#2(200) = , hmiar, LEHRL=EE

This notion is a “lower version” of Clarke’s definition of directional derivative. In-
deed it can be easily checked that

(18) 2 (20,8) = —¢°(z0, —8) = —(~)°(20,0)
where ¢°(zo,8) denotes the directional derivative from [10].

Proposition 2.4 Let ¢ : R® — R be Lipschitz at 2o € R™. Then the function
6 — ¢° (29, B) s concave.



This result may be deduced from [10, Proposition 2.1.1]. v
We investigate next the closedness of the level sets of the regularized lower deriva-
tive.

Proposition 2.5 Let ¢ : R® — R be a locally Lipschitz function and define the
set-valued map Q : R" ~ R" by

Q(z) = {8 €R™| p°(2,8) < 0}
Then Q has nonempty closed images and the graph of the map Q s closed.

Proof — Clearly for every z,0 € Q(z). It remains to show that for every sequence
(zn,BOn) € R™ x R" converging to some (z,0) and satisfying 6, € Q(z,) we have
© € Q(z). Fix such a sequence and let €, — 0. By the definition of ¢°(z,,8,)
there exist h, — 0+, z!, — z be such that for every n

' )
p(zn + hn’?n) p(zn) < e,
n

Consequently

' _ '
¢ (2,8) < liminf P1Znt AnOn) ~ (2n)

n—oo hyn

0

This ends the proof. O

Definition 2.6 Assume that ¢ 18 Lipschitz at o € 1. The generalized gradient of
p at zq 18 defined by

(199  dp(zo) = {pER"| ¥O € R", ¢°(20,0) < <p,0>)

We denote by D*p(z0) the set of all cluster points of gradients ©'(z,) when z,
converge to zp:

D*p(zo) = { lim ©'(zn) | zn — 20 & ¢'(z,) does exist and is converging }

In view of (18) the above definition of the generalized gradient is equivalent to
the one given by Clarke.
It is clear that D*p(z,) is compact. From [10, Theorem 2.5.1] follows that

(20) d¢p(z0) = co(D"p(zo))

where co denotes the convex hull.
Let us denote by B the closed unit ball in R".
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Definition 2.7 Consider a convez subset K of R™ and a function o : K - R. It
18 called semiconcave if there exists a function w : R, x Ry — R, such that

(21) Vr<R t<T, w(rt) < w(RT)&VR>0 ‘lir&1+w(R,t) =0
and for every R > 0, A € [0,1] and any points z, y€ K N RB

Ap(z) + (1-Ne(y) < p(Az + (1-A)y) + A1 - A)llz - yllw(R, ||z - yl])

We say that p 18 semiconcave at zq if there exists a neighborhood of zo such that
the restriction of p to it 18 semiconcave.
We call the above function w a modulus of semiconcavity of .

Usually in the definition of semiconcavity w(r,t) = ct for a nonnegative constant ¢
(see [20], [21]), or w(r,t) = ct* for ¢ > 0 and a €]0,1] ([7]). We observe that every
concave function ¢ : K — R is semiconcave (with w equal to zero). Furthermore

Proposition 2.8 Let K be a convez subset of R™ and o : R® — R be continuously
differentiable on a neighborhood of K. Then ¢ is semi-concave.

This is a well known result, we provide its proof for the seek of completeness.

Proof — Fix R>0, z, y€ KN RB and X € [0,1]. From the mean value
theorem there exist ¢, ¢; € [0, 1] such that

p(Az + (1-A)y) = o(z) + ¢'(z+t(1-A)(y—2))(1-A)(y - 2)

and
p(Az + (1-2)y) = p(y) + Py +tA(z-v)A(z-v)

Multiplying the above equalities by A and (1 — A) respectively and adding them
yields

Ap(z) + (1-A)p(y) < p(Az + (1-2A)y)
+ (P(z+t(1-2)(y-2)) - @' (y+ t1r(z - ¥))) A1 - A)(z - v)

Then taking w(R,-) equal to the modulus of continuity of ¢' over K N RB we end
the proof. O

Example 1. Consider a subset K of R" and let dist(z, K) denote the distance
from a point z € R"™ to K. Define the function ¢ : R" — R, by p(z) = dist(z, K)2.
We claim that ¢ is semiconcave.

11



Indeed fix z,y € R™, A € [0,1] and set z, = Az + (1 — A)y. Let a € K (the
closure of K) be such that ||z) — a|| = dist(z), K). Then

22 | #@) =IAz-a)+(1-N- ol
CAtz—af+ (1-A\?|ly-alf + 2M(1- ) <z—a,y—a >

On the other hand
lz=yl* = lz-al® + lly-al* - 2<z-a,y-a>
Hence
2A(1-N) <z-ay-a>= A1-3) (le—al® + |y~ al® - [lz—l?)
This and (22) imply

= Alz—a?+(1-2)ly—al® - 2(1-A) |z - y|®
> dp(z)+ (1= Ne(y) - A1 =) ||z - y||2

Consequently ¢ is semiconcave. O

p(zx)

In general a Lipschitz function does not have directional derivatives. Our next
aim is to show that for a semi-concave at zo function ¢ the directional derivatives
exist and coincide with regularized lower derivatives. This result was proved in [7],
[8]. We provide a different proof of this fact for the seek of completeness.

Theorem 2.9 Let 2o € R” and ¢ : R" — R be Lipschitz and semiconcave at zg.
Then for every © € R™ the directional derivative 3§ (zo) ezists and is equal to the
reqularized lower derivative p° (z0,0):

d
(23) Ve € R, —E(z0) = ¢ (z0,6)
Consequently Dt p(zo) # 0 and
(24) D*p(z0) = dp(z0) = co(D*p(z0))
Proof — It is enough to consider the case ||©]| < 1. Let § > O be such that
¢ is semiconcave on Bas(zo) with semiconcavity modulus w(-) = w(26,:). Fix

z € Bs(zo), © € B and observe that for all 0 < h; < hy < § we have
[ p(z+m8)—p(z) = ¢ (%(z+ h:8) + (1 - %) z) - p(z)

$ > Mo(z+h8) + (1~ 2)p(z) - pz) - & (1- &) ha[8]|w(he O]

’7

Moz + ) — Mo(z) — hy (1- 1) [©]|w(hs [©])

12



Consequently for all 0 < hy < hy < §

et hO) = ple) , plzthiO)=ola) _(;_ b))

and we proved that for every z € Bs(zg)

(35) Vo< K <hgs, LETHOI-0ld) , plathO)—ols) _ 0, q))

Thus for every 0 < h < §

, - —
limint 220t H8) —p(z0) | p(zo+h6) — p(zo) _
=0+ X n

w(h|®l])

Taking limsup,_,o, in the right-hand side of the above inequality yields that the
directional derivative §§(zo) does exist. Clearly 8£(z0) > ¢° (20,6). To prove the
opposite fix € > 0 and 0 < A < §. From the continuity of ¢ it follows that there
exists 0 < a < § such that for all z € B,(zo)

P20 +26) — plz) _ plz+28) - pl2) | |

A - A
Thus, using (25), we obtain that
¢(zo + A8) — p(z0) < g o(z+ hB) — p(z) + wrlle) + ¢
A zE€Bu(z0), hE]0,A] h

Letting £, a and X converge to zero we end the proof of the first statement. The
second one results from (23) recalling (17), (19) and (20). O

Proposition 2.10 Let o : R™ — R be Lipschitz and semiconcave at zo. If D p(zo)
18 a singleton then p 18 differentiable at o and

D*¢(z0) = { ¢'(z0) }

In particular, if DY p(z) is a singleton for all z near zo, then p 18 continuously
differentiable at zo.

The proof follows by exactly the same arguments as the ones in [7, Corollaries
4.11, 4.12]

Definition 2.11 Let K C R" be convez and ¢ : K — R be given. It 1s called
semiconvez (respectively semiconvez at zo) whenever —p 18 semiconcave (respectively
semiconcave at zo).
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Proposition 2.12 Let ¢ : R™ — R, zo € R". If o is Lipschitz at zo and both
semiconvez and semiconcave al zo, then p is continuously differentiable on a neigh-
borhood of zo.

Proof — Since ¢ and —¢p are semiconcave at zg, by Theorem 2.9, there exists a
neighborhood N of zg such that for all z € ¥

D*p(z) = 9p(z), D*(-p)(z) = 3(-¢)(2)
Furthermore
D™ p(z) = —D*(-p)(z) = -8(-p)(z) = dp(z)

the last equality being a straightforward consequence of (20). Hence both D*(z)
and D~ p(z) are nonempty and therefore ¢ is differentiable on N. The conclusion
follows from Proposition 2.10. O

3 Necessary and sufficient conditions for optimality

We provide next a sufficient condition for optimality which involves the superdiffer-
ential defined in the previous section.

Theorem 3.1 Assume that (8) hold true and let T : [0,1] — R™ be o solution of the
control system (7), Z(0) = & and u be a corresponding control. If for almost every
t € [0,1] there ezxists p(t) € R™ such that

(26) (< p(t),Z(t) >, —p(t)) € DV(t,Z(¥))
then T is optimal for the problem (9).

Proof — Consider the absolutely continuous function () = V' (¢,Z(t)) and let
t € [0,1] be such that the derivatives ¢'(t) and %'(t) do exist. We first observe that
(16) and (17) imply that

(0 = ((<p(),Z() >, -p(t)), (LZ()) 2 ¥V (L, Z())(1,Z (%))

V(t+hZ(t)+hz'(£)) -V (¢,Z(2))
h

= limsup,_,q4

(27) 1

= limsupy_o, ﬂt+h,§(t+)}:))-V(t,'i(t))

L = ¢'(t)
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This yields that 4 is nonincreasing. Since the value function is also nondecreasing
along trajectories of the control system (7) (see Section 1), we deduce that the map
t — V(t,Z(t)) is constant. So Z is optimal. DO

The above map p may be constructed using the co-state variable of the Maximum
Principle which is stated below.

We associate with the control system (7) the Hamiltonian H : [0,1] x R*xR" —
R defined by

H(t,z,p) = 21613 <p, f(t,z,u)>

Under the assumptions of Section 1 it is continuous, locally Lipschitz with respect
to (z,p) and convex with respect to the third variable.

Theorem 3.2 Assume that (8) hold true and that f is differentiable with respect to
z and g 18 differentiable. A trajectory-control pair (Z,u) of control system (7) with
Z(0) = &o ts optimal for the problem (9) if and only if the solution p : [0,1] — R"
of the adjoint equation

(28) -7 = (3L0.70,56)) 0, p(1) = -0/
satisfies the mazimum principle

(209) < plt), F(£,7(¢), 5(¢) > = max < p(t), f(t,(¢), w) > ae. in [0,1]
and the transversality conditions

(30) (H(t,z(t),p(t)), —p(t)) € D*V(t,Z(t)) a.e. in [0,1]

(31) - p(t) € D}V(t,%(t)) for every t € [0,1]

where D}V (t,Z(t)) denotes the superdifferential of V(t,-) at Z(2).
Furthermore if V is semiconcave, then (30) holds true everywhere in [0, 1].

Remark — The above condition is a joined form of the maximum principle and
the co-state inclusions (30), (31). The necessary condition of the above type was
proved in ([16]) under somewhat different assumptions. An inclusion on co-state p
similar to (31) in non-smooth case was derived in [11]. O

Proof —  Sufficiency is a straightforward consequence of Theorem 3.1 and
(29), (30). The fact that (28) and (29) are necessary is the well known Pontriagin’s
maximum principle.
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To prove the necessity of (30) fix t € [0, 1] such that Z'(t) = f(t,Z(t), u(t)) and
the equality (29) holds true and let ® € R". Consider the solution w(-) of the
linearized along (Z, %) system

52) () = §(e3(e),ale)wle), o€ 0,1]
w(t) = ©

For every h > 0, let z), be the solution to the differential equation
(33) Z'(s) = f(s,z(s),u(s)), s € [0,1]

z(t) = Z(t)+h6
From the variational equation we know that the quotients

Zh—T
h

converge uniformly to w. Fix a € R. Hence from (28) and (29), using that V is
nondecreasing along trajectories of (7) and constant along Z, we deduce that

3tV (t,z(t))(a, oaZ(t) + 8)

= limsupp_os (V(t + ah, Z(t) + h(aZ'(t) + w(t))) - V(t,Z(t))) /h

= limsupy_q4 (V(t + ah,Z(t + ah) + hw(t + ah)) — V(t,Z(t))) /h

= limsupy_o4 (V(t + ah, za(t + ah)) — V(t,Z(t))) /h

< limsup,_o4 (9(za(1)) — 9(2(1))) /b = ¢'(Z(1))w(1) = (—p(t), w(t))

(=p(t), —aZ(t)) + (-p(t),aT(t) +©)

= aH(t,Z(t),p(t)) + (-p(t),aZ'(t) +©)
Hence we deduce that for every 8; € R"

YV (t,%(t))(, 81) < aH(t,Z(t),p(t)) + (-p(t),81)
Consequently, (H(t,%(t), p(t)), —p(t)) € D*V (t,Z(t)) and the proof of (30) follows
from (17). To prove (31) observe that for every t € [0,1], ® € R" and the solution
w of (32)

(=p(t),8) = ¢'(z(1))w(1) > limsup,_o,(V(t,Z(t) + k) - V(t,Z(t)))/h

= 3;V(t,Z())(O)
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This and (17) imply (31). When V is semiconcave, then the last statement follows
from (30), continuity of H(-), p(-), Z(-) and (24). O

Remark — When the Hamiltonian H is differentiable with respect to (z, p),
then from arguments similar to [18, Remark 4.10] it follows that Z and the co-state
p of the last theorem satisfy the Hamiltonian system

#() = 3E(,3(),p()
Pt) = -52(t,=z(t),p(t)) O

It is well known that for every (¢, z) € [0,1] x R™ at which V is differentiable we
have

(34) -+ B (t,:,—%%(t,::)) — 0

When V is not differentiable at (t,z) the above equation has to be understood in
the viscosity sense (see [12], [13]).
Since the Hamiltonian is continuous we immediately deduce from (34) that

(35) V(t,z) € [0,1] x R™, V (pt,pz) € D*V(t,z), —-p+ + H(t,z,-p;) =0

We show next that in Theorem 3.2 whenever p(0) = —V/(0, {o), we have the
equality in the inclusion (31).

Theorem 3.3 Assume that (8) hold true and that f is differentiable with respect to z
and g is differentiable. Suppose further that the derivative V(to,zo) does exist and let
T be an optimal solution for the problem (10). Consider the co-state p: [tp,1] — R™
corresponding to T and given by Theorem 3.2, where the interval [0, 1] ts replaced by
[to, 1] and &o by zo. Then

-p(t) = D}V (t,Z(t)) for all t € [to, 1]

In the next Section we show that under some additional regularity assumptions on
f for all t, p(t) is equal to the derivative of the value function V/(t,Z(t)) whenever
V.2 (to, zo) does exists.

Proof — We already know from Theorem 3.2 that
-p(t) € DIV (t,Z(t)) for all t € [ty 1]

Thus p(to) = —V}(to, zo).
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Let u be an optimal control corresponding to Z. Fix © and let w, z, have the
same meaning as in the proof of Theorem 3.2 with t replaced by t;. Then, since V'
is nondecreasing along trajectories of the control system (7) and constant along Z%,
for all t € [to, 1]

(p(t0),8) = (~Vi(to,z0),0) = ~ limp_sgy LLuzothe)=V (o0)

> —limsup,_,q4 V(‘-zu(‘))h—V(t,i(Q)

= - limsup,_q, LEEAAU)-VERE) = _arv (¢, Z(2)) (w(t))

where 3}V (t,Z(t))(w(t)) denotes the upper Dini derivative of V'(t,-) at Z(t) in the
direction w(t).
Using (17) we deduce that for every ¢ € D}V (t,Z(t)) we have

(p(to),8) > (—q,w(t)) = (-¢,X(t)8) = (-X(t)*¢,6)

where X denotes the fundamental solution of

{ X'(e) = SL(tE®),T))X(), t€ [to,1]
X(to) Id

Since ©® € R" is arbitrary, we have p(tp) = —X(t)*q. On the hand, p(-) being
a solution of (28), we know that p(to) = X(t)*p(t). Since for every t € [to, 1], the
matrix X (t) is nonsingular we proved that —p(t) = ¢. This yields that D}V (¢,Z(t))
is single valued and ends the proof. D

Whenever H happens to be more regular we can prove the following theorem
concerning optimal design.
For every (to,zo) we define

(36) D;V(to,zo) = D*W(zo)
where W is given by W (z) = V (Lo, z).

Theorem 3.4 Assume that (8) holds true, that f is differentiable with respect to z,
g 18 differentiable and for every R > O there ezxists a nonnegative integrable function
lg € L1(0,1;R) such that for all z,y,p,q € RB

o7 Bt o) = $Eena)] + |50 20) - Hena)

< Ir(®)(lz = vl + |lp — 4ll)
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Let (to,z0) € [0,1] X R" and pg € R™ be such that
(38) —po € D;V(to,xo)
If z(-), p(:) solves the differential equation

2() = (1), p()

1l

(39)
P = —52(tz(t),p(t), t€[to,1]
and (t0)
z(t = z
(40) {p(tf:) =

and if the sets f(t,z,U) are convez and compact, then z(-) is an optimal solution of
problem (10).

Remark — The above theorem extends a result of [8] which concerned a
problem in Calculus of Variations. For such problems condition (37) is natural.
It is much more restrictive for nonlinear control systems. We observe that (37) is
satisfied whenever the variables z and u are “separated”:

f(t,z,u) = p(t,z) + ¥(t,u)

where p(t, -) has kg(t)—Lipschitz gradient and the boundary of y(t, U) is sufficiently
smooth. O

Lemma 3.5 Under all assumptions of Theorem 3.{ suppose that the derivative
Y (o, zo) does ezist. Then z(-) is optimal for the problem (10) if and only if there
exists an absolutely continuous p : [to, 1] — R™ such that (z,p)(-) solves ($9) and

av
~plto) = —(to,0)

Proof — Assume that z(-) is an optimal solution of (10). By Theorem 3.2 applied
with the interval [0, 1] replaced by [to, 1] and &, by zo and by the remark following
it, there exists an absolutely continuous p : [to,1] — R" such that (z,p)(-) is a
solution of (39) and —p(to) € D}V (to,zo). Since V is differentiable with respect
to z at (to, zo) we deduce that —p(to) = 4% (to, zo). Conversely, let (z,p) solve the
Hamiltonian system (39) and

v
z(to) = zo, p(to) = —a(to,xo)
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Let T be an optimal solution of (10) and P be the corresponding co-state given by
Theorem 3.2. Then for the same reasons as before

av
p(to) = —E(to,zo)
So, (z,p) = (Z,P) by uniqueness. O

Proof of Theorem 3.4 — By the very definition of D}V (to,z0) it follows
that there exists a sequence z; converging to zp such that V(io,-) is differentiable
at z; and

= 1im Y (to,2)
Po = k—oo J0Z 0, Tk

Let Z; be an optimal trajectory for the problem (10) with zo replaced by z.
Then from Lemma 3.5 there exists p, such that (Zi,5;) solves (39) and —5,(to) =
%%(to,zk). By the continuous dependence of solutions on the initial conditions we
obtain that the sequence (Z,P,) converges uniformly to a solution (Z, ) of (39)
satisfying

Z(to) = zo, P(to) = po

So z = T by uniqueness and
V(to,z0) = Jim V(to,Za(to)) = Jim 9(za(1)) = ¢(z(1)) = g(z(1))

and therefore z is optimal. O

Remark —
1) By minor modifications of the above arguments it is easy to show that condition
(38) may be replaced by the following one

(41) (H(tO’ZO’PO)»_PO) € DW(tO) 30)

In general (38) and (41) are not comparable. If V' is semiconcave, however, then
(38) is more restrictive than (41) in view of Proposition 4.2 below.

#1) In general we do not know if either (38) or (41) is necessary for z(-) to be
optimal. This is the case for (41) in Calculus of Variations (see [8]), since, then,
for any optimal trajectory Z(-), V is differentiable at every point (¢,Z(t)) with
to<t<l.

Other examples of problems for which (38) is necessary, are given by optimal
control problems having unique optimal trajectory for the initial state (to,zp). O
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4 Semiconcavity properties of the value function

We provide a sufficient condition for semi-concavity of the value function V' : [0, 1] x
R" — R introduced in the first section. Throughout the whole section we suppose
for simplicity that f does not depend on time. Moreover we assume

(i) f:R"xU — R" is continuous
#) 3 M > 0 such that V(z,u) € R* x U, ||f(z,u)| < M(||z||+1)
i) IL>0,Vz,z€e R, uel, ||f(z1,u) — f(z2,u)|| < L||z1 — z2|
tv) Jw:R; xRy — R, such that (21) holds true and
VA€[0,1],Vu€eU, YR >0,V zo, z, € RB
M (z0,0) + (1= X)f(z1,8) — (20 + (1— N)z1, )
< A1 - A) |21 — zo||w(R, [|z1 — zo|)
[ v) g¢:R"™— R islocally Lipschitz and semiconcave

Remark —

1) Assumption {v) holds true in particular when f is continuously differentiable
with respect to z uniformly in u:

There exists a function w : R4 X Ry — R satisfying (21) such that

of

S < -
2L (es,9)| < w(R,lle1 - 2al)

(2:2, u)

2]
VYVueU, Vz;,1: € RB, lé(zl,u)—

It can be proved in a way similar to Proposition 2.8.

2) Vice versa, Proposition 2.12 implies that if f satisfies {v), then f is continu-
ously differentiable with respect to z. O

The main result of this section is the following:

Theorem 4.1 If ({2) hold true, then the value function is semi-concave on [0,1] X
R™.

Proof — For every t € [0, 1] and measurable function u : [t,1] — U, we denote
by y(;t,z,u) the solution of the system

{ y'(s) = f(y(8),u(s))

y(t) = =
The Gronwall lemma implies that

(43) YzeRB, Ysetl1], |ly(s)| < Cr := (R+ M)eM
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moreover for all t € [0,1], s € [t,1], z9, 21 € R™ and all measurable functions
u:[t,1] = U we have

(44) ly(sit, z1,u) = y(s;t,z0,u)|| < €79 ||zy — o

Step 1. We claim that there exists w; : Ry X R, — R, satisfying (21) such that
forall0<t<s<1, R>0,z, z; € RB, A € [0,1] and a measurable function
u:[t,1] = U we have

||Ay(s, t: 2:l)u) + (1 - A)y(‘s: t)zO)u) - y(s;t, A"1:0 + (1 - A)zlv u)”
< A1 = A)|lz1 — zo|| wa(R, |21 — zo]|)

Indeed set z) = Azg + (1 — A)z; and define

yX(T) = Ay(f;t, z1, u) + (1 - A)y("" t)zO)u) - y(T;t, Zi, u)

Then
(1) =
’\f(y(r;tv zi, u)) u(r)) + (1 - I\)f(y(f; t)zO’ u)) u(r)) - f(y(r; t: Zx, u)’ u(r))
wn() =0
Thus by assumptions (42) #11) and iv) and (43)
lsA(r)I| <

AL = A) |ly(r;t, 21, 4) — y(r3t, zo, w)||w(Chr, lly(r5 8, 21, w) — y(t, 20, w)[) + Ll (7]

and our claim follows from (44) and the Gronwall lemma.

Step 2. We claim that there exists w; : R4 x Ry — R satisfying (21) such that
for all t € [0,1], A € [0,1], R > 0 and zg, z; € RB the following inequality holds

true /\V(t, zl) + (1 - A)V(t,zo) - V(t, Az + (1 - I\)zo)
< A(1-A)lzr - zollwa(R, ||z1 — o))

Indeed define z) as above, fix € > 0 and a control u, such that
V(t,z) > g(y(1;t,2x,u,)) — €

Let w, denotes a modulus of semiconcavity of g and Lg a Lipschitz constant of g on
the ball of radius Cgr. Then from (44) and Step 1 we get

AWV(tz) + (1- AV (o) — V(t,22)

< Ag(y(1;t,21,ue)) + (1—A)g(y(1;t, 20, ue)) — 9(y(1;t,2a,uc)) + €

< ’\(1 - '\) ”y(l;t»zltul) - y(l;ta Zo, ut)”wﬂ(CR’ ”y(l; t,n, ut) - y(l;t: Zo, ut)“)
+ Lp|[Ay(1;t,z1,ue) + (1 - A)y(1;t,2z0,u.) — y(1;t,zx,u.)|| + €

< LpA(1 - A) [lz1 - 2oll (w5(Cr, € |21 — zoll) +wi(B,l|z1 = zol))) + &
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Since € > 0 is arbitrary our claim follows.
Thus we proved the semiconcavity of V (t,-).

Step 3. Consider next 0 <; < tg <1, R >0 and let z, z; € RB, A € [0, 1].
Define

Zy=Az1+ (1 - A)zp, tr=At1+(1- Aty
Pick any € > 0 and let u, be such that
V(to, y(to;ta, 2a,ue)) < V(ta,za) + ¢

Define
) as+(1-A), ift; <8<
(45) r(s) = { 8 otherwise

Since the value function is nondecreasing along trajectories of our control system we
have

(46) AV (t1,21) + (1= AV (to,z0) — V(ta,z2) <
AV (to, y(tos ts, z1,ue 0 7)) + (1 = A)V (to, zo) — V (to, y(to; tr, 22, uc)) + €

Set y1(s) = y(s;t1,z1,uc07), ya(s) = y(s;tr,za,uc). Let Kg denote the Lipschitz
constant of V on [0, 1] x Cr B. By (46) and Step 2 we obtain

/\V(tl,:tl) + (1— /\)V(to,zo) - V(tg,z,\)
(47) < A1 = A) [lya(2o) — zo|| w2(Ch, l|lya(to) — zoll)
+ Kpg ||[Av1(to) + (1= A)zo — ya(to)l|

On the other hand from assumption (42) st) follows that
(48) Vs € [ti,to], lIna(s) — zoll < [lz1 = zofl + Mr(to —t1)
where Mg = M(1+ Cg). Set

z(s) = An(r'(s)) + (1 X)zo — a(e)

and notice that z(ty) =0, z(to) = Ay1(to) + (1 — A)zo — ya(to). Furthermore, using
(42) ¢11), we obtain the following estimates

{ 12'(8)ll = 11£ (31 0771 (8), ue(8)) — f(ya(s), ue(s))l]
< Lilyer™'(s) - wa(s)ll < Lilz(s)ll + L(1=A)[lyzor™"(s) — ol

Therefore from the Gronwall inequality and (48) we deduce that

(49) { lz(to)|] < L fi2(1-2)|lyror=2(s) — zof| eXls—*)ds
< LeEA(L= N{to — t1) (lz1 - zoll + Mato — 1))

Inequalities (47), (48) imply the conclusion. O
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Proposition 4.2 Assume that the value function is semiconcave at a point (to, zo) €
[0,1] x R™. If D}V (to,z0) is a singleton, then V is differentiable at (to,zo) and
D*V(to, zo) = { V'(to, zo) }

Here at boundary points (to € { 0, 1 }) the above differentiability of course has to
be understood in one sided sense.

Proof — Let . : R x R® — R" denote the projection on R". Since
lzD+V(to,zo) C D:V(to, zg) =: { po },
by (35) and (24) we conclude that

(pt,ps) € D'V (to,z0) => p. = po, pt = H(zo,—po)
Hence DtV (to, zo) is a singleton. The conclusion follows from Proposition 2.10. O

Corollary 4.3 Assume ({2), that g is differentiable and that the derivative V (to, zo)
does ezist, and let T be an optimal solution of problem (10). Then for allt € [to, 1],
V is differentiable at (t,Z(t)) and

DV (t,z(t)) = {V'(t,Z(2)) }

Conversely assume that z : [to, 1] — R"™ is a solution of (7) and that for every
t € [to,1], V is differentiable at (t,z(t)). If the sets f(z,U) are convez and compact
and

(50) - Z—Z(t,x(t))z'(t) - H (z(t), —%%(t,z(t))) ae. in [to,1]
then z 18 optimal for problem (10).

Proof — The first statement follows immediately from Proposition 4.2 and Theo-
rem 3.3. To prove the second one fix t € [to,1] and let Z : [t,1] = R" be an optimal
solution of problem (10) with (¢o, zo) replaced by (2, z(?)).

We already know that V is semiconcave. By Theorem 3.2 there exists p(f) € R"

such that
(H(z(@),p(®), -p@) = V'(Z,=z(?))
Since € [to, 1] is arbitrary, assumption (50) and Theorem 3.1 end the proof. O

Usually the value function is not everywhere differentiable. However that is
always the case for “convex” problems and continuously differentiable cost, as we
prove below (see also [5], [6], [7]).
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Proposition 4.4 Assume that (§2) holds true, g s convez and
(51) Graph(f(-,U)) is closed and convex

Then V 1s continuously differentiable on [0,1] X R™ and convez with respect to the
second variable.

Proof — By Theorem 1.1, assumption (51) yields that for every (to, zo) € [0,1] x
R" there exists a solution Z of the control system

' = f(z(t),ut)), u(t) € U, z(to) = zo

satisfying V (2o, 20) = 9(Z(1)).

Fix tg € [0,1], zo, z1 € R", A € [0,1] and consider trajectories z : [to,1] = R
and y : [tp,1] — R" such that V (¢, z0) = g(2(1)), V (o, z1) = g(y(1)). Define the
trajectory z : [to, 1] — R™ by 2(t) = Az(t) + (1 - A)y(t). Then, using (51), we obtain
that z is a solution of the control system (7). Thus, by convexity of g,

V(to,AIo + (1 - A)Zl) S g(z(l)) < AV(to,zo) + (1 - /\)V(tl,zl)

and therefore V (t;,-) is convex.

Next, as V (¢, -) is both convex and semiconcave for all ¢ € [0, 1], Proposition 2.12
yields that V'(t,) is continuously differentiable on R". The conclusion now follows
from Proposition 4.2. O

5 Optimal feedback

One of the major issues of optimal control theory is to find an “equation” for optimal
trajectories. Theorem 1.4 provides an inclusion formulation. However in general the
set-valued map G is not regular enough to make us able to solve the inclusion
(13). The situation is comparable to having an ordinary differential equation with
nonsmooth right hand side: it may have solutions, but this solution can not be
obtained as say limits of Euler curves.

That is why we have to investigate regularity properties of G. In this section we
show that under the assumptions of Theorem 4.1, the feedback map G° is upper
semicontinuous and that so is G if we assume in addition that the sets f(z,U) are
closed.

In this section we assume again that the control system (7) is atonomous, i.e., f
does not depend on time.
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Results of Sections 2 and 4 imply that under assumptions (42) the feedback maps
G :[0,1]xR"— R" and G : [0,1] x R" — R" defined in Section 1 are respectively
equal to
G(t,z) = {v € f(z,U)|V2(t,z)(1,v)=0}
and

G=(t,z) = {v € w@f(z,U) | V°(t,z)(1,v) =0}

Theorem 5.1 Let us assume that (£) holds true. Then G°° has compact nonempty
images and ts upper semicontinuous. The same holds true for the map G if we
assume in addition that the sets f(z,U) are closed.

Proof — From Theorems 4.1 and 2.9 we know that for every (t,z) € [0,1[xR"
and every © € R" the directional derivative al"’ (t,z) exists and is equal to the
regularized lower derivative V°((t, z), (1, 8)). Define the set-valued map

Q:[0,1] x R" ~ R"
by
4(t,z) = {© e R"|V(4,2)(1,6) <0}
From Proposition 2.5 we know that the set Graph(é) is closed. On the other hand
Proposition 1.3 implies that for every v € cof(z,U), F(oiv—u)(t, z) > 0. Thus
G(t,z) = Q(t,z)N f(z,U), G=(t,z) = Q(t,z)neaf(z,U)

This and the assumptions on f imply that graphs of the set-valued maps G, G°° are
closed. Furthermore G°° takes its values in a compact set. From [2, p.42] follows
that G and G are upper semicontinuous. O

Corollary 5.2 Let us assume that (§2) holds true and that the sets f(z,U) are
closed. If the map G s single-valued, then the function (t,z) — G(t, z) 18 continuous.

A typical example of a nonlinear control system with closed convex images is the
affine system:

k
2 = f(z) + Y wgi(z), w € [a,b]

i=1

where f and g; are continuous functions from R” to itself.

The feedback map G defined above, in general, does not have convex images
because the map of directional derivatives is concave.
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For this reason, in general, the feedback inclusion (13) is very difficult to inves-
tigate. When V happens to be differentiable and the sets f(z,U) are closed and
convex, then for obvious reasons the map G has convex compact images. Proposition
4.4 provides a sufficient condition for continuous differentiability of V.

Theorem 5.3 Assume that ({2}, (51) hold true and that g is convez. Then G has
convex compact images and s upper semicontinuous. Furthermore if for every z the
set f(z,U) 18 strictly convez, then G is single valued and continuous.

Proof — By Proposition 4.4 we know that V is continuously differentiable. This
yields that for all (¢,z) € [0, 1[xR™ the set

G(t,z) = f(z,U)n{®€R"| V'(t,2)(1,8) = 0}

is convex. Theorem 5.1 ends the proof of the first statement. From Proposition 1.3
it follows that for all (¢,z) € [0, 1[xR"

v € G(t,z) <= vef(z,U)& sup <—aa—‘;(t,::), f(z,u)> = <—%¥(t,z), v>

This and strict convexity of f(z,U) imply that G is single valued. Corollary 5.2
completes the proof. O

Let us assume that G is upper semicontinuous and has convex compact images.
We have already mentioned that solutions of (13) may be constructed as limits of
Euler curves.

An alternative approach comes from Cellina’s approximate selection theorem
(see [2, Theorem 1.12.1, p.84]). Namely this theorem states that for every € > 0 and
R > 0 there exists a locally Lipschitz map g.r : [0,1] x RB — R" satisfying

(52) Graph(g.r) C Graph(G) + B

With every € > 0, R > 0 we associate the solution z,p of the differential equation

{z' = gsR(z)
z(0) = &

Then from assumptions (8) follows that for some R > 0, z.p are defined on the
whole interval [0,1] and the sequence { z,r }.¢jo,1) i8 bounded in C(0,1). Hence
also { goZ¢R }.ejo,1) is bounded and therefore the functions z.p are equicontinuous.
This and the Ascoli-Arzela theorem imply that for some sequence £, — 0+, the
subsequence { Z,.r }n>1 converges to an absolutely continuous function z : [0,1] —
R". From (52) we deduce that z is a solution of the feedback inclusion (13) and
thereby it is optimal.
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6 Viability approach to optimal control

In this section we provide an alternative approach to optimal trajectories based on
viability techniques.
We first observe the following characterization of optimal trajectories:

Theorem 6.1 Assume that f satisfies (8). Then a solution T of the control system
(7) defined on the time interval [0,1] is optimal if and only if the function t —
(t,Z(t),V (0, &)) o solution of the viability problem

=1
Z'(t) = f(t,=z(t),u(t)), u(t) € U is measurable
(53) Z(t) =0

(t,z(t), 2(t)) € Graph (V) for all ¢t € [0,1]

t(0) = 0, z(0) = &, z(0) = V(0,¢)

Proof — We already observed that Z(-) is optimal if and only if the map t —
V (t, Z(t)) is constant on the time interval [0, 1]. On the other hand t — (¢, Z(t), 2(t))
is a solution of (53) if and only if z(t) = V' (¢,Z(t)) = const and Z(-) is a solution of
(7) satisfying Z(0) = &. O

Inclusion (53) is a viability problem which may be approached using many results
of viability theory. Actually viability technique may be applied not only to the value
function V but also to any continuous function W satisfying some inequalities from
[16]. To state results in this direction we need the following definition.

Definition 8.2 Consider a function W : [0,1] xR™ — R and let (t,z) € [0,1] x R".
The contingent derivative of W at (t, ) in the direction (w,v) € R X R™ is a subset
of R defined by

DW (t,z)(w,v) :=
{u €eR | lim infh—o0+,(w',u')—v(u;,u) dist (u’ W(t+hw', z‘?l)‘ﬂt,:)) - 0}

Theorem 8.3 Consider a continuous function W : [0,1] x R — R and assume
that f satisfies (8). If for every (t,z) € [0,1] x R™

0 € {DW(t,z)(1,v)|v € cof(t,z,U)}
then for all (to,z0) there exists a solution T of the differential inclusion
£'(t) € cof(t,z(t),U) ae. in [to,1], z(to) = zo

such that W(t,Z(t)) = W(1,%(1)).
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Proof — It is not restrictive to assume that t; = 0. We extend W on R, x R"
by setting for all t > 1, W (t,z) = W(1,z). Define the closed set K =Graph(W) and
the map Fy(t,z) = {1} x €of(t,z,U) x {0}. Set

- Fi(t,z ift € [0,1
F(t,2) = { TJ%{O)}UFl(l,z)) if ¢ > o

Then for every (t,z) € Ry X R", the contingent cone Tx(t,z,W(t,z)) to K at
(t,z,W(t,z)) is equal to Graph(DW (t,z)). Hence, by our assumption, for every
(t,z) € [0,1[xR" there exists u € Fi(t,z) such that (1,4,0) € Tk(t,z,W(t,z)).
Furthermore, for every t > 1 and z € R", we have 0 € F(t, z). This proves that

V(t,z) € Ry xR", F(t,z)NTk(t,z,W(t,z)) # @

By the assumptions F is continuous and has closed convex images. Consequently,
by the Haddad viability theorem [19], the constrained system

y'(t) € F(t,y(t) almost everywhere
y(t) € K for all ¢
y(0) = (0,z0,W(0, z0))

has a solution ¥ = (20,z,2) : [to,t1] — R x R™ x R for some t; > t;. Using
the assumptions on f and Haddad’s theorem, we extend this solution on the time
interval [to,1]. Then, from definition of K and F, z(t) = ¢, z(t) = W(t,z(t)). On
the other hand 2/(t) = O almost everywhere in [to, 1] and therefore z = const. This
ends the proof. O

Theorem 6.4 Consider a continuous function W : [0,1] x R® — R and assume
that f does not depend on t and satisfies (8). If W(1,:) = g(-) and

sup inf D(-W)(t,z)(1,v) < O
veeof(z,U)

then for every solution y(-) = (t,z,2)(-) of

=1

z'(t) = f(t,z(t),u(t)), u(t) € U is measurable
(54) 2(t) =0

(t,z(t), 2(t)) € Graph (W) for all t €[0,1]

t(0) = 0, z(0) = o, 2(0) = W(0, &)
defined on the time interval [0, 1], the trajectory z(-) is optimal for the problem (9).
Proof — From [16] we deduce that W is nondecreasing along trajectories of (7).

On the other hand if y(-) = (¢,z,2)(-) is a solution of (54) defined on the time
interval [0, 1] then W (¢, z(t)) = const. D
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7 Problem with end point constraints

In this section we investigate the case when the additional end point constraint is
present:
:l:(l) € K;

where K is a given closed subset of R". The corresponding value function is defined
by

V(to, z0) = inf{g(z(1)) | z is a solution of (7) on [to, 1], z(to) = zo, z(1) € K1}

We observe that V (2o, z9) = +0o whenever no trajectory starting at zo at time tg
hits K at time one.

In this more general case the value function may be discontinuous and one has
either to develop a verification technique for a larger class of functions (some results
in this direction were obtained in [16] or to try to reduce the problem to a new one,
where the data fits the Lipschitzian framework. We shall follow this second strategy
and apply the penalization technique.

We provide only a convergence result showing that the problem with end point
constraints may be approximated by free end point ones. Further developments are
left to future work.

We impose on the functions f and g the same assumptions as in Section 1 and
we consider the family of penalized problems: with every € > O we associate the
minimization problem

(P.) minimize {g(z(l)) + %dist(z,K1)2 | z(+) is a solution of (7), z(0) = 50}
Define functions g, from R™ to R by
VzeR", gz) = g(z) + % dist(z, K,)?

The value function V, corresponding to the problem (P,) is defined by (10) with ¢
replaced by g,.

Since g, is locally Lipschitz we deduce that V; is also locally Lipschitz continuous
with the Lipschitz constant depending on €. Hence the results obtained in previous
sections may be applied to V,.

Furthermore if ¢ is semiconcave, then, using Example 1 from Section 2, we show
that also the functions g, are semiconcave. This and Theorem 4.1 yield that under
assumptions (42) for every € > O the value function V, is semiconcave on [0, 1] x R™.
Consequently, results concerning regularity of optimal feedback may be applied to
penalized problems.

The aim of this section is to prove the convergence of V, to V.
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Theorem 7.1 Assume that [ satisfies (8). If the sets f(t,z,U) are closed and
convez, then for every (t,z) € [0,1] x R™ the function Ry > € — V,(t,z) 18 nonin-
creasing. Furthermore for every e > 0, V,(t,z) < V(t,z) and

‘hrg1+ Ve(t,z) = V(t,z)

Proof — The first two statements are obvious. Fix (¢,z) € [0,1] x R" and set
W(t,z) = limg_04 Ve(t,z). Clearly W(t,z) < V(t,z). To show the opposite it is
enough to consider the case W (t, z) < +oo. Consider trajectory control pairs (y*, u¢)
of control system (7) satisfying

Vet z) = ¢°(y°(1))

(they exist by Theorem 1.1). Then, by the relaxation theorem [2], there exists a
sequence €, — 0+ and a trajectory y(-) of (7) defined on [¢t,1] such that y*» — y
uniformly on [t,1]. On the other hand

0 < dist(y*(1), K2)! < e(W(t,2) - g(y* (1)

and therefore, taking the limit in the above inequality, we obtain y(1) € K;. Fur-
thermore from the inequality

Ve(t,z) >9(y*(1))
we deduce that W(t, z) > g(y(1)) > V(¢,z). O

Corollary 7.2 Under all assumptions of Theorem 7.1 consider a sequence €, — 0+
and let z°~(-) be an optimal solution to the problem (P.,). If problem (P) has at
least one solution, then every cluster point z(-) of {z*~(-)} in the metric of uniform
convergence i8 an optimal solution of (P).

Proof — Indeed, since (P) has a solution, by Theorem 7.1, for all n > 0,
Ver(t,z°"(t)) = const < V (0, &) < +o0

and taking limit we deduce that V'(t,z(t)) = const < +o0o. Thus z(1) € K; and =z
is optimal. O

The above results imply that to find an optimal solution of the problem with end
point constraints we can take any cluster point of solutions of penalized problems
when € — 0+. On the other hand penalized problems may be addressed using
theorems of previous sections.
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